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Figure 1: Animals from images. We learn an articulated, 3D, statistical shape model of animals using very little training
data. We fit the shape and pose of the model to 2D image cues showing how it generalizes to previously unseen shapes.

Abstract

There has been significant work on learning realistic,
articulated, 3D models of the human body. In contrast,
there are few such models of animals, despite many ap-
plications. The main challenge is that animals are much
less cooperative than humans. The best human body mod-
els are learned from thousands of 3D scans of people in
specific poses, which is infeasible with live animals. Con-
sequently, we learn our model from a small set of 3D scans
of toy figurines in arbitrary poses. We employ a novel part-
based shape model to compute an initial registration to the
scans. We then normalize their pose, learn a statistical
shape model, and refine the registrations and the model to-
gether. In this way, we accurately align animal scans from
different quadruped families with very different shapes and
poses. With the registration to a common template we learn
a shape space representing animals including lions, cats,
dogs, horses, cows and hippos. Animal shapes can be sam-
pled from the model, posed, animated, and fit to data. We
demonstrate generalization by fitting it to images of real an-
imals including species not seen in training.

1. Introduction

The detection, tracking, and analysis of animals has
many applications in biology, neuroscience, ecology, farm-
ing, and entertainment. Despite the wide applicability, the
computer vision community has focused more heavily on
modeling humans, estimating human pose, and analyzing
human behavior. Can we take the best practices learned
from the analysis of humans and apply these directly to an-
imals? To address this, we take an approach for 3D human
pose and shape modeling and extend it to modeling animals.

Specifically we learn a generative model of the 3D pose
and shape of animals and then fit this model to 2D im-
age data as illustrated in Fig. 1. We focus on a sub-
set of four-legged mammals that all have the same num-
ber of “parts” and model members of the families Felidae,
Canidae, Equidae, Bovidae, and Hippopotamidae. Our goal
is to build a statistical shape model like SMPL [23], which
captures human body shape variation in a low-dimensional
Euclidean subspace, models the articulated structure of the
body, and can be fit to image data [7].

Animals, however, differ from humans in several impor-
tant ways. First, the shape variation across species far ex-
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ceeds the kinds of variations seen between humans. Even
within the canine family, there is a huge variability in dog
shapes as a result of selective breeding. Second, all these
animals have tails, which are highly deformable and obvi-
ously not present in human shape models. Third, obtaining
3D data to train a model is much more challenging. SMPL
and previous models like it (e.g. SCAPE [5]) rely on a large
database of thousands of 3D scans of many people (captur-
ing shape variation in the population) and a wide range of
poses (capturing pose variation). Humans are particularly
easy and cooperative subjects. It is impractical to bring a
large number of wild animals into a lab environment for
scanning and it would be difficult to take scanning equip-
ment into the wild to capture animals shapes in nature.

Since scanning live animals is impractical we instead
scan realistic toy animals to create a dataset of 41 scans of
a range of quadrupeds as illustrated in Fig. 2. We show that
a model learned from toys generalizes to real animals.

The key to building a statistical 3D shape model is that
all the 3D data must be in correspondence. This involves
registering a common template mesh to every scan. This
is a hard problem, which we approach by introducing a
novel part-based model and inference scheme that extends
the “stitched puppet” (SP) model [34]. Our new Global-
Local Stitched Shape model (GLoSS) aligns a template to
different shapes, providing a coarse registration between
very different animals (Fig. 5 left). The GLoSS registrations
are somewhat crude but provide a reasonable initialization
for a model-free refinement, where the template mesh ver-
tices deform towards the scan surface under an As-Rigid-
As-Possible (ARAP) constraint [30] (Fig. 5 right).

Our template mesh is segmented into parts, with blend
weights, so that it can be reposed using linear blend skin-
ning (LBS). We “pose normalize” the refined registrations
and learn a low-dimensional shape space using principal
component analysis (PCA). This is analogous to the SMPL
shape space [23].

