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1. Introduction

The tracking and recognition of human motion is a challenging problem
with diverse applications in virtual reality, medicine, teleoperations, an-
imation, and human-computer interaction to name a few. The study of
human motion has a long history with the use of images for analyzing an-
imate motion beginning with the improvements in photography and the
development of motion-pictures in the late nineteenth century. Scientists
and artists such as Marey [12] and Muybridge [26] were early explorers of
human and animal motion in images and image sequences. Today, com-
mercial motion-capture systems can be used to accurately record the 3D
movements of an instrumented person, but the motion analysis and motion
recognition of an arbitrary person in a video sequence remains an unsolved
problem. In this chapter we describe the representation and recognition
of human motion using parameterized models of optical ow. A person's
limbs, face, and facial features are represented as patches whose motion
in an image sequence can be modeled by low-order polynomials. A robust
optical ow estimation technique is used to recover the motion of these
patches and the recovered motion parameters provide a rich, yet concise,
description of the human motion which can be used to recognize human
activities, gestures, and facial expressions.
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Rigid Face
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Figure 1. The cardboard person model. The limbs and face of a person are represented
by planar patches. The motion of the face is further represented by the relative motions
of the features.

In our representation we approximate the non-rigid motion of a person
using a set of parameterized models of optical ow. This cardboard-person
model is illustrated in Figure 1. While parameterized ow models (for ex-
ample a�ne ow) have been used for representing image motion in rigid
scenes, Black and Yacoob [7] observed that simple parameterized models
could well approximate more complex motions if localized in space and
time. Moreover, they showed that the motion of one body region (for ex-
ample the face region) could be used to stabilize that body part in a warped
image sequence. This allowed the image motions of related body parts (the
eyes, mouth, and eyebrows) to be estimated relative to the motion of the
face. Isolating the motions of these features from the motion of the face is
critical for recognizing facial expressions using motion.

These parameterized motion models can be extended to model the artic-
ulated motion of the human limbs [18]. Limb segments can be approximated
by planes and the motion of these planes can be recovered using a simple
eight-parameter optical ow model. Constraints can be added to the opti-
cal ow estimation problem to model the articulation of the limbs and the
relative image motions of the limbs can be used for recognition.

An example of tracking and recognizing facial motion is provided in
Figure 2. Regions corresponding to parts of the face are located in the �rst
image of the sequence. Then between pairs of frames, the image motion
within the regions is computed robustly using a parameterized optical ow
model. These models capture how the regions move and deform and the
motion information is used to track the regions through the image sequence.

The motion of the regions between frames is described by a small set
of parameters which can be used for recognition. Some of the information
contained in these parameters is shown for the surprise expression in Figure
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Figure 2. Surprise Experiment: facial expression tracking. Features every 10 frames.
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Figure 3. Motion parameters. For the mouth translation, the solid line indicates hori-
zontal motion while the dashed line indicates vertical motion. For the eye and brows, the
solid and dashed lines indicate left and right respectively.

3. During the initiation of the expression the mouth translates down, di-
verges, and deforms signi�cantly. Simultaneously, the brows and eyes move
upwards, the brows arch, and the eyes deform as they widen. The ending
phase in this example shows a more gradual reversal of these parameters
returning the face to the resting position.

It is important to note that these parameters only represent the motion
of the region between two frames and that recognition is performed directly
from the observed optical ow parameters. Additionally, the motion of fa-
cial features is estimated relative to the motion of the face which, in turn, is
estimated relative to the motion of the torso. This relative, parameterized,
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motion information turns out to be a surprisingly rich representation which
allows recognition of human motions without the use of complex 3D models
or the matching of image features. Our experiments with facial and articu-
lated motions indicate that the parameterized motion models can provide
robust tracking and recognition over long image sequences.

In the following section we relate our cardboard-person model to other
approaches. Then in Section 3 we present the optical ow models used
for tracking and recognition. The robust estimation of the relative images
motions of the body parts is described in Sections 4 and 5 and then Section
6 presents a few results which illustrate the tracking of faces and limbs in
long image sequences. Section 7 presents recognition strategies for facial
expressions, gestures, and cyclical movements such as walking. Finally in
Sections 8 and 9 we examine the limitations of the current techniques and
present some future directions.

