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Abstract

We develop a framework for learning generic, expres-
sive image priors that capture the statistics of natural
scenes and can be used for a variety of machine vision
tasks. The approach provides a practical method for
learning high-order Markov random field (MRF) mod-
els with potential functions that extend over large pixel
neighborhoods. These clique potentials are modeled us-
ing the Product-of-Experts framework that uses non-
linear functions of many linear filter responses. In con-
trast to previous MRF approaches all parameters, in-
cluding the linear filters themselves, are learned from
training data. We demonstrate the capabilities of this
Field-of-Experts model with two example applications,
image denoising and image inpainting, which are imple-
mented using a simple, approximate inference scheme.
While the model is trained on a generic image database
and is not tuned toward a specific application, we obtain
results that compete with specialized techniques.

Keywords: Markov random fields · low-level vision ·
image modeling · learning · image restoration

1 Introduction

The need for prior models of image or scene structure oc-
curs in many machine vision and graphics problems in-
cluding stereo, optical flow, denoising, super-resolution,
image-based rendering, volumetric surface reconstruc-
tion, and texture synthesis to name a few. Whenever
one has “noise” or uncertainty, prior models of images
(or depth maps, flow fields, three-dimensional volumes,
etc.) come into play. Here we develop a method for
learning priors for low-level vision problems that can be
used in many standard vision, graphics, and image pro-
cessing algorithms. The key idea is to formulate these
priors as a high-order Markov random field (MRF) de-
fined over large neighborhood systems. This is facili-
tated by exploiting ideas from sparse image patch repre-
sentations. The resulting Field of Experts (FoE) models

∗Department of Computer Science, TU Darmstadt, Darm-
stadt, Germany, Email: sroth@cs.tu-darmstadt.de.

The work for this paper was performed while SR was at Brown
University.
†Department of Computer Science, Brown University, Provi-

dence, RI, USA, Email: black@cs.brown.edu.

the prior probability of an image, or other low-level rep-
resentation, in terms of a random field with overlapping
cliques, whose potentials are represented as a Product
of Experts (Hinton, 1999). While this model applies to
a wide range of low-level representations, this paper fo-
cuses on its applications to modeling images. In other
work (Roth and Black, 2007b) we have already studied
the application to modeling vector-valued optical flow
fields; other potential applications will be discussed in
more detail below.

To study the application of Fields of Experts to mod-
eling natural images, we train the model on a standard
database of natural images (Martin et al., 2001) and
develop a diffusion-like scheme that exploits the prior
for approximate Bayesian inference. To demonstrate
the power of the FoE model, we use it in two differ-
ent applications: image denoising and image inpainting
(Bertalmı́o et al., 2000) (i. e., filling in missing pixels in
an image). Despite the generic nature of the prior and
the simplicity of the approximate inference, we obtain
results near the state of the art that, until now, were
not possible with MRF approaches. Fig. 1 illustrates
the application of the FoE model to image denoising
and image inpainting. We perform a detailed analysis
of various aspects of the model and use image denoising
as a running example for quantitative comparisons with
the state of the art. We also provide quantitative results
for the problem of image inpainting.

Modeling image priors is challenging due to the high-
dimensionality of images, their non-Gaussian statistics,
and the need to model correlations in image structure
over extended image neighborhoods. It has been often
observed that, for a wide variety of linear filters, the
marginal filter responses are non-Gaussian, and that the
responses of different filters are usually not independent
(Huang and Mumford, 1999; Srivastava et al., 2002; Por-
tilla et al., 2003).

As discussed in more detail below, there have been a
number of attempts to overcome these difficulties and to
model the statistics of small image patches as well as of
entire images. Image patches have been modeled using
a variety of sparse coding approaches or other sparse
representations (Olshausen and Field, 1997; Teh et al.,
2003). Many of these models, however, do not easily
generalize to models for entire images, which has limited
their impact for machine vision applications. Markov
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Figure 1: Image restoration using a Field of Experts. (a) Image from the Corel database with additive Gaussian
noise (σ = 15, PSNR = 24.63dB). (b) Image denoised using a Field of Experts (PSNR = 30.72dB). (c) Original
photograph with scratches. (d) Image inpainting using the FoE model.

random fields on the other hand can be used to model
the statistics of entire images (Geman and Geman, 1984;
Besag, 1986). They have been widely used in machine
vision, but often exhibit serious limitations. In partic-
ular, MRF priors typically exploit hand-crafted clique
potentials and small neighborhood systems, which limit
the expressiveness of the models and only crudely cap-
ture the statistics of natural images. A notable excep-
tion to this is the FRAME model by Zhu et al. (1998),
which learns clique potentials for larger neighborhoods
from training data by modeling the responses of a set
of predefined linear filters.

The goal of the current paper is to develop a frame-
work for learning expressive yet generic prior models for
low-level vision problems. In contrast to example-based
approaches, we develop a parametric representation that
uses examples for training, but does not rely on exam-
ples as part of the representation. Such a parametric
model has advantages over example-based methods in
that it generalizes better beyond the training data and
allows for the use of more elegant optimization meth-
ods. The core contribution is to extend Markov random
fields beyond FRAME by modeling the local field po-
tentials with learned filters. To do so, we exploit ideas
from the Product-of-Experts (PoE) framework (Hinton,
1999), which is a generic method for learning high di-
mensional probability distributions. Previous efforts to
model images using Products of Experts (Teh et al.,
2003) were patch-based and hence inappropriate for
learning generic priors for images or other low-level rep-
resentations of arbitrary size. We extend these meth-
ods, yielding a translation-invariant prior. The Field-of-
Experts framework provides a principled way to learn
MRFs from examples and the improved modeling power
makes them practical for complex tasks1.

1This paper is an extended version of (Roth and Black, 2005).

2 Background and Previous
Work

Formal models of image or scene structure play an im-
portant role in many vision problems where ambigu-
ity, noise, or missing sensor data make the recovery of
world or image structure difficult or impossible. Mod-
els of a priori structure are used to resolve, or regular-
ize, such problems by providing additional constraints
that impose prior assumptions or knowledge. For low-
level vision applications the need for modeling such prior
knowledge has long been recognized (Geman and Ge-
man, 1984; Poggio et al., 1985), for example due to their
frequently ill-posed nature. Often these models entail
assuming spatial smoothness or piecewise-smoothness of
various image properties. While there are many ways of
imposing prior knowledge, we focus here on probabilis-
tic prior models, which have a long history and provide
a rigorous framework within which to combine differ-
ent sources of information. Other regularization meth-
ods, such as deterministic ones, including variational
approaches (Poggio et al., 1985) will only be discussed
briefly.

For problems in low-level vision, such probabilis-
tic prior models of the spatial structure of images or
scene properties are often formulated as Markov ran-
dom fields (MRFs) (Wong, 1968; Kashyap and Chel-
lappa, 1981; Geman and Geman, 1984; Besag, 1986;
Marroquin et al., 1987; Szeliski, 1990) (see (Li, 2001)
for a recent overview and introduction). Markov ran-
dom fields have found many areas of application in-
cluding image denoising (Sebastiani and Godtliebsen,
1997), stereo (Sun et al., 2003), optical flow estima-
tion (Heitz and Bouthemy, 1993), texture classification
(Varma and Zisserman, 2005), to name a few. MRFs
are undirected graphical models, where the nodes of the
graph represent random variables which, in low-level vi-
sion applications, typically correspond to image mea-
surements such as pixel intensities, range values, sur-
face normals, or optical flow vectors. Formally, we let
the image measurements x be represented by nodes V
in a graph G = (V,E), where E are the edges con-
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necting nodes. The edges between the nodes indicate
the factorization structure of the probability density
p(x) described by the MRF. More precisely, the max-
imal cliques x(k), k = 1, . . . ,K of the graph directly
correspond to factors of the probability density. The
Hammersley-Clifford theorem (Moussouris, 1974) estab-
lishes that we can write the probability density of this
graphical model as a Gibbs distribution

p(x) =
1
Z

exp

(
−
∑
k

Uk(x(k))

)
, (1)

where x is an image, Uk(x(k)) is the so-called potential
function for clique x(k), and Z is a normalizing term
called the partition function. In many cases, it is rea-
sonably assumed that the MRF is homogeneous; i. e.,
the potential function is the same for all cliques (or in
other terms Uk(x(k)) = U(x(k))). This property gives
rise to the translation-invariance of an MRF model for
low-level vision applications2. Equivalently, we can also
write the density under this model as

p(x) =
1
Z

∏
k

fk(x(k)), (2)

which makes the factorization structure of the model
even more explicit. Here, fk(x(k)) are the factors de-
fined on clique x(k), which, in an abuse of terminology,
we also sometimes call potentials.

Because of the regular structure of images, the edges
of the graph are usually chosen according to some reg-
ular neighborhood structure. In almost all cases, this
neighborhood structure is chosen a priori by hand, al-
though the type of edge structure and the choice of
potentials varies substantially. The vast majority of
models use a pairwise graph structure; each node (i. e.,
pixel) is connected to its 4 direct neighbors to the left,
right, top, and bottom (Geman and Geman, 1984; Be-
sag, 1986; Sebastiani and Godtliebsen, 1997; Tappen
et al., 2003; Neher and Srivastava, 2005). This induces
a so-called pairwise MRF, because the maximal cliques
are simply pairs of neighboring nodes (pixels), and hence
each potential is a function of two pixel values:

p(x) =
1
Z

exp

− ∑
(i,j)∈E

U(xi, xj)

 (3)

Moreover, the potential is typically defined in terms of
some robust function of the difference between neigh-
boring pixel values

U(xi, xj) = ρ(xi − xj), (4)

where a typical ρ-function is shown in Figure 2. The
truncated quadratic ρ-function in Figure 2 allows spatial

2When we talk about translation-invariance, we disregard the
fact that the finite size of the image will make this property hold
only approximately.

discontinuities by not heavily penalizing large neighbor
differences.

The difference between neighboring pixel values also
has an intuitive interpretation, as it approximates a hor-
izontal or vertical image derivative. The robust function
can thus be understood as modeling the statistics of the
first derivatives of the images. These statistics, as well
as the study of the statistics of natural images in gen-
eral have received a lot of attention in the literature
(Ruderman, 1994; Olshausen and Field, 1996; Huang
and Mumford, 1999; Srivastava et al., 2003). A review
of this literature is well beyond the scope of this paper
and the reader is thus referred to above papers for an
overview.

Despite their long history, MRF methods have of-
ten produced disappointing results when applied to the
recovery of complex scene structure. One of the rea-
sons for this is that the typical pairwise model structure
severely restricts the image structures that can be rep-
resented. In the majority of the cases, the potentials are
furthermore hand-defined, and consequently are only ad
hoc models of image or scene structure. The result-
ing probabilistic models typically do not well represent
the statistical properties of natural images and scenes,
which leads to poor application performance. For exam-
ple, Figure 2 shows the result of using a pairwise MRF
model with a truncated quadratic potential function to
remove noise from an image. The estimated image is
characteristic of many MRF results; the robust poten-
tial function produces sharp boundaries but the result is
piecewise smooth and does not capture the more com-
plex textural properties of natural scenes.

For some years it was unclear whether the limited
application performance of pairwise MRFs was due to
limitations of the model, or due to limitations of the
optimization approaches used with non-convex models.
Yanover et al. (2006) have recently obtained global solu-
tions to low-level vision problems even with non-convex
pairwise MRFs. Their results indicate that pairwise
models are incapable of producing very high-quality so-
lutions for stereo problems and suggest that richer mod-
els are needed for low-level modeling.

Gimel’farb (1996) proposes a model with multiple and
more distant neighbors, which are able to model more
complex spatial properties (see also Zalesny and van
Gool, 2001). Of particular note, this method learns
the neighborhood structure that best represents a set of
training data; in the case of texture modeling, different
textures result in quite different neighborhood systems.
This work however has been limited to modeling spe-
cific classes of image texture and our experiments with
modeling more diverse classes of generic image structure
suggest these methods do not scale well beyond narrow,
class-specific, image priors.
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Figure 2: Typical pairwise MRF potential and results: (a) Example of a common robust potential function (negative
log-probability). This truncated quadratic is often used to model piecewise smooth surfaces. (b) Image with
Gaussian noise added. (c) Typical result of denoising using an ad-hoc pairwise MRF (obtained using the method
of Felzenszwalb and Huttenlocher (2004)). Note the piecewise smooth nature of the restoration and how it lacks
the textural detail of natural scenes.

Figure 3: Filters representing first and second order
neighborhood systems (Geman and Reynolds, 1992).
The left two filters correspond to first derivatives, the
right three filters to second derivatives.

2.1 High-order Markov random fields

There have been a number of attempts to go beyond
these very simple pairwise models, which only model
the statistics of first derivatives in the image structure
(Geman et al., 1992; Zhu and Mumford, 1997; Zhu et al.,
1998; Tjelmeland and Besag, 1998; Paget and Longstaff,
1998). The basic insight behind such high-order models
is that the generality of MRFs allows for richer mod-
els through the use of larger maximal cliques. One ap-
proach uses the second derivatives of image structure.
Geman and Reynolds (1992), for example, formulate
MRF potentials using polynomials determined by the
order of the (image) surface being modeled (k = 1, 2, 3
for constant, planar, or quadric).

In the context of this work, we think of these polyno-
mials as defining linear filters, Ji, over local neighbor-
hoods of pixels. For the quadric case, the corresponding
3× 3 filters are shown in Figure 3. In this example, the
maximal cliques are square patches of 3 × 3 pixels and
their corresponding potential for clique x(k) centered at
pixel k is written as

U(x(k)) =
5∑
i=1

ρ(JT
i x(k)), (5)

where the Ji are the shown derivative filters. When ρ
is a robust potential, this corresponds to the weak plate
model (Blake and Zisserman, 1987).

The above models are capable of representing richer
structural properties beyond the piecewise spatial
smoothness of pairwise models, but have remained

largely hand-defined. The designer decides what might
be a good model for a particular problem and chooses
a neighborhood system, the potential function, and its
parameters.

2.2 Learning MRF models

Hand selection of parameters is not only somewhat ar-
bitrary and can cause models to only poorly capture
the statistics of the data, but is also particularly cum-
bersome for models with many parameters. