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Abstract

Principal Component Analysis (PCA) has been widely
used for the representation of shape, appearance, and
motion. One drawback of typical PCA methods is that
they are least squares estimation techniques and hence
fail to account for “outliers” which are common in re-
alistic training sets. In computer vision applications,
outliers typically occur within a sample (image) due
to pixels that are corrupted by noise, alignment errors,
or occlusion. We review previous approaches for mak-
ing PCA robust to outliers and present a new method
that uses anintra-sampleoutlier process to account for
pixel outliers. We develop the theory of Robust Prin-
cipal Component Analysis (RPCA) and describe a ro-
bust M-estimation algorithm for learning linear multi-
variate representations of high dimensional data such
as images. Quantitative comparisons with traditional
PCA and previous robust algorithms illustrate the ben-
efits of RPCA when outliers are present. Details of the
algorithm are described and a software implementa-
tion is being made publically available.

1 Introduction
Automated learning of low-dimensional linear models from
training data has become a standard paradigm in computer
vision. Principal Component Analysis (PCA) in particu-
lar is a popular technique for parameterizing shape, appear-
ance, and motion [8, 4, 18, 19, 29]. These learned PCA
representations have proven useful for solving problems
such as face and object recognition, tracking, detection, and
background modeling [2, 8, 18, 19, 20].

Typically, the training data for PCA is pre-processed in
some way (e.g. faces are aligned [18]) or is generated by
some other vision algorithm (e.g. optical flow is computed
from training data [4]). As automated learning methods
are applied to more realistic problems, and the amount of
training data increases, it becomes impractical to manually
verify that all the data is “good”. In general, training data

Figure 1:Top: A few images from an illustrative training set
of 100 images.Middle: Training set withsample outliers.
Bottom:Training set withintra-sample outliers.

may contain undesirable artifacts due to occlusion (e.g. a
hand in front of a face), illumination (e.g. specular reflec-
tions), image noise (e.g. from scanning archival data), or
errors from the underlying data generation method (e.g. in-
correct optical flow vectors). We view these artifacts as
statistical “outliers” [23] and develop a theory of Robust
PCA (RPCA) that can be used to construct low-dimensional
linear-subspace representations from this noisy data.

It is commonly known that traditional PCA constructs
the rankk subspace approximation to training data that is
optimal in a least-squares sense [16]. It is also commonly
known that least-squares techniques are not robust in the
sense that outlying measurements can arbitrarily skew the
solution from the desired solution [14]. In the vision com-
munity, previous attempts to make PCA robust [30] have
treated entire data samples (i.e. images) as outliers. This
approach is appropriate when entire data samples are con-
taminated as illustrated in Figure 1 (middle). As argued
above, the more common case in computer vision applica-
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Figure 2: Effect of intra-sample outliers on learned basis
images. Top: Standard PCA applied to noise-free data.
Middle: Standard PCA applied to the training set corrupted
with intra-sample outliers.Bottom:Robust PCA applied to
corrupted training data.

tions involvesintra-sampleoutliers which effect some, but
not all, of the pixels in a data sample (Figure 1 (bottom)).

Figure 2 presents a simple example to illustrate the ef-
fect of intra-sample outliers. By accounting for intra-
sample outliers, the RPCA method constructs the linear ba-
sis shown in Figure 2 (bottom) in which the influence of
outliers is reduced and the recovered bases are visually sim-
ilar to those produced with traditional PCA on data without
outliers. Figure 3 shows the effect of outliers on the recon-
struction of images using the linear subspace. Note how the
traditional least-squares method is influenced by the outly-
ing data in the training set. The “mottled” appearance of
the least squares method is not present when using the ro-
bust technique and the Mean Squared Reconstruction Error
(MSRE, defined below) is reduced.

In the following section we review previous work in the
statistics, neural-networks, and vision communities that has
addressed the robustness of PCA. In particular, we describe
the method of Xu and Yuille [30] in detail and quantita-
tively compare it with our method. We show how PCA
can be modified by the introduction of an outlier process
[1, 13] that can account for outliers at the pixel level. A
robust M-estimation method is derived and details of the al-
gorithm, its complexity, and its convergence properties are
described. Like all M-estimation methods, the RPCA for-
mulation has an inherent scale parameter that determines
what is considered an outlier. We present a method for es-
timating this parameter from the data resulting in a fully
automatic learning method. Synthetic experiments are used
to illustrate how different robust approaches treat outliers.
Experiments on natural data show how the RPCA approach
can be used to robustly learn a background model in an un-
supervised fashion.

Figure 3: Reconstruction results using subspaces con-
structed from noisy training data.Top: Original, noiseless,
test images.Middle: Least-squares reconstruction of im-
ages with standard PCA basis (MSRE 19.35) .Bottom:Re-
constructed images using RPCA basis (MSRE 16.54) .

2 Previous Work
A full review of PCA applications in computer vision is
beyond the scope of this paper. We focus here on the ro-
bustness of previous PCA methods. Note that there are two
issues of robustness that must be addressed. First, given a
learned basis set, Black and Jepson [2] addressed the issue
of robustly recovering the coefficients of a linear combina-
tion that reconstructs an input image. They did not address
the general problem of robustly learning the basis images in
the first place. Here we address this more general problem.

2.1 Energy Functions and PCA

PCA is a statistical technique that is useful for dimension-
ality reduction. LetD = [d1 d2 ::: dn] = [d1 d2 ::: dd]T

be a matrixD 2 <d�n 1, where each columndi is a data
sample (or image),n is the number of training images, and
d is the number of pixels in each image. We assume that
training data is zero mean, otherwise the mean of the entire
data set is subtracted from each columndi. Previous formu-
lations assume the data is zero mean. In the least-squares
case, this can be achieved by subtracting the mean from the
training data. For robust formulations, the “robust mean”
must be explicitly estimated along with the bases.

1Bold capital letters denote a matrixD, bold lower-case letters a col-
umn vectord. I represents the identity matrix and1m = [1; � � � ; 1]T is
a m-tuple of ones.dj represents thej-th column of the matrixD anddj

is a column vector representing thej-th row of the matrixD. dij denotes
the scalar in rowi and columnj of the matrixD and the scalari-th ele-
ment of a column vectordj . dji is thei-th scalar element of the vector
d
j . All non-bold letters represent scalar variables.diag is an operator that

transforms a vector to a diagonal matrix, or a matrix into a column vector
by taking each of its diagonal components.[D]:�1 is an operator that cal-
culates the inverse of each element of a matrixD. D1 Æ D2 denotes the
Hadamard (point wise) product between two matrices of equal dimension.
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Let the first k principal components ofD be B =
[b1; :::;bk] 2 <

d�k. The columns ofB are the directions
of maximum variation within the data. The principal com-
ponents maximizemaxB

Pn

i=1 jjB
T
dijj

2
2 = B

T
�B, with

the constraintBT
B = I, where� = DD

T =
P

i did
T
i

is the covariance matrix. The columns ofB form an or-
thonormal basis that spans the principal subspace. If the
effective rank ofD is much less thand and we can approxi-
mate the column space ofD with k << d principal compo-
nents. The datadi can be approximated by linear combina-
tion of the principal components asdreci = BB

T
di where

B
T
di = ci are the linear coefficients obtained by project-

ing the training data onto the principal subspace; that is,
C = [c1 c2 : : : cn] = B

T
D.

A method for calculating the principal components that is
widely used in the statistics and neural network community
[7, 9, 21, 26] formulates PCA as the least-squares estima-
tion of the basis imagesB that minimize:

Epca(B) =

nX
i=1

epca(ei) =

nX
i=1

jjdi �BB
T
dijj

2
2

=

nX
i=1

dX
p=1

(dpi �

kX
j=1

bpjcji)
2 (1)

wherecji =
Pd

t=1 btjdti, B
T
B = I, jj:jj2 denotes theL2

norm,ei = di �BBT
di is the reconstruction error vector,

andepca(ei) = e
T
i ei is the reconstruction error ofdi.