Using the articulated structure of the template and its
blend weights, we obtain a model where new shapes can
be generated and reposed. With the learned shape model,
we refine the registration of the template to the scans us-
ing co-registration [17], which regularizes the registration
by penalizing deviations from the model fit to the scan. We
update the shape space and iterate to convergence.

The final Skinned Multi-Animal Linear model (SMAL)
provides a shape space of animals trained from 41 scans.
Because quadrupeds have shape variations in common, the
model generalizes to new animals not seen in training. This
allows us to fit SMAL to 2D data using manually detected
keypoints and segmentations. As shown in Fig. 1 and Fig. 9,
our model can generate realistic animal shapes in a variety
of poses.

In summary we describe a method to create a realistic 3D

model of animals and fit this model to 2D data. The problem
is much harder than modeling humans and we develop new
tools to extend previous methods to learn an animal model.
This opens up new directions for research on animal shape
and motion capture.

2. Related Work
There is a long history on representing, classifying, and

analyzing animal shapes in 2D [31]. Here we focus only
on work in 3D. The idea of part-based 3D models of ani-
mals also has a long history. Similar in spirit to our GLoSS
model, Marr and Nishihara [25] suggested that a wide range
of animals shapes could be modeled by a small set of 3D
shape primitives connected in a kinematic tree.

Animal shape from 3D scans. There is little work that
systematically addresses the 3D scanning [3] and modeling
of animals. The range of sizes and shapes, together with the
difficulty of handling live animals and dealing with their
movement, makes traditional scanning difficult. Previous
3D shape datasets like TOSCA [9] have a limited set of 3D
animals that are artist-designed and with limited realism.

Animal shape from images. Previous work on model-
ing animal shape starts from the assumption that obtaining
3D animal scans is impractical and focuses on using image
data to extract 3D shape. Cashman and Fitzgibbon [10] take
a template of a dolphin and learn a low-dimensional model
of its deformations from hand clicked keypoints and man-
ual segmentation. They optimize their model to minimize
reprojection error to the keypoints and contour. They also
show results for a pigeon and a polar bear. The formulation
is elegant but the approach suffers from an overly smooth
shape representation; this is not so problematic for dolphins
but for other animals it is. The key limitation, however, is
that they do not model articulation.

Kanazawa et al. [18] deform a 3D animal template to
match hand clicked points in a set of images. They learn
separate deformable models for cats and horses using spa-
tially varying stiffness values. Our model is stronger in that
it captures articulation separately from shape variation. Fur-
ther we model the shape variation across a wide range of
animals to produce a statistical shape model.

Ntouskos et al. [26] take multiple views of different an-
imals from the same class, manually segment the parts in
each view, and then fit geometric primitives to segmented
parts. They assemble these to form an approximate 3D
shape. Vicente and Agapito [32] extract a template from
a reference image and then deform it to fit a new image
using keypoints and the silhouette. The results are of low
resolution when applied to complex shapes.

Our work is complementary to these previous ap-
proaches that only use image data to learn 3D shapes. Fu-
ture work should combine 3D scans with image data to ob-
tain even richer models.



Figure 2: Toys. Example 3D scans of animal figurines used for training our model.

Animal shape from video. Ramanan et al. [27] model
animals as a 2D kinematic chain of parts and learn the parts
and their appearance from video. Bregler et al. [8] track
features on a non-rigid object (e.g. a giraffe neck) and ex-
tract a 3D surface as well as its low-dimensional modes of
deformation. Del Pero et al. [13] track and segment ani-
mals in video but do not address 3D shape reconstruction.
Favreau et al. [14] focus on animating a 3D model of an an-
imal given a 2D video sequence. Reinert et al. [28] take
a video sequence of an animal and, using an interactive
sketching/tracking approach, extract a textured 3D model of
the animal. The 3D shape is obtained by fitting generalized
cylinders to each sketched stroke over multiple frames.

None of these methods model the kinds of detail avail-
able in 3D scans, nor do they model the 3D articulated struc-
ture of the body. Most importantly none try to learn a 3D
shape space spanning multiple animals.

Human shape from 3D scans. Our approach is in-
spired by a long history of learning 3D shape models of
humans. Blanz and Vetter [6] began this direction by align-
ing 3D scans of faces and computing a low-dimensional
shape model. Faces have less shape variability and are
less articulated than animals, simplifying mesh registration
and modeling. Modeling articulated human body shape is
significantly harder but several models have been proposed
[4, 5, 12, 16, 23]. Chen et al. [11] model both humans and
sharks, factoring deformations into pose and shape. The 3D
shark model is learned from synthetic data and they do not
model articulation. Khamis et al. [20] learn an articulated
hand model with shape variation from depth images.

We base our method on SMPL [23], which combines
a low-dimensional shape space with an articulated blend-
skinned model. SMPL is learned from 3D scans of 4000
people in a common pose and another 1800 scans of 60 peo-
ple in a wide variety of poses. In contrast, we have much
less data and at the same time much more shape variability
to represent. Despite this, we show that we can learn a use-
ful animal model for computer vision applications. More
importantly, this provides a path to making better models
using more scans as well as image data. We also go be-
yond SMPL to add a non-rigid tail and more parts than are
present in human bodies.

Figure 3: Template mesh. It is segmented into 33 parts,
and here posed in the neutral pose.

3. Dataset

We created a dataset of 3D animals by scanning toy fig-
urines (Fig. 2) using an Artec hand-held 3D scanner. We
also tried scanning taxidermy animals in a museum but
found, surprisingly, that the shapes of the toys looked more
realistic. We collected a total of 41 scans from several
species: 1 cat, 5 cheetahs, 8 lions, 7 tigers, 2 dogs, 1 fox,
1 wolf, 1 hyena, 1 deer, 1 horse, 6 zebras, 4 cows, 3 hip-
pos. We estimated a scaling factor so animals from differ-
ent manufacturers were comparable in size. Like previous
3D human datasets [29], and methods that create animals
from images [10, 18], we collected a set of 36 hand-clicked
keypoints that we use to aid mesh registration. For more
information see [1].

4. Global/Local Stitched Shape Model

The Global/Local Stitched Shape model (GLoSS) is a
3D articulated model where body shape deformations are
locally defined for each part and the parts are assembled to-
gether by minimizing a stitching cost at the part interfaces.
The model is inspired by the SP model [34], but has signif-
icant differences from it. In contrast to SP, the shape defor-
mations of each part are analytic, rather than learned. This
makes it more approximate but, importantly, allows us to
apply it to novel animal shapes, without requiring a priori
training data. Second, GLoSS is a globally differentiable
model that can be fit to data with gradient-based techniques.

To define a GLoSS model we need the following: a 3D
template mesh of an animal with the desired polygon count,
its segmentation into parts, skinning weights, and an ani-
mation sequence. To define the mesh topology, we use a 3D
mesh of a lioness downloaded from the Turbosquid website.
The mesh is rigged and skinning weights are defined. We
manually segment the mesh into N = 33 parts (Fig. 3) and



make it symmetric along its sagittal plane.
We now summarize the GLoSS parametrization. Let i be

a part index, i ∈ (1 · · · N). The model variables are: part
location li ∈ R3×1, part absolute 3D rotation ri ∈ R3×1,
expressed as a Rodrigues vector, intrinsic shape variables
si ∈ Rns×1 and pose deformation variables di ∈ Rnd×1.
Let πi = {li, ri, si,di} be the set of variables for part i and
Π = {l, r, s,d} the set of variables for all parts. The vector
of vertex coordinates, p̂i ∈ R3×ni , for part i in a global
reference frame is computed as:

p̂i(πi) = R(ri)pi + li, (1)

where ni is the number of vertices in the part, and R ∈
SO(3) is the rotation matrix obtained from ri. The pi ∈
R3×ni are points in a local coordinate frame, computed as:

vec(pi) = ti + mp,i +Bs,isi +Bp,idi. (2)

Here ti ∈ R3ni×1 is the part template, mp,i ∈ R3ni×1 is
the vector of average pose displacements; Bs,i ∈ R3ni×ns

is a matrix with columns representing a basis of intrinsic
shape displacements, and Bp,i ∈ R3ni×nd is the matrix of
pose dependent deformations. These deformation matrices
are defined below.
Pose deformation space. We compute the part-based pose
deformation space from examples. For this we use an ani-
mation of the lioness template using linear blend skinning
(LBS). Each frame of the animation is a pose deformation
sample. We perform PCA on the vertices of each part in a
local coordinate frame, obtaining a vector of average pose
deformations mp,i and the basis matrix Bp,i.
Shape deformation space. We define a synthetic shape
space for each body part. This space includes 7 deforma-
tions of the part template, namely scale, scale along x, scale
along y, scale along z, and three stretch deformations that
are defined as follows. Stretch for x does not modify the x
coordinate of the template points, while it scales the y and
z coordinates in proportion to the value of x. Similarly we
define the stretch for y and z. This defines a simple analytic
deformation space for each part. We model the distribution
of the shape coefficients as a Gaussian distribution with zero
mean and diagonal covariance, where we set the variance of
each dimension arbitrarily.

5. Initial Registration

The initial registration of the template to the scans is per-
formed in two steps. First, we optimize the GLoSS model
with a gradient-based method. This brings the model close
to the scan. Then, we perform a model-free registration of
the mesh vertices to the scan using As-Rigid-As-Possible
(ARAP) regularization [30] to capture the fine details.
GLoSS-based registration. To fit GLoSS to a scan, we

minimize the following objective:

E(Π) = Em(d, s) + Estitch(Π)+

Ecurv(Π) + Edata(Π) + Epose(r), (3)

where

Em(d, s) = ksmEsm(s) + ks

N∑
i=1

Es(si) + kd

N∑
i=1

Ed(di)

is a model term, where Es is the squared Mahalanobis
distance from the synthetic shape distribution and Ed is a
squared L2 norm. The term Esm represents the constraint
that symmetric parts should have similar shape deforma-
tions. We impose similarity between left and right limbs,
front and back paws, and sections of the torso. This last
constraint favors sections of the torso to have similar length.

The stitching term Estitch is the sum of squared dis-
tances of the corresponding points at the interfaces between
parts (cf. [34]). Let Cij be the set of vertex-vertex corre-
spondences between part i and part j. Then Estitch(Π) =

kst
∑

(i,j)∈C

∑
(k,l)∈Cij

‖p̂i,k(πi)− p̂j,l(πj)‖2, (4)

where C is the set of part connections. Minimizing this term
favors connected parts.

The data term is defined as: Edata(Π) =

kkpEkp(Π) + km2sEm2s(Π) + ks2mEs2m(Π), (5)

where Em2s and Es2m are distances from the model to the
scan and from the scan to the model, respectively:

Em2s(Π) =

N∑
i=1

ni∑
k=1

ρ(min
s∈S
‖p̂i,k(πi)− s‖2), (6)

Es2m(Π) =

S∑
l=1

ρ(min
p̂
‖p̂(Π)− sl‖2), (7)

where S is the set of S scan vertices and ρ is the Geman-
McClure robust error function [15]. The term Ekp(Π) is
a term for matching model keypoints with scan keypoints,
and is defined as the sum of squared distances between
corresponding keypoints. This term is important to enable
matching between extremely different animal shapes.

The curvature term favors parts that have a similar pair-
wise relationship as those in the template; Ecurv(Π) =

kc
∑

(i,j)∈C

∑
(k,l)∈Cij

∣∣‖n̂i,k(πi)− n̂j,l(πj)‖2 − ‖n̂(t)
i,k − n̂(t)

j,l ‖
2
∣∣,

where n̂i and n̂j are vectors of vertex normals on part i and
part j, respectively. Analogous quantities on the template



Figure 4: GLoSS fitting. (a) Initial template and scan. (b)
GLoSS fit to scan. (c) GLoSS model showing the parts. (d)
Merged mesh with global topology obtained by removing
the duplicated vertices at the part interfaces.

Figure 5: Registration results. Comparing GLoSS (left)
with the ARAP refinement (right). The fit to the scan is
much tighter after refinement.

are denoted with a superscript (t). Lastly, Epose is a pose
prior on the tail parts learned from animations of the tail.
The values of the energy weights are manually defined and
kept constant for all the toys.

We initialize the registration of each scan by aligning the
model in neutral pose to the scan based on the median value
of their vertices. Given this, we minimize Eq. 3 using the
Chumpy auto-differentiation package [2]. Doing so aligns
the lioness GLoSS model to all the toy scans. Figure 4a-c
shows an example of fitting of GLoSS (colored) to a scan
(white), and Fig. 5 (first and second column) shows some
of the obtained registrations. To compare the GLoSS-based
registration with SP we computed SP registrations for the
big cats family. We obtain an average scan-to-mesh distance
of 4.39(σ = 1.66) for SP, and 3.22(σ = 1.34) for GLoSS.
ARAP-based refinement. The GLoSS model gives a good
initial registration. Given this, we turn each GLoSS mesh
from its part-based topology into a global topology where
interface points are not duplicated (Fig. 4d). We then further
align the vertices v to the scans by minimizing an energy
function defined by a data term equal to Eq. 5 and an As-

Scan ARAP Neutral pose

Figure 6: Registrations of toy scans in the neutral pose.

Rigid-As-Possible (ARAP) regularization term [30]:

E(v) = Edata(v) + Earap(v). (8)

This model-free optimization brings the mesh vertices
closer to the scan and therefore more accurately captures
the shape of the animal (see Fig. 5).

6. Skinned Multi-Animal Linear Model
The above registrations are now sufficiently accurate to

create a first shape model, which we refine further below to
produce the full SMAL model.
Pose normalization. Given the pose estimated with
GLoSS, we bring all the registered templates into the same
neutral pose using LBS. The resulting meshes are not sym-
metric. This is due to various reasons: inaccurate pose es-
timation, limitations of linear-blend-skinning, the toys may
not be symmetric, and pose differences across sides of the
body create different deformations. We do not want to learn
this asymmetry. To address this we perform an averaging of
the vertices after we have mirrored the mesh to obtain the
registrations in the neutral pose (Fig. 6). Also, the fact that
mouths are sometimes open and other times closed presents
a challenge for registration, as inside mouth points are not
observed in the scan when the animal has a closed mouth.
To address this, palate and tongue points in the registration
are regressed from the mouth points using a simple linear
model learned from the template. Finally we smooth the
meshes with Laplacian smoothing.
Shape model. Pose normalization removes the non-linear
effects of part rotations on the vertices. In the neutral pose
we can thus model the statistics of the shape variation in a
Euclidean space. We compute the mean shape and the prin-
cipal components, which capture shape differences between
the animals.



Figure 7: PCA space. First 4 principal components. Mean
shape is in the center. The width of the arrow represents the
order of the components. We visualise deviations of ±2std.

SMAL. The SMAL model is a function M(β,θ,γ) of
shape β, pose θ and translation γ. β is a vector of the
coefficients of the learned PCA shape space, θ ∈ R3N =
{ri}Ni=1 is the relative rotation of the N = 33 joints in the
kinematic tree, and γ is the global translation applied to the
root joint. Analogous to SMPL, the SMAL function returns
a 3D mesh, where the template model is shaped by β, artic-
ulated by θ through LBS, and shifted by γ.
Fitting. To fit SMAL to scans we minimize the objective:

E(β,θ,γ) = Epose(θ) + Es(β) + Edata(β,θ,γ), (9)

where Epose(θ) and Es(β) are squared Mahalanobis dis-
tances from prior distributions for pose and shape, respec-
tively. Edata(β,θ,γ) is defined as in Eq. 5 but over the
SMAL model. For optimization we use Chumpy [2].
Co-registration. To refine the registrations and the SMAL
model further, we then perform co-registration [17]. The
key idea is to first perform a SMAL model optimization to
align the current model to the scans, and then run a model-
free step where we couple, or regularize, the model-free reg-
istration to the current SMAL model by adding a coupling
term to Eq. 8:

Ecoup(v) = ko

V∑
i=1

|v0i − vi|, (10)

where V is the number of vertices in the template, v0i is ver-
tex i of the model fit to the scan, and the vi are the coupled
mesh vertices being optimized. During co-registration we
use a shape space with 30 dimensions. We perform 4 itera-
tions of registration and model building and observe the reg-
istration errors decrease and converge (see Sup. Mat. [1]).
With the registrations to the toys in the last iteration we
learn the shape space of our final SMAL model.

Figure 8: Visualization (using t-SNE [24]) of different ani-
mal families using 8 PCs. Large dots indicate the mean of
the PCA coefficients for each family.

Animal shape space. After refining with co-registration,
the final principal components are visualized in Fig. 7. The
global SMAL shape space captures the shape variability of
animals across different families. The first component cap-
tures scale differences; our training set includes adult and
young animals. The learned space nicely separates shape
characteristics of animal families. This is illustrated in
Fig. 8 with a t-SNE visualization [24] of the first 8 dimen-
sions of the PCA coefficients in the training set. The meshes
correspond to the mean shape for each family. We also de-
fine family-specific shape models by computing a Gaussian
over the PCA coefficients of the class. We compare generic
and family specific models below.

7. Fitting Animals to Images
We now fit the SMAL model, M(β,θ,γ), to image cues

by optimizing the shape and pose parameters. We fit the
model to a combination of 2D keypoints and 2D silhouettes,
both manually extracted, as in previous work [10, 18].

We denote Π(·; f) as the perspective camera projection
with focal length f , where Π(vi; f) is the projection of the
i’th vertex onto the image plane and Π(M ; f) = Ŝ is the
projected model silhouette. We assume an identity camera
placed at the origin and that the global rotation of the 3D
mesh is defined by the rotation of the root joint.

To fit SMAL to an image, we formulate an objective
function and minimize it with respect to Θ = {β,θ,γ, f}.
The function is a sum of the keypoint and silhouette repro-
jection errors, a shape prior, and two pose priors, E(Θ) =

Ekp(Θ; x) + Esilh(Θ;S) + Eβ(β) + Eθ(θ) + Elim(θ).
(11)

Each energy term is weighted by a hyper-parameter defining
their importance.
Keypoint reprojection. See [1] for a definition of key-
points which include surface points and joints. Since key-
points may be ambiguous, we assign a set of up to four ver-



tices to represent each model keypoint and take the average
of their projection to match the target 2D keypoint. Specifi-
cally for the k’th keypoint, let x be the labeled 2D keypoint
and {vkj

}km
j=1 be the assigned set of vertices, then

Ekp(Θ) =
∑
k

ρ(||x− 1

|km|

|km|∑
j=1

Π(vkj
; Θ)||2), (12)

where ρ is the Geman-McClure robust error function [15].
Silhouette reprojection. We encourage silhouette coverage
and consistency similar to [19, 21, 33] using a bi-directional
distance:

Esilh(Θ) =
∑
x∈Ŝ

DS(x) +
∑
x∈S

ρ(min
x̂∈Ŝ
||x− x̂||2), (13)

where S is the ground truth silhouette and DS is its L2
distance transform field such that if point x is inside the
silhouette, DS(x) = 0. Since the silhouette terms have
small basins of attraction we optimize the term over mul-
tiple scales in a coarse-to-fine manner.
Shape prior. We encourage β to be close to the prior
distribution of shape coefficients by defining Eβ to be the
squared Mahalanobis distance with zero mean and variance
given by the PCA eigenvalues. When the animal family
is known, we can make our fits more specific by using the
mean and covariance of training samples of the particular
family.
Pose priors. Eθ is also defined as the squared Mahalanobis
distance using the mean and covariance of the poses across
all the training samples and a walking sequence. To make
the pose prior symmetric, we double the training data by re-
flecting the poses along the template’s sagittal plane. Since
we do not have many examples, we further constrain the
pose with limit bounds:

Elim(θ) = max(θ − θmax, 0) + max(θmin − θ,0). (14)

θmax and θmin are the maximum and minimum range of
values for each dimension of θ respectively, which we de-
fine by hand. We do not limit the global rotation.
Optimization. Following [7], we first initialize the depth
of γ using the torso points. Then we solve for the global
rotation {θi}3i=0 and γ using Ekp over points on the torso.
Using these as the initialization, we solve Eq. 11 for the
entire Θ without Esilh. Similar to previous methods [7, 18]
we employ a staged approach where the weights on pose
and shape priors are gradually lowered over three stages.
This helps avoid getting trapped in local optima. We then
finally include theEsilh term and solve Eq. 11 starting from
this initialization. Solving for the focal length is important
and we regularize f by adding another term that forces γ
to be close to its initial estimate. The entire optimization
is done using OpenDR and Chumpy [2, 22]. Optimization
for a single image typically takes less than a minute on a
common Linux machine.

8. Experiments

We have shown how to learn a SMAL animal model from
a small set of toy figurines. Now the question is: does this
model capture the shape variation of real animals? Here we
test this by fitting the model to annotated images of real an-
imals. We fit using class specific and generic shape models,
and show that the shape space generalizes to new animal
families not present in training (within reason).
Data. For fitting, we use 19 semantic keypoints of [13]
plus an extra point for the tail tip. Note that these keypoints
differ from those used in the 3D alignment. We fit frames in
the TigDog dataset, reusing their annotation, frames from
the Muybridge footage, and images downloaded from the
Internet. For images without annotation, we click the same
20 keypoints for all animals, which takes about one minute
for each image. We also hand segmented all the images. No
images were re-visited to improve their annotations and we
found the model to be robust to noise in the exact location
of the keypoints. See [1] for data, annotations, and results.
Results. The model fits to real images of animals are shown
in Fig. 1 and 9. The weights for each term in Eq. 11 are
tuned by hand and held fixed for fitting all images. All re-
sults use the animal specific shape space except for those
in mint green, which use the generic shape model. Despite
being trained on scans of toys, our model generalizes to im-
ages of real animals, capturing their shape well. Variability
in animal families with extreme shape characteristics (e.g.
lion manes, skinny horse legs, hippo faces) are modeled
well. Both the generic and class-specific models capture
the shape of real animals well.

Similar to the case of humans [7], our main failures are
due to inherent depth ambiguity, both in global rotation and
pose (Fig 10). In Fig. 11 we show the results of fitting the
generic shape model to classes of animals not seen in the
training set: boar, donkey, sheep and pigs. While character-
istic shape properties such as the pig snout cannot be exactly
captured, these fits suggest that the learned PCA space can
generalize to new animals within a range of quadrupeds.

9. Conclusions

Human shape modeling has a long history, while animal
modeling is in its infancy. We have made small steps to-
wards making the building of animal models practical. We
showed that starting with toys, we can learn a model that
generalizes to images of real animals as well as to types of
animals not seen during training. This gives a procedure for
building richer models from more animals and more scans.
While we have shown that toys are a good starting point, we
would clearly like a much richer model. For that we believe
that we need to incorporate image and video evidence. Our
fits to images provide a starting point from which to learn
richer deformations to explain 2D image evidence. Here we



Figure 9: Fits to real images using manually obtained 2D points and segmentation. Colors indicate animal family. We show
the input image, fit overlaid, views from −45◦ and 45◦. All results except for those in mint colors use the animal specific
shape prior. The SMAL model, learned form toy figurines, generalizes to real animal shapes.

Figure 10: Failure examples due to depth ambiguity in pose
and global rotation.

have focused on a limited set of quadrupeds. A key issue
is dealing with varying numbers of parts (e.g. horns, tusks,
trunks) and parts of widely different shape (e.g. elephant
ears). Moving beyond the class of animals here will involve
creating a vocabulary of reusable shape parts and new ways
of composing them.
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Figure 11: Generalization of SMAL to animal species not
present in the training set.
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