2. Previous work

Human tracking in image sequences involves tracking the motion of a di-
verse set of body parts performing rigid, articulated, or deformable motions.
These motions often exist simultaneously such as in facial expressions dur-
ing head rotations or clothing deformations during locomotion. Approaches
for tracking humans performing activities can be categorized according to
being: motion-based versus static, 3D model-based versus 2D image-based,
and region-based versus boundary-based.

Motion-based approaches consider the tracking of body parts as in-
volving the recovery of the motion parameters between consecutive images
[2, 14, 21, 28, 38]. These motion parameters can either be recovered di-
rectly from the spatio-temporal derivatives of the image sequence or from
a dense optical ow �eld. Static approaches view body part tracking as the
localization of a body part in a single image or pose estimation in 3D space
[15, 16, 31, 40].

3D model-based approaches employ signi�cant structural information
about the body parts to recover their 3D pose in space [14, 15, 21, 28, 30]
while 2D image-based approaches focus on the intensity (or color) distri-
bution in the images to track the body parts possibly through employing
2D models of body part shape or motion [3, 7, 24, 31].

Region tracking integrates information over areas of the image to track
the body part motion [4, 7, 24, 27, 37] while boundary tracking concentrates
on the discontinuities in the projected image of the body part in motion
[3, 8, 15, 16, 19, 31, 36, 39].

The limitations of each of the above categories are well known, but these
limitations are exacerbated in the context of human motions. 3D motion
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recovery algorithms require a priori structure information (at least a coarse
model) in the case of articulated objects or point correspondences for rigid
objects [2]. On the other hand, image motions are not easily related to the
multiple activities of body parts and their projection on the image plane.
Recovering 3Dmodels of the human body or its parts is generally di�cult to
achieve in an unconstrained environment due to the signi�cant variability of
human appearances (clothing, make up, hair styles, etc.). Additionally, 2D
image-based tracking is complicated by the articulation and deformation
of body parts and the dependence on the observation point of the activity.
Boundary tracking allows focusing on information-rich parts of the image,
these boundaries can occasionally be ambiguous, small in number, depen-
dent on imaging conditions and may not su�ciently constrain the recovery
of certain motions (e.g., rotation of a roughly cylindrical body part, such
as a forearm, around its major axis). Region tracking employs considerably
more data from images and thus can be more robust to ambiguous data,
however, when regions are uniform multiple solutions may exist.

Generally, research on recognition of human activities has focused on
one type of human body part motion and has assumed no coincidence of
other motions. With the exception of [7], work on facial deformations (facial
expressions and lip reading) has assumed that little or no rigid head or body
motions are coincident [14, 13, 21, 24, 32, 36, 39, 40]. Articulated motion
tracking work has assumed that non-rigid deformations are not coincident
(e.g. clothing deformations during locomotion) [4, 3, 15, 16, 27, 28, 30,
31, 38]. Rigid motion recovery approaches such as [2] do not account for
deformable and articulated motions (e.g., facial expressions and speech).

Recognition of human motion critically depends on the recovered repre-
sentations of the body parts' activities. Most recognition work has employed
well known techniques such as eigenspaces [22] dynamic time warping [15],
hidden Markov models [25, 35], phase space [9, 23, 27], rule-based tech-
niques [7, 39], and neural networks [32] (for a detailed overview see [10]).

In this chapter, we propose a 2D model-based framework for human part
tracking using parametrized motion models of these parts. This framework
shifts the focus of tracking from edges to the intensity pattern created by
each body part in the image plane. It employs a 2D model-based viewer-
centered approach to analyzing the data in image sequences. The approach
enforces inter-part motion constraints for recovery which results in sim-
plifying the tracking. We show that our paradigm provides a reasonable
model of motion types prevalent in human activity. We further discuss
viewer-centered motion recognition approaches of human activity that in-
volve deformable motions (e.g., facial expressions), rigid motions (e.g., head
gestures) and articulated motion (e.g., locomotion).
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Figure 4. The �gure illustrates the motion captured by the various parameters used to
represent the motion of the regions. The solid lines indicate the deformed image region
and the \{" and \+" indicate the sign of the quantity.
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Figure 5. Additional parameters for planar motion and curvature.

3. Models of Image Motion

Parameterized models of image motion make explicit assumptions about
the spatial variation of the optical ow within a region. Modeling the mo-
tion of a human body part involves making simplifying assumptions that
approximate the image motion of that part. For example we assume that
the limbs of the body and the face (excluding the face features) can be
modeled as rigid planes. The image motion of a rigid planar patch of the
scene can be described by the following eight-parameter model:

u(x; y) = a0 + a1x+ a2y + a6x
2 + a7xy; (1)

v(x; y) = a3 + a4x+ a5y + a6xy + a7y
2; (2)

where a = [a0; a1; a2; a3; a4; a5; a6; a7] denotes the vector of parameters to
be estimated, and u(x; a) = [u(x; y); v(x; y)]T are the horizontal and verti-
cal components of the ow at image point x = (x; y). The coordinates (x; y)
are de�ned with respect to a particular point. Here this is taken to be the
center of the region but could be taken to be at a point of articulation.

The parameters ai have qualitative interpretations in terms of image
motion. For example, a0 and a3 represent horizontal and vertical trans-
lation respectively. Additionally, we can approximately express divergence
(isotropic expansion), curl (rotation about the viewing direction), and de-

formation (squashing or stretching) as combinations of the ai (cf. [11, 20]).
We de�ne these quantities as

divergence
def
= a1 + a5; (3)
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curl
def
= �a2 + a4; (4)

deformation
def
= a1 � a5: (5)

Note that these terms give qualitative measures that can be used to inter-
prate the motion of a region. Translation, along with divergence, curl, and
deformation, will prove to be useful for describing facial expressions and
are illustrated in Figure 4. For example, eye blinking can be detected as
rapid deformation, divergence, and vertical translation in the eye region.

The parameters a6 and a7 roughly represent \yaw" and \pitch" defor-
mations in the image plane respectively and are illustrated in Figure 5.
While we have experimented with more complex models of rigid face mo-
tion, and Wang et al. [38] have used cylindrical models of limbs, we have
found that the planar motion approximation is both simple and expressive
enough to robustly represent qualitative rigid face and limb motions in a
variety of situations.

To recognize the motion of the head using these parameters we need
to know the head motion relative to the motion of the torso. Similarly,
to recognize facial expressions from motion we need to know the motion
of the eyes, mouth, and eyebrows relative to the motion of the face. In
addition to isolating the motions of interest for recognition, this relative
motion estimation allows us to estimate the motion of body parts that
occupy small regions of the image; for example, facial features or �ngers.
The absolute motion of these regions in an image sequence may be very
large with respect to their size making motion estimation di�cult. The
problem of estimating the motion of small parts like �ngers is simpli�ed if
we know the motion of the torso, arm and hand.

For small regions of the image such as eyes and �ngers, the planar model
may not be necessary and the motion of these regions can be approximated
by the simpler a�ne model in which the terms a6 and a7 are zero. The non-
rigid motions of facial features such as the eyebrows and mouth, however,
are not well captured by the rigid a�ne or planar models so we augment the
a�ne model to account for the primary form of curvature seen in mouths
and eyebrows. We add a new parameter c to the a�ne model

u(x; y) = a0 + a1x+ a2y (6)

v(x; y) = a3 + a4x+ a5y + cx2 (7)

where c encodes curvature and is illustrated in Figure 5. This curvature pa-
rameter must be estimated in the coordinate frame of the face as described
in [7]. As the experiments will demonstrate, this seven parameter model
captures the essential image motion of the mouth and eyebrows.
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Figure 6. Robust error norm (�) and inuence function ( ).

4. Parametric Motion Estimation

To estimate the motion parameters, a, for a given patch we make the as-
sumption that the brightness pattern within the patch remains constant
while the patch may deform as speci�ed by the model. This brightness
constancy assumption gives rise to the optical ow constraint equation

rI � u(x; as) + It = 0; 8x 2 Rs (8)

where as denotes the planar model for patch s, Rs denotes the points in
patch s, I is the image brightness function and t represents time. rI =
[Ix; Iy], and the subscripts indicates partial derivatives of image brightness
with respect to the spatial dimensions and time at the point x.

Note that the brightness constancy assumption used to estimate the
image motion is often violated in practice due to changes in lighting, spec-
ular reections, occlusion boundaries, etc. It may also be violated because
the motion model is only a rough approximation to the true motion; for
example we model the face as a plane although it is not really rigid or
planar.

Robust regression has been shown to provide accurate motion estimates
in a variety of situations in which the brightness constancy assumption in
violated [5]. To estimate the parameters as robustly we minimize

X

x2Rs

�(rI � u(x; as) + It; �); (9)

for some robust error norm � where � is a scale parameter. Violations of
the brightness constancy assumption can be viewed as \outliers" [17] and
we need to choose the function � such that it is insensitive to these gross
errors.

For the experiments in this chapter we take � to be

�(x; �) =
x2

� + x2
(10)
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which is the robust error norm used in [5, 7, 18] and is shown in Figure 6.
As the magnitudes of residuals rI �u(x; as)+ It grow beyond a point their
inuence on the solution begins to decrease and the value of �(�) approaches
a constant. The function  (x; �) shown in Figure 6 is the derivative of �
and characterizes the inuence of the residuals [17]. The value � is a scale
parameter that e�ects the point at which the inuence of outliers begins to
decrease.

Equation (9) is minimized using a simple coordinate descent scheme
with a continuation method that begins with a high value for � and lowers
it during the minimization (see [5, 7, 18] for details). The e�ect of this
procedure is that initially no data are rejected as outliers then gradually
the inuence of outliers is reduced. To cope with large motions a coarse-
to-�ne strategy is used in which the motion is estimated at a coarse level
then, at the next �ner level, the image at time t+ 1 is warped towards the
image at time t using the current motion estimate. The motion parameters
are re�ned at this level and the process continues until the �nest level.

In the remainder of this chapter we use this robust estimation scheme
for estimating face motion as described in [7] and for articulated motion as
described in [18].

5. Estimating Relative Body Part Motion

The parametric motions of human body parts are inter-related as either
linked or overlapping parts. Linked body parts, such as the \thigh" and
\calf," share a joint in common and must satisfy an articulation constraint
on their motion. The overlapping relation describes the relationship be-
tween regions such as the face and mouth in which the motion of the mouth
is estimated relative to the motion of the face but is not constrained by it.
These relationships lead to di�erent treatments in terms of how the inter-
part motions are estimated. These relations and the associated motion es-
timation techniques are described in this section and are illustrated with
examples of facial motion estimation and articulated leg motion.

5.1. ESTIMATING THE RELATIVE MOTION OF OVERLAPPING

REGIONS

To recover the motion of the face, we �rst estimate the planar approxi-
mation to the face motion. This motion estimate is then used to register
the image at time t+ 1 with the image at time t by warping the image at
t+1 back towards the image at t. Since the face is neither planar nor rigid
this registration does not completely stabilize the two images. The residual
motion is due either to the non-planar 3D shape of the head (its curvature
and the nose for example) or the non-rigid motion of the facial features (cf.
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work on plane+parallax models of motion in rigid scenes [33]). We have
observed that the planar model does a very good job of removing the rigid
motion of the face and that the dominant residual motion is due to the mo-
tion of the facial features. The residual motion in the stabilized sequence is
estimated using the appropriate motion model for that feature (i.e., a�ne
or a�ne+curvature). Thus stablizing the face with respect to the planar
approximation of its motion between two images allows the relative motions
of the facial features to be estimated.

The estimated parametric motion of the face and facial features esti-
mated between two frames is used to predict the location of the features
in the next frame. The face and the eyes are simple quadrilaterals which
are represented by the image locations of their four corners. We update the
location x of each of the four corners of the face and eyes by applying the
planar motion parameters af of the face to get x0 = x + u(x; af ). Then
the relative motion of the eyes locations is accounted for and the corners
become x0+u(x0; ale) and x0+ u(x0; are) where ale and are are the param-
eters estimated for the motions of the left and right eyes respectively. In
updating the eye region we do not use the full a�ne model since when the
eye blinks this would cause the tracked region to deform to the point where
the eye region could no longer be tracked. Instead only the horizontal and
vertical translation of the eye region is used to update its location relative
to the face motion.

The curvature of the mouth and brows means that the simple updating
of the corners is not su�cient for tracking. In our current implementation
we use image masks to represent the regions of the image corresponding
to the brows and the mouth. These masks are updated by warping them
�rst by the planar face motion af and then by the motion of the individual
features am, alb and arb which correspond the mouth and the left and right
brows respectively. This simple updating scheme works well in practice.

5.2. ESTIMATING ARTICULATED MOTION

For an articulated object, we assume that each patch is connected to only
one preceding patch and one following patch; that is, the patches construct
a chain structure (see Figure 7). For example, a \thigh" patch may be
connected to a preceding \torso" patch and a following \calf" patch. Each
patch is represented by its four corners. Our approach is to simultaneously
estimate the motions, as, of all the patches. We minimize the total energy
of the following equation to estimate the motions of each patch (from 0 to
n)

E =
nX

s=0

Es =
nX

s=0

X

x2Rs

�(rI � u(x; as) + It; �) (11)
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Figure 7. The \chain" structure of a three-segment articulated object.

where � is the robust error norm de�ned above.
Equation (11) may be ill-conditioned due to the lack of su�cient bright-

ness variation within the patch. The articulated nature of the patches pro-
vides an additional constraint on the solution. This articulation constraint
is added to Equation (11) as follows

E =
nX

s=0

(
1

jRsj
Es + �

X

x2As

ku(x; as)� u(x; a0)k2); (12)

where jRsj is the number of pixels in patch s, � controls relative importance
of the two terms, As is the set of articulated points for patch s, a0 is the
planar motion of the patch which is connected to patch s at the articulated
point x, and k � k is the standard norm. The use of a quadratic function for
the articulation constraint reects that the assumption that no \outliers"
are allowed.

Instead of using a constraint on the image velocity at the articulation
points, we can make use of the distance between a pair of points. Assuming
x0 is the corresponding image point of the articulated point x, and x0 be-
longs to the patch connected to patch s at point x (see Figure 7), Equation
(12) can be modi�ed as

E =
nX

s=0

(
1

jRsj
Es + �

X

x2As

kx+ u(x; as)� x0 � u(x0; a0)k2) (13)

This formulation has the advantage that the pair of articulated points,
x and x0, will always be close to each other at any time. The second energy
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term (the \smoothness" term) in Equation (13) can also be considered as
a spring force energy term between two points (Figure 7).

The planar motions estimated from the Equation (13) are absolute mo-
tions. In order to recognize articulated motion, we need to recover the
motions of limbs which are relative to their preceding (parent) patches. We
de�ne

u(x+ u(x; as�1); a
r
s) = u(x; as)� u(x; as�1); (14)

where ars is the relative motion of patch s, u(x; as)�u(x; as�1) is the relative
displacement at point x, and x+ u(x; as�1) is the new location of point x
under motion as�1. A planar motion has eight parameters, therefore four
di�erent points of patch s are su�cient to solve ars given the linear equations
(14). In our experiments we use the four corners of the patches.

6. Motion Estimation Results

In this section we illustrate the performance of the parameterized ow
models on articulated, rigid and deformable body parts. Head motion and
facial expressions are used in illustrating the rigid and deformable motions,
respectively. For articulated motion we focus on \walking" (on a treadmill,
for simplicity) and provide the recovered motion parameters for two leg
parts during this cyclic activity.

The image sequence in Figure 8 illustrates facial expressions (\smiling"
and \surprise") in conjunction with rigid head motion (in this case loom-
ing). The �gure plots the regions corresponding to the face and the facial
features tracked across the image sequence. The parameters describing the
planar motion of the face are plotted in Figure 9 where the divergence
due to the looming motion of the head is clearly visible in the plot of di-
vergence. Notice that the rigid motions of the face are not visible in the
plotted motions of the facial features in Figure 10. This indicates that the
motion of the face has been factored out and that the feature motions are
truly relative to the face motion. Analyzing the plots of the facial features
reveals that a \smile" expression begins around frame 125 with an increase
in mouth curvature followed by a deformation of the mouth. The curvature
decreases between frames 175 and 185 and then a \surprise" expression
begins around frame 220 with vertical eyebrow motion, brow arching, and
mouth deformation.

Figures 11-14 demonstrate two \walking" sequences taken from di�erent
view-points. Each sequence contains 500 images and roughly three cycles of
the activity. In Figures 11 and 13 the upper row shows three images from the
sequences and the second row shows the tracking of two parts (the \thigh"
and \calf"). Figures 12 and 14 show relevant recovered motions parameters
over the entire 500 frame image sequences. The �rst rows in these �gures
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Figure 8. Looming Experiment. Facial expression tracking with rigid head motion (every
24 frames).
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Figure 9. The Looming face motion parameters. Translation: solid = horizontal, dashed
= vertical. Quadratic terms: solid = p0, dashed = p1.
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Figure 10. The Looming sequence. Mouth translation: solid and dashed lines indicate
horizontal and vertical motion respectively. For the brows, the solid and dashed lines
indicate left and right brows respectively.



RECOGNITION USING PARAMETRIZED MOTION MODELS 15

Figure 11. Walking parallel to the imaging plane.
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Figure 12. Walking parallel to the imaging plane; motion parameters (translation and
curl) over 500 frames. For translation, the dashed line indicates vertical translation while
the solid line indicates horizontal translation.

show the motion of the thigh while the second rows show the motion of
the calf. These graphs are only meant to demonstrate the e�ectiveness of
our tracking model and its ability to capture meaningful parameters of the
body movement.
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Figure 13. Walking perpendicular to the imaging plane.

In Figure 12 it is clear that the horizontal translation and \curl" param-
eters capture quite well the cyclic motion of the two parts of the leg. The
translation of the \calf" is relative to that of the \thigh" and therefore it is
signi�cantly smaller. On the other hand, the rotation (i.e., \curl") is more
signi�cant at the \calf". Note that the motion of these regions is described
by a combination of translation and rotation because the motion is de�ned
with respect to the center of the regions. A di�erent choice of region center
would result in di�erent plots.

When a person is walking away from the camera as shown in Figure
14 the signi�cant parameters which capture the cyclic walking motion are
deformation, divergence, and \image pitch." Notice that the \image pitch"
measured at the two parts is always reversed since when the \thigh" rotates
in one direction the \calf" is viewed to be rotating in an opposite way.

In summary, the reported experiments show that the image motion mod-
els are capable of tracking rigid, deformable and articulated motion quite
accurately over long sequences and recovering a meaningful set of parame-
ters that can be exploited by a recognition system.

7. Recognition of Movement

Recognizing human movement requires answering:

� When does the activity begin and end?
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Figure 14. Tracking results for Figure 13

� What class does the observed activity most closely resemble?
� What is the period (if cyclic) of the activity?

The answers to these questions involve spatio-temporal reasoning about
a large parameter space. Our choice of parameterized motion models for
tracking the diverse motions of human body parts dictates that recognition
be considered as analysis of the spatio-temporal curves and surfaces that
are created by the parameter values of each part. These curves are based
on 2D image motion and therefore change with viewing angle. This leads
us to formulate a view-based recognition strategy.

There are general issues to consider for a recognition approach:

� Cyclic actions require that enough cycles have been observed before
recognition becomes possible. This leads to a focus on the coarse mo-
tions measured over a long sequence. Allmen and Dyer [1] proposed
a method for detection of cyclic motions from their spatio-temporal
curves and surfaces while Rangarajan and Shah [29] used a scale-space
approach to match motion trajectories.

� The view-point of observing the human motion may a�ect the recog-
nition of the activity (for an extreme case, consider recognition of hu-
man \walking" from a top view of the person). Campbell and Bobick
[9] proposed a phase-space representation for recognition of human
body motion from Moving Light Displays (MLD) capturing the full
3D articulations of the body parts. If only 2D motion is measured the
viewpoint plays a critical role in recognition.

� Self-occlusions are quite prevalent in human movement. Capturing and
representing these self-occlusions is a complex task even in the presence
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of multiple cameras and availability of full 3D models. In our prelim-
inary recognition work we do not capture and represent these self-
occlusions, instead we focus on body parts that are visible throughout
the activity.

Seitz and Dyer [34] proposed an approach for determining whether an
observed motion is periodic and computing its period. Their approach is
based on the observation that the 3D points of an object performing a�ne-
invariant motion are related by an a�ne transformation in their 2D motion
projections. Once a period is detected, a matching of a single cycle of the
motion to known motions can, in principal, provide for the recognition of
the activity.

Our approach to recognition takes advantage of the economy of the
parameterized motion models in capturing the range of motions and de-
formations of each body part. In the absence of shape cues, we employ a
viewer-centered representation for recognition. Let Cv

ij (t) denote the tem-
poral curve created by the motion parameter aj of patch i viewed at angle
v (where j 2 a0; :::; a7). We make the observation that the following trans-
formation does not change the nature of the activity represented by Cv

ij (t)

Dv
ij(t) = Si �Cv

ij (t+ Ti) (15)

where Dv
ij(t) is the transformed curve. This transformation captures the

translation, Ti, of the curve and the scaling, Si, in the magnitude of the
image-motion measured for parameter aj . The scaling of the curve allows
accounting for di�erent distances between the human and the camera (while
the viewing angle is kept constant) and accounts for the physiological vari-
ation across humans. Notice that this transformation does not scale the
curve in the temporal dimension since the nature of the activity changes
due to temporal scaling (e.g., di�erent speeds of \walking" can be cap-
tured by this scaling). This temporal scaling can be expressed as an a�ne
transformation

Dv
ij (t) = Si � Cv

ij(�it+ Ti) (16)

where �i > 1:0 leads to a linear speed up of the activity and �i < 1:0 leads
to its slow down.

The recognition of an activity can be posed as a matching problem
between the curve created by parameter aj over time and a set of known
curves (corresponding to known activities) that can be subject to the above
transformation. Recognition of an activity for some viewpoint v requires
that a single a�ne transformation should apply to all parameters aj , this
can be posed as a minimization of the error (under some error norm)

E(v) =
X

j20::7

�[Dv
ij(t)� (Si � Cv

ij(�it + Ti)); �] (17)
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Recognition over di�erent viewpoints requires �nding the minimum er-
ror between all views v, which can be expressed as

min
v

X

j20::7

�[Dv
ij(t)� (Si � Cv

ij(�it + Ti)); �] (18)

Recognition over multiple body parts uses the inter-part hierarchy relation-
ships to progressively �nd the best match. As demonstrated and discussed
in Section 6, the motion parameters are stable over a wide range of view-
points of the activity, so that they could be represented by a few principal
directions.

Our formulation requires computing a characteristic curve Cv
ij for each

activity and body part viewed at angle v. Constructing this characteristic
curve can be achieved by tracking the patch motions over several sub-
jects and employing Principal Component Analysis (PCA) to capture the
dominant curve components. Given an observed activity captured byDij (t)
(notice that the v is dropped since it is unknown), our approach determines
the characteristic curve that minimizes the error function given in Equation
18 by employing the recently proposed a�ne eigentracking approach [6] on
the curves.

We are currently constructing these characteristic curves for several hu-
man activities. It is worth noting that, depending on the spatio-temporal
complexity of the observed activity, simpler models could be used for recog-
nition. For example in the case of facial expressions the activity can be sim-
ply captured by the model �rst proposed in [39] and used in [7]. Each ex-
pression was divided into three temporal segments: the beginning, apex and
ending. Figure 15 illustrates qualitatively the di�erent aspects of detecting
and segmenting a \smile." In this Figure the horizontal axis represents the
time dimension (i.e., the image sequence), the axis perpendicular to the
page represents each one of the parameters relevant to a \smile" (i.e., a3,
Divergence, Deformation, and c) and the vertical axis represents the val-
ues of these parameters. This diagram is an abstraction to the progression
of a \smile," therefore the parameter values are not provided. Notice that
Figure 15 indicates that the change in parameter values might not occur at
the same frames at either the beginning or ending of actions, but it is re-
quired that a signi�cant overlap be detectable to label a set of frames with
a \beginning of a smile" label, while the motions must terminate before a
frame is labeled as an \apex" or an \ending."

The detailed development of the \smile" model is as follows. The upward
and outward motion of the mouth corners results in a negative curvature of
the mouth (i.e., the curvature parameter c is negative). The horizontal and
overall vertical stretching are manifested by positive divergence (Div) and
deformation (Def). Finally, some overall upward translation is caused by
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Figure 15. The temporal model of the \smile" expression.

the raising of the lower and upper lips due to the stretching of the mouth
(a3 is negative). Reversal of these motion parameters is observed during
the ending of the expression.

The results of applying this recognition model to face expressions can
be seen in Figure 16. Figure 16 shows the beginning of a \smile" expres-
sion while the head is rotating initially leftward and then rightward. The
text that appears on the left side of each image represents a discrete inter-
pretation of the underlying curves in terms of mid-level predicates which
describe the facial motion [7]. Similarly, the text that appears on the right
side represents the mid-level predicates of the head motion. The text be-
low each image displays the recognized high-level description of the facial
deformations and the head motions.

Figure 17 shows the recognition of head gestures based on the face
motion recovery using a planar model. The gesture is recognized using the
\curl" of the face. Other gestures were recognized in [25].

8. Discussion

We have demonstrated the use of parameterized optical ow methods for
tracking and recognizing facial expressions and articulated motion. While
the approach shows promise, there are a number of issues that still need
to be addressed. First, the motion of human limbs in NTSC video (30
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Figure 16. Four frames (four frames apart) of the beginning of a \smile" expression.

frames/sec) can be very large. For example, human limbs often move dis-
tances greater than their width between frames. This causes problems for a
hierarchical gradient-based motion scheme such as the one presented here.
To cope with large motions of small regions we will need to develop better
methods for long-range motion estimation.

Unlike the human face, people wear clothing over their limbs which
deforms as they move. The \motion" of the deforming clothing between
frames is often signi�cant and, where there is little texture on the clothing,
may actually be the dominant motion within a region. A purely ow-based
tracker such as the one here has no \memory" of what is being tracked. So
if it is deceived by the motion of the clothing in some frame there is a risk
that tracking will be lost. We are exploring ways of adding a template-style
form of memory to improve the robustness of the tracking.

Self occlusion is another problem we have not addressed preferring to
�rst explore the e�cacy of the parameterized tracking and recognition
scheme in the non-occlusion case. In extending this work to cope with
occlusion, the template-style methods mentioned above may be applicable.
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Figure 17. Four frames (four frames apart) of the recognition of a head gesture signifying
the expression of \more-or-less".

9. Conclusion

We have presented a method for tracking non-rigid and articulated human
motion in an image sequence using parameterized models of optical ow
and have shown how this representation of human motion can support the
recognition of facial expressions and articulated motions. Unlike previous
work on recovering human motion, this method assumes that the activity
can be described by the motion of a set of parameterized patches (e.g. a�ne,
planar, etc.). In the case of facial motion, the motion of facial features is
estimated relative to the motion of the face. For the articulated motion
of limbs we add an additional articulation constraint between neighboring
patches. No 3D model of the person is required, features such as edges are
not used, and the optical ow is estimated directly using the parameterized
model. An advantage of the 2D parameterized ow models is that recovered
ow parameters can be interprated and used for recognition as described
in [7]. Previous methods for recognition need to be extended to cope with
the cyclical motion of human activities and we have proposed a method for
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performing view-based recognition of human activities from the optical ow
parameters. Our current work is focused on the automatic segmentation of
non-rigid and articulated human motion into parts and the development of
robust view-based recognition schemes for articulate motion.
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