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Abstract. Edges are viewed as statistical outliers with respect to local
image gradient magnitudes. Within local image regions we compute a
robust statistical measure of the gradient variation and use this in an
anisotropic di�usion framework to determine a spatially varying \edge-
stopping" parameter �. We show how to determine this parameter for two
edge-stopping functions described in the literature (Perona-Malik and
Tukey). Smoothing of the image is related the local texture and in regions
of low texture, small gradient values may be treated as edges whereas in
regions of high texture, large gradient magnitudes are necessary before an
edge is preserved. Intuitively these results have similarities with human
perceptual phenomena such as masking and \popout". Results are shown
on a variety of standard images.

1 Introduction

Anisotropic di�usion has been widely used for \edge-preserving" smoothing of
images. Little attention, however, has been paid to de�ning exactly what is
meant by an \edge." In the traditional formulation of Perona and Malik [8],
edges are related to pixels with large gradient magnitudes and an anisotropic
smoothing function is one that inhibits smoothing across such boundaries. The
e�ect of this smoothing is determined by some parameter, �, which implicitly
de�nes what is meant by an edge. This paper address how this � parameter
can be determined automatically from the image data in such a way that edges
correspond to statistical outliers with respect to local image gradients. With this
method, � varies across the image and hence, what is considered to be an edge
is dependent on local statistical properties of the image.

Consider for example the image in Figure 1. RegionsA and B illustrate areas
where there is little gradient variation and the fairly small gradient magnitudes
of the features are locally signi�cant. Intuitively, we would say that the eyebrow
and the shoulder crease are signi�cant image structures. In contrast, region C is
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Fig. 1. Consider the image regions (A, B, C) in the upper left image. The middle row
shows each image region in detail while the bottom row shows the gradient magnitude
for each region. The faint image structures in regions A and B are statistically sig-
ni�cant with respect the variation of intensity within the regions. The same variation
in the highly textured region C would not be statistically signi�cant due to the much
larger image variation.

highly textured and there is a great deal of variation in the gradient magnitudes.
Intuitively, in this region, the gradient magnitudes of features like those in regions
A and B might be considered insigni�cant. To be considered an edge in region
C we would like the gradient magnitude to be much larger.

Here we adopt the robust statistical interpretation of anisotropic di�usion
elaborated in [1]. Anisotropic di�usion is viewed as a robust statistical pro-
cedure that estimates a piecewise smooth image from noisy input data. This
work formalized the relationship between the \edge-stopping" function in the
anisotropic di�usion equation and the error norm and inuence function in a
robust estimation framework. This robust statistical interpretation provides a
principled means for de�ning and detecting the boundaries (edges) between the
piecewise smooth regions in an image that has been smoothed with anisotropic
di�usion. Edges are considered statistical outliers in this framework.
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The robust statistical approach also provides a framework to locally de�ne
edges and stopping functions, as demonstrated in this paper (see [11] for a dif-
ferent approach to spatially adaptive anisotropic di�usion). In particular, the
� parameter in the edge stopping function has also a statistical interpretation.
This statistical interpretation gives, among other properties, a completely auto-
matic di�usion algorithm, since all the parameters are computed from the image.
Our approach is to compute a statistically robust local measure of the brightness
variation within image regions. From this we obtain a local de�nition of edges
and a space-variant edge stopping function.

2 Review

We briey review the traditional anisotropic di�usion formulation as presented
by Perona and Malik [8].

2.1 Anisotropic di�usion: Perona-Malik formulation

Di�usion algorithms smooth images via a partial di�erential equation (PDE). For
example, consider applying the isotropic di�usion equation (the heat equation)

given by @I(x;y;t)
@t

= div(rI); using the original (degraded/noisy) image I(x; y; 0)
as the initial condition, where I(x; y; 0) : IR2 ! IR+ is an image in the continuous
domain, (x; y) speci�es spatial position, t is an arti�cial time parameter, and
where rI is the image gradient. Modifying the image according to this isotropic
di�usion equation is equivalent to �ltering the image with a Gaussian �lter.

Perona and Malik [8] replace the classical isotropic di�usion equation with

@I(x; y; t)

@t
= div(g(k rI k; �)rI); (1)

where k rI k is the gradient magnitude, and g(k rI k) is an \edge-stopping"
function and � is a scale parameter. This function is chosen to satisfy g(x; �)! 0
when x!1 so that the di�usion is \stopped" across edges.

2.2 Perona-Malik discrete formulation

Perona and Malik discretized their anisotropic di�usion equation as follows:

It+1
s = Its +

�

j�sj
X
p2�s

g(rIs;p; �)rIs;p; (2)

where Its is a discretely-sampled image, s denotes the pixel position in a discrete,
two-dimensional grid, and t now denotes discrete time steps (iterations). The
constant � 2 IR+ is a scalar that determines the rate of di�usion, �s represents
the spatial neighborhood of pixel s, and j�sj is the number of neighbors (usually
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4, except at the image boundaries). Perona and Malik linearly approximated the
image gradient (magnitude) in a particular direction as

rIs;p = Ip � Its; p 2 �s (3)

Qualitatively, the e�ect of anisotropic di�usion is to smooth the original
image while preserving brightness discontinuities. The choice of g(x; �) and the
value of � can greatly a�ect the extent to which discontinuities are preserved.

2.3 Related Work

In related work, a number of authors have explored the estimation of the scale
at which to estimate edges in images [2, 5]. These methods �nd the optimal local
scale for detecting edges with Gaussian �lters; they do not explicitly use local
image statistics. The approach described here might be augmented using these
ideas to determine the size of the local area within which to compute image
statistics.

Marimont and Rubner [6] computed local statistics of zero-crossings and used
these to de�ne the probability of a pixel belonging to an edge. Liang and Wang
[4] also used the statistics of zero-crossings to set a local noise measure in an
anisotropic di�usion formulation.

In contrast, the work here provides a robust statistical view which allows a
principled choice of both the g-function and the scale parameter. Related to this
is work on human perception that models feature saliency using a statistical test
for outliers [9].

3 Robust Statistical View

For the majority of pixels in Figure 1 A, the image gradient values can be ap-
proximately modeled as being constant (zero) with random Gaussian noise. The
large gradient values due to the image feature however are statistical \outliers"
[3] with respect to the Gaussian distribution; the distribution of these outliers is
unknown. We seek a function g(x; �) and a scale parameter � that will appropri-
ately smooth the image when the variation in the gradient is roughly Gaussian
and will inhibit smoothing when the gradient can be viewed as an outlier.

First we need to relate the form of the g-functions used for anisotropic dif-
fusion to the tools used in robust statistics (see [1] for details). From a robust
statistical perspective the goal of anisotropic smoothing is to iteratively �nd an
image I that satis�es the following optimization criterion:

min
I

X
s2I

X
p2�s

�(Ip � Is; �) (4)

where �(�) is a robust error function and � is a \scale" parameter.
In this formulation large image di�erences jIp�Isj are assumed to be outliers

which should not have a large e�ect on the solution. To analyze the behavior of
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Fig. 2. Lorentzian error norm and the Perona-Malik g stopping function.

a given �-function with respect to outliers, we consider its derivative (denoted
 ), which is proportional to its inuence function [3]. This function characterizes
the bias that a particular measurement has on the solution and by analyzing the
shape of this function we can infer the behavior of a particular robust �-function
with respect to outliers.

In [1] (see also [12] for a related approach) it was shown that

g(x; �)x =  (x; �) = �0(x; �): (5)

This relationship means that we can analyze the behavior of a particular anisotropic
edge-stopping function g in terms of its outlier rejection properties by examining
the inuence function  .

For example, consider the edge-stopping function proposed by Perona and
Malik [8]

g(x; �)x =
2x

2 + x2

�2

=  (x; �); (6)

where  (x; �) = �0(x; �). We can compute � by integrating g(x; �)x with respect
to x to derive

Z
g(x; �)x dx = �2 log

�
1 +

1

2

�
x2

�2

��
= �(x; �): (7)

This function �(x; �) is proportional to the Lorentzian error norm use in robust
statistics and g(x)x = �0(x) =  (x) is proportional to the inuence function
(Figure 2).

The function g(x; �) acts as a \weight" and from the plot in Figure 2 we
can see that small values of x (i.e. small gradient magnitudes) will receive high
weight. As we move out to the tails of this function it attens out and the weight
assigned to some large x will be roughly the same as the weight assigned to some
nearby x+�. This behavior is visible in the shape of the  -function which reaches
a peak and then begins to descend. Outlying values of x beyond a point receive
roughly equivalent weights and hence there is little preference for one outlying
value over another. In this sense outliers have little \inuence" on the solution.
In the anisotropic di�usion context, g(x; �)x will be relatively small for outliers
and, hence, each iteration in (2) will produce only a small change in the image.
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Fig. 3. Tukey's biweight.

In [1] a more robust edge stopping function was derived from Tukey's biweight
�-error:

�(x; �) =

�
x2

�2
� x4

�4
+ x6

3�6 jxj � �
1
3 otherwise

(8)

 (x; �) =

�
x(1� (x=�)2)2 jxj � �;
0 otherwise

(9)

g(x; �) =

�
1
2 (1� (x=�)2)2 jxj � �;
0 otherwise

(10)

The functions g(x; �),  (x; �) and �(x; �) are plotted in Figure 3: The inu-
ence of outliers drops o� more rapidly than with the Lorentzian function and
the inuence goes to zero after a �xed value (a hard redescending function).
These properties result in sharper boundaries than obtained with the Perona-
Malik/Lorentzian function [1].

4 Local Measure of Edges

Both functions de�ned in the previous section reduce the inuence of large gra-
dient magnitudes on the smoothed image. The point at which gradient values
begin to be treated as outliers is dependent on the parameter �. In this section
we consider how to globally and locally compute an estimate of � directly from
the image gradients. The main idea is that � should characterize the variance
of the majority of the data within a region. So, for example in Figure 1 A, �
should characterize the amount of variation in the gradients at all locations ex-
cept where the feature is located. Outliers will then be determined relative to
this background variation.

In deriving � we appeal to tools from robust statistics to automatically esti-
mate the \robust scale," �e, of the image as [10]

�e = 1:4826 MAD(rI)
= 1:4826 medianI (k rI �medianI(k rI k) k) (11)

where \MAD" denotes the median absolute deviation and the constant is de-
rived from the fact that the MAD of a zero-mean normal distribution with unit
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Fig. 4. Lorentzian and Tukey  -functions. (a) values of � chosen as a function of �e

so that outlier \rejection" begins at the same value for each function; (b) the functions
aligned and scaled.

variance is 0:6745 = 1=1:4826. We consider �e to be the gradient magnitude at
which outliers begin to be downweighted.

We choose values for the scale parameters � to dilate each of the inuence
functions so that they begin rejecting outliers at the same value: �e. The point
where the inuence of outliers �rst begins to decrease occurs when the derivative
of the  -function is zero. For the Lorentzian �-function this occurs at �e =

p
2�

and for the Tukey function it occurs at �e = �=
p
5. De�ning � with respect to �e

in this way we plot the inuence functions for a range of values of x in Figure 4a.
Note how each function begins reducing the inuence of measurements at the
same point.

We also scale the inuence functions so that they return values in the same
range. To do this we take � in (2) to be one over the value of  (�e; �). The
scaled  -functions are plotted in Figure 4b.

Now we can directly compare the results of anisotropic smoothing with the
di�erent edge-stopping functions. The Tukey function gives zero weight to out-
liers whose magnitude is above a certain value while the Lorentzian (or Perona-
Malik) downweights outliers but still gives them some weight.

4.1 Spatially Varying �

In previous work we took the region for computing �e to be the entire image. This
approach works well when edges are distributed homogeneously across the image
but this is rarely the case. Here we explore the computation of this measure in
image patches. In particular we consider computing a local scale �l(x; y), which
is a function of spatial position, in n� n pixel patches at every location in the
image. We take this value to be the larger of the �e estimated for the entire
image and the value in the local patch. Then �l(x; y) is de�ned as

�l(x; y) = max(�e; 1:4826 MAD�n

2
�i;j�n

2
(rIx+i;y+j)): (12)
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In practice �e provides a reasonable lower bound on the overall spatial image
variation and the setting of �l to be the maximum of the global and local varia-
tion prevents the ampli�cation of noise in relatively homogeneous image regions.

A

B

C

a b

Fig. 5. Local estimate of scale, �l(x; y). Bright areas in (b) correspond to larger values
of �l.

Figure 5 shows the results of estimating �l in 15� 15 pixel patches. Bright
areas have higher values of �l and correspond to more textured image regions.

To see the e�ects of the spatially varying �l consider the results in Figure 6.
The images show the results of applying di�usion using the g(x; �) corresponding
to the Tukey biweight function. The top row uses a �xed value of �e estimated
over the entire image while the bottom row shows the results with a spatially
varying �l. We can detect edges in the smoothed images very simply by detecting
those points that are treated as outliers by the given �-function. Figure 6 shows
the outliers (edge points) in each of the images, where outliers are given by those
points having jrIx;yj > �e(x; y) (global, �rst row) or jrIx;yj > �l(x; y) (local,
second row).

In areas containing little texture the results are identical since in these areas
the sigma estimated locally is likely to be less than �e and hence, �l is set to
�e. The di�erences become apparent in the textured regions of the image. A
detail is shown for a region of hair. With a �xed global �e, discontinuities are
detected densely in the hair region as the large gradients are considered outliers
with respect to the rest of the image which has relatively few large gradients.
With the spatially varying �l, these regions are smoothed more heavily and only
the statistically signi�cant discontinuities remain.

5 Experimental Results

In this section we test the spatially varying smoothing method with both the
Lorentzian and Tukey g-functions. Figure 7 compares the results for the Tukey
function at 500 iterations and the Lorentzian at 50 iterations. The Lorentzian
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Fig. 6. Anisotropic smoothing with the Tukey function (500 iterations). Top row shows
smoothing with a �xed value of �e. Bottom row shows a spatially varying �l.

must be stopped sooner as, unlike the Tukey function, outliers have a �nite
inuence and hence the image will eventually become oversmoothed. In both
cases note that the edges detected in the highly textured regions have a spatial
density similar to that of other regions of image structure.

Figure 8 shows a more textured image. Note that the highest scale values
correspond to the steps in the lower middle portion of the image. The disconti-
nuities here are smoothed while the boundaries of the people against a relatively
uniform background are preserved. One can also see in this image the di�erence
between the Lorentzian and Tukey functions in that the Tukey g-function results
in sharper brightness discontinuities.

The Magnetic Resonance image in Figure 9 is challenging because there are
areas of high contrast as well as detailed brain structures of very low contrast.
No single scale term will suÆce for an image such as this. The results with the
Tukey function preserve much of the �ne detail and the detected edges reveal
structure in both the high and low contrast regions.

6 Conclusions

One of the crucial steps in anisotropic di�usion is to de�ne an edge, and from this
de�nition, an edge stopping function. Several attempts have been reported in the
literature, mainly dealing with global de�nitions. In this paper we have addressed
the search for a local de�nition of edges. We have described a simple method
for determining a spatially varying scale function based on robust statistical
techniques. From this, we have provided a local de�nition of edges and a space-
varying edge stopping function.
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Image Lorentzian Tukey

�l 50 iterations 500 iterations

Fig. 7. Results for both the Perona-Malik (Lorentzian) function and the Tukey func-
tion.

Image Lorentzian Tukey

�l 50 iterations 500 iterations

Fig. 8. Results for both the Perona-Malik (Lorentzian) function and the Tukey func-
tion.
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Image Lorentzian Tukey
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Fig. 9. Magnetic Resonance Image. Results for both the Perona-Malik (Lorentzian)
function and the Tukey function.

A number of topics remain open. First, the only parameter left in the pro-
posed anisotropic di�usion algorithm is the size of the window within which �l
is computed. This also should be space-variant, and needs to be automatically
determined from the image itself.

We are interested in comparing the output of our simple local edge detector
with others as for example those proposed by Perona [7] or Elder and Zucker [2].
They use much more sophisticated techniques that might not be computationally
eÆcient if the goal is to compute stopping functions for anisotropic di�usion.
On the other hand, a more accurate computation of edges might be crucial for
anisotropic di�usion applications like enhancing medical images.

Finally, it would be interesting to explore the relationship to human per-
ception of image features which can be e�ected by the local image statistics
[9].
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