Alternatively, we can make the linear coefficients an ex-
plicit variable and minimize

Epca
2
(B;C) =

nX
i=1

jjdi �Bcijj22: (2)

One approach for estimating both the bases,B, and coef-
ficients, C, uses the Expectation Maximization (EM) al-
gorithm [24, 28]. The approach assumes that the data is
generated by a random process and computes the subspace
spanned by the principal components when the noise be-
comes infinitesimal and equal in all the directions. In that
case, the EM algorithm can be reduced to the following cou-
pled equations:

B
T
BC = B

T
D (E-step); (3)

BCCT = DCT (M-step): (4)

EM alternates between solving for the linear coefficientsC

(Expectation step) and solving for the basisB (Maximiza-
tion step).

In the context of computer vision, Shum et al. [27] solve
the PCA problem with known missing data by minimiz-
ing an energy function similar to (2) using a weighted
least squares technique that ignores the missing data. The
method is used to model a sequence of range images with

occlusion and noise and is similar to the method of Gabriel
and Zamir [11] described below. Rao [22] has recently pro-
posed a Kalman filter approach for learning the basesB

and the coefficientsC in an incremental fashion. The ob-
servation process assumes Gaussian noise and corresponds
the errorEpca

2
above. While the Rao does not use a robust

learning method for estimating theB andC that minimize
Epca

2
, like Black and Jepson [2] he does suggest a robust

rule for estimating the coefficientsC once the basesB have
been learned.

2.2 Robustifying Principal Component Analysis
The above methods for estimating the principal components
are not robust to outliers that are common in training data
and that can arbitrarily bias the solution (e.g. Figure 1).
This happens because all the energy functions and the co-
variance matrix are derived from a least-squares (L2 norm)
framework. While the robustness of PCA methods in com-
puter vision has received little attention, the problem has
been studied in the statistics [5, 15, 16, 25] and neural net-
works [17, 30] literature, and several algorithms have been
proposed.

One approach replaces the standard estimation of the co-
variance matrix,�, with a robust estimator of the covari-
ance matrix [5, 25]. This approach is computationally im-
practical for high dimensional data such as images. Alter-
natively, Xu and Yuille [30] have proposed an algorithm
that generalizes the energy function (1), by introducing ad-
ditional binary variables that are zero when a data sample
(image) is considered an outlier. They minimize

Exu(B;V) =

nX
i=1

�
Vi jjdi �BB

T
dijj

2
2 + �(1� Vi)

�

=
nX
i=1

2
4Vi� dX

p=1

(dpi �
kX

j=1

bpjcij)
2
�
+ �(1� Vi)

3
5 (5)

wherecij =
Pd

t=1 btjdti. EachVi in V = [V1; V2; :::; Vn]
is a binary random variable. IfVi = 1 the sampledi is taken
into consideration, otherwise it is equivalent to discarding
di as an outlier. The second term in (5) is a penalty term, or
prior, which discourages the trivial solution where allVi are
zero. GivenB, if the energy,epca(ei) = jjdi �BB

T
dijj

2
2

is smaller than a threshold�, then the algorithm prefers to
setVi = 1 considering the sampledi as an inlier and0 if it
is greater than or equal to�.

Minimization of (5) involves a combination of discrete
and continuous optimization problems and Xu and Yuille
[30] derive a mean field approximation to the problem
which, after marginalizing the binary variables, can be
solved by minimizing:

Exu(B) = �

nX
i=1

1

�
fxu(ei; �; �) (6)
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where ei = di � BB
T
di and wherefxu(ei; �; �) =

log(1 + e��(epca(ei)��)) is a function that is related to ro-
bust statistical estimators [1]. The� can be varied as an
annealing parameter in an attempt to avoid local minima.

The above techniques are of limited application in com-
puter vision problems as they reject entire images as out-
liers. In vision applications, outliers typically correspond to
small groups of pixels and we seek a method that is robust
to this type of outlier yet does not reject the “good” pixels
in the data samples. Gabriel and Zamir [11] give a partial
solution. They propose a weighted Singular Value Decom-
position (SVD) technique that can be used to construct the
principal subspace. In their approach, they minimize:

Egz(B;C) =
nX
i=1

dX
p=1

wpi(dpi � (bp)T ci)
2 (7)

where, recall,bp is a column vector containing the elements
of thep-th row ofB. This effectively puts a weight,wpi on
every pixel in the training data. They solve the minimiza-
tion problem with “criss-cross regressions” which involve
iteratively computing dyadic (rank 1) fits using weighted
least squares. The approach alternates between solving for
b
p or ci while the other is fixed; this is similar to the EM

approach [24, 28] but without a probabilistic interpretation.
Gabriel and Odorof [12] note how the quadratic formula-

tion in (1) is not robust to outliers and propose making the
rank1 fitting process in (7) robust. They propose a number
of methods to make the criss-cross regressions robust but
they apply the approach to very low-dimensional data and
their optimization methods do not scale well to very high-
dimensional data such as images. In the following section
we develop this approach further and give a complete solu-
tion that estimates all the parameters of interest.

3 Robust Principal Component Analysis
The approach of Xu and Yuille suffers from three main
problems: First, a single “bad” pixel value can make an im-
age lie far enough from the subspace that the entire sample
is treated as an outlier (i.e.Vi = 0) and has no influence on
the estimate ofB. Second, Xu and Yuille use a least squares
projection of the datadi for computing the distance to the
subspace; that is, the coefficients which reconstruct the data
di areci = BT

di. These reconstruction coefficients can be
arbitrarily biased for an outlier. Finally, a binary outlier
process is used which either completely rejects or includes
a sample. Below we introduce a more general analogue out-
lier process that has computational advantages and provides
a connection to robust M-estimation.

To address these issues we reformulate (5) as

Erpca(B;C;�; L) =
nX
i=1

dX
p=1

"
Lpi

� ~e2pi
�2p

�
+ P (Lpi)

#
(8)

where0 � Lpi � 1 is now an analog outlier process that
depends on both images and pixel locations andP (Lpi) is
a penalty function. The error~epi = dpi��p�

Pk

j=1 bpjcji
and� = [�1 �2 ::: �d]

T specifies a “scale” parameter for
each of thed pixel locations.

Observe that we explicitly solve for the mean� in the
estimation process. In the least-squares formulation the
mean can be computed in closed form and can be subtracted
from each column of the data matrixD. In the robust case,
outliers are defined with respect to the error in the recon-
structed images which include the mean. The mean can no
longer be computed and first subtracted. Instead it is esti-
mated (robustly) analogously to the other bases.

Also, observe that PCA assumes an isotropic noise
model; that is, the noise at each pixel is assumed to be Gaus-
sian (epi � N(0; �2)). In the formulation here we allow the
noise to vary for every row of the data (epi � N(0; �2p)).

Exploiting the relationship between outlier processes and
robust statistics [1], minimizing (8) is equivalent to mini-
mizing the following robust energy function:

Erpca(B;C;�;�) =
nX
i=1

erpca(di � ��Bci;�)

=

nX
i=1

dX
p=1

�(dpi � �p �

kX
j=1

bpjcji; �p) (9)

for a particular class of robust�-functions [1], where
erpca(x;�) =

Pd

p=1 �(xp; �p), for x = [x1 x2 ::: xd]
T .

Throughout the paper, we use the Geman-McClure error
function [10] given by�(x; �p) = x2

x2+�2p
, where�p is a

parameter that controls the convexity of the robust function
and is used for deterministic annealing in the optimization
process. This robust�-function corresponds to the penalty
term P (Lpi) = (

p
Lpi � 1)2 in (8) [1]. Details of the

method are described below and in the Appendix.
Note that while there are robust methods such as

RANSAC and Least Median Squares that are more robust
than M-estimation, it is not clear how to apply these meth-
ods efficiently to high dimensional problems such as the
robust estimation of basis images.

3.1 Quantitative Comparison

In order to better understand how PCA and the method of
Xu and Yuille are influenced by intra-sample outliers, we
consider the contrived example in Fig. 4 where four face
images are shown. The second image is contaminated with
one outlying pixel which has10 times more energy than the
sum of the others image pixels. To visualize the large range
of pixel magnitudes the log of the image is displayed.

We force each method to explain the data using three ba-
sis images. Note that the approach of Xu and Yuille does
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Figure 4: Original training Images. The second one is the
log of original image.

Figure 5: Learned basis images.Top: Traditional PCA.
Middle: Xu and Yuille’s method.Bottom:RPCA.

not solve for the mean, hence, for a fair comparison we nei-
ther solved for nor subtracted the mean for any of the meth-
ods. In this case the mean is approximately recovered as
one of the bases. In Fig. 5, the three learned bases given by
standard PCA, Xu and Yuille’s method, and our proposed
method are shown. The PCA basis captures the outlier in
the second training image as the first principal component
since it has the most energy. The other two bases approx-
imately capture the principal subspace spanning the other
three images. Xu and Yuille’s method, on the other hand,
discards the second image for being far from the subspace
and uses all three bases to represent the three remaining im-
ages. The RPCA method proposed here, constructs a sub-
space that takes into account all four images while ignoring
the single outlying pixel. Hence, we recover three bases to
approximate the four images.

In Fig. 6 we project the original images (without outliers)
onto the three learned basis sets. PCA “wastes” one of its
three basis images on the outlying data and hence has only
two basis images to approximate four training images. Xu
and Yuille’s method ignores all the useful information in
image 2 as the result of a single outlier and, hence, is un-
able to reconstruct that image. Since it uses three basis im-
ages to represent the other three images, it can represent
them perfectly. The RPCA method provides an approxima-
tion of all four images with three basis images. The MSRE
(MSRE=1

n

Pn

i=1 jjdi � ��Bcijj22) is less for RPCA than
for the other methods: RPCA is7:02, while PCA and Xu
and Yuille’s method are18:59 and9:02 respectively.

Figure 6: Reconstruction from noiseless images.Top:
PCA.Middle: Xu and Yuille’s method.Bottom:RPCA

3.2 Computational Issues
We now describe how to robustly compute the mean and the
subspace spanned by the firstk principal components. We
do this without imposing orthogonality between the bases;
this can be imposed later if needed [28]. To derive an al-
gorithm for minimizing (9), we can reformulate the robust
M-estimation problem as an iteratively re-weighted least-
squares problem [6]. However, the computational cost of
one iteration of weighted least squares isO

�
nk2d

�
for C

andO
�
nk2d

�
for B [6]. Typically d � n � k, and, for

example, estimating the basesB involves computing the
solution ofd systems ofk � k equations, which for large
d is computationally expensive. Rather than directly solv-
ing d systems ofk � k equations forB andn systems of
k � k equations forC, we perform gradient descent with a
local quadratic approximation [2] to determine an approxi-
mation of the step sizes, to solve forB, C and�. The robust
learning rules for updating successivelyB, C and� are as
follows:

B
n+1 = B

n � [Hb]:
�1 Æ

@Erpca

@B
; (10)

C
n+1 = C

n � [Hc]:
�1 Æ

@Erpca

@C
; (11)

�n+1 = �n � [H�]:
�1 Æ

@Erpca

@�
: (12)

The partial derivatives with respect to the parameters are:

@Erpca

@B
= �	(~E;�)CT (13)

@Erpca

@C
= �BT

	(~E;�) (14)

@Erpca

@�
= �	(~E;�)1n (15)

where~E is the reconstruction error and an estimate of the
step size is given by:

Hb = �(~E;�)(C ÆC)T hbi = max diag
� @2Erpca

@bi@bTi

�
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Hc = (B ÆB)T �(~E;�) hci = max diag
� @2Erpca

@ci@cTi

�

H� = �(~E;�)1n h�i
= max diag

� @2Erpca

@�@�T

�

where @Erpca

@B
2 <d�k is the derivative ofErpca with re-

spect toB, and similarly for@Erpca

@C
2 <k�n and @Erpca

@� 2

<d�1. 	(~E;�) is a matrix that contains the derivatives
of the robust function; that is, (~epi; �p) =

@�(~epi;�p)
@~epi

=

2~epi�
2

p

(~e2
pi
+�2p)

2
. Hb 2 <d�k is a matrix in which every com-

ponentij is an upper bound of the second derivative; that

is, hij �
@2Erpca

@b2
ij

and, similarly,Hc 2 <n�k andH� 2

<d�1. Each elementpi of the matrix�(~E;�) 2 Rd�n,
contains the maximum of the second derivative of the�-

function; that is�pi = max~epi
@2�(~epi;�p)

@~e2
pi

= 2
�2p

.

Observe that now the computational cost of one iteration
of the learning rules (10) or (11) isO

�
ndk

�
. After each

update ofB,C, or�, we update the error~E. Convergence
behavior is described in the appendix.

3.3 Local measure of the scale value

The scale parameter� controls the shape of the robust
�-function and hence determines what residual errors are
treated as outliers. When the the absolute value of the ro-
bust errorj~epij is larger than�pp

3
, the�-function used here

begins reducing the influence of the pixelp in imagei on the
solution. We estimate the scale parameters�p for each pixel
p automatically using the local Median Absolute Deviation
(MAD) [3, 23] of the pixel. The MAD can be viewed as a
robust statistical estimate of the standard deviation, and we
compute it as:

�p = �max(1:4826medR(jep �medR(jepj)j); �min)
(16)

where medR indicates that the median is taken over a re-
gion, R, around pixelp and �min is the MAD over the
whole image [3].� is a constant factor that sets the outlier
�p to be between 2 and 2.5 times the estimated standard
deviation. For calculating the MAD, we need to have an
initial error,ep, which is obtained as follows: we compute
the standard PCA on the data, and calculate the number of
bases which preserve the55% of the energy (Epca). This
is achieved when the ratio between the energy of the recon-
structed vectors and the original ones is larger than 0.55;

that is,� =
P

n

i=1
jjBcijj22P

n

i=1
jjdijj22

� 0:55. Observe, that with stan-

dard PCA, this ratio can be calculated in terms of eigen-
values of the covariance matrix [9]. With this number of
bases we compute the least-squares reconstruction errorE

and use that to obtain a robust estimate of�.

Figure 7: Local�p values estimated in4� 4 regions.

Figure 7 shows�p for the training set in Fig. 1. Observe
how larger values of�p are estimated for the eyes, mouth,
and boundary of the face. This indicates that there is higher
variance in the training set in these regions and larger devia-
tions from the estimated subspace should be required before
a training pixel is considered an outlier.

4 Experimental Results
The behavior of RPCA is illustrated with a collection of 256
images (120� 160) gathered from a static camera over one
day. The first column of Fig. 8, shows example training im-
ages; in addition to changes in the illumination of the static
background, 45% of the images contain people in various
locations. While the people often pass though the view of
the camera quickly, they sometimes remain relatively still
over multiple frames. We applied standard PCA and RPCA
to the training data to build a background model that cap-
tures the illumination variation. Such a model is useful for
person detection and tracking [20].

The second column of Fig. 8 shows the result of recon-
structing each of the illustrated training images using the
PCA basis (with 20 basis vectors). The presence of people
in the scene effects the recovered illumination of the back-
ground and results in ghostly images where the people are
poorly reconstructed.

The third column shows the reconstruction obtained with
20 RPCA basis vectors. RPCA is able to capture the illumi-
nation changes while ignoring the people. In the fourth col-
umn, the outliers are plotted in white. Observe that the out-
liers primarily correspond to people, specular reflections,
and graylevel changes due to the motion of the trees in the
background. This model does a better job of accounting for
the illumination variation in the scene and provides a basis
for person detection. The algorithm takes approximately
three of hours on a 900 MHz Pentium III in Matlab.

5 Discussion
While the examples illustrate the benefits of the method,
it is worth considering when the algorithm may give un-
wanted results. Consider, for example, a face database that
contains a small fraction of the subjects wearing glasses. In
this case, the pixels corresponding to the glasses are likely
to be treated as outliers by RPCA. Hence, the learned basis



Int. Conf. on Computer Vision (ICCV’2001), Vancouver, Canada, July 2001.c IEEE 2001 7

set will not contain these pixels, and it will be impossible to
reconstruct images of people wearing glasses. Whether or
not this is desirable behavior will depend on the application.

In such a situation, people with or without glasses can be
considered as two different classes of objects and it might
be more appropriate to robustly learn multiple linear sub-
spaces corresponding to the different classes. By detecting
outliers, robust techniques may prove useful for identifying
such training sets that contain significant subsets that are
not well modeled by the majority of the data and should be
separated and represented independently. This is one of the
classic advantages of robust techniques for data analysis.

6 Conclusion and Future Work
We have presented a method for robust principal compo-
nent analysis that can be used for automatic learning of
linear models from data that may be contaminated by out-
liers. The approach extends previous work in the vision
community by modeling outliers that typically occur at the
pixel level. Furthermore, it extends work in the statistics
community by connecting the explicit outlier formulation
with robust M-estimation and by developing a fully auto-
matic algorithm that is appropriate for high dimensional
data such as images. The method has been tested on nat-
ural and synthetic images and shows improved tolerance to
outliers when compared with other techniques.

This work can be extended in a variety of ways. We are
working on applications for robust Singular Value Decom-
position, generalizing to robustly factorizingn-order ten-
sors, on adding spatial coherence to the outliers and on de-
veloping a robust minor component analysis (useful when
solving Total Least Square problems).

The use of linear models in vision is widespread and
increasing. We hope robust techniques like those pro-
posed here will prove useful as linear models are used to
represent more realistic data sets. Towards that end an
implementation of the method can be downloaded from
http://www.salleURL.edu/˜ftorre .
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7 Appendix: Implementation Details
In standard PCA, the number of bases is usually selected to
preserve some percentage of the energy (Epca). In RPCA
this criterion is not straightforward to apply. The robust er-
ror, Erpca, (9), depends on� and the number of bases so
we can not directly compare energy functions with differ-
ent scale parameters. Moreover, the energy of the outliers
is confusedwith the energy of the signal. We have exper-
imented with different methods for automatically selecting
of the number of basis images including the Minimum De-
scriptor Length criterion and Akaike Information Criterion.
However, these model selection methods do not scale well
to high dimensional data and require the manual selection
of a number of normalization factors. We have exploited
more heuristic methods here that work in practice.

We apply standard PCA to the data, and calculate the
number of bases that preserve55% of the energy (Epca).
With this number of bases, we apply RPCA, minimizing
(9), until convergence. At the end of this process we have
a matrixW that contains the weighting of each pixel in the
training data. We detect outliers using this matrix and set
the values ofW to 0 if jwpij >

�pp
3

and towpi otherwise,
obtainingW�. We then incrementally add additional bases
and minimizeE(B;C;�) = jjW� Æ (D� �1Tn �BC)jj

2
2

with the same method as before but maintaining constant
weightsW�. Each element,w�pi will be equal tow�pi =
 (~epi; �p)=~epi [6]. We proceed adding bases until the per-
centage of energy accounted for,�, is bigger than 0.9, where

� =

P
n

i=1
c
T
i B

T
W

�

iBciP
n

i=1
(di��)TW�

i
(di��)

.

In general the energy function (9) is non-convex and the
minimization method can get trapped in local minima. We
make use of a deterministic annealing scheme which helps
avoid these local minima [2]. The method begins with�
being a large multiple of (16) such that all pixels are inliers.
Then� is successively lowered to the value given by (16),
reducing the influence of outliers. Several realizations with
different initial solutions are performed, and the solution
with the lowest minimum error is chosen. Since minimiza-
tion of (9) is an iterative scheme, an initial guess for the
parametersB;C and� has to be given. The initial guess
for the parametersB, is chosen to be the mean ofD plus
random Gaussian noise. The convergence of all the trials
have given similar energy and visual results.

a b c d

Figure 8: (a) Original Data. (b) PCA reconstruction.(c)
RPCA reconstruction.(d) Outliers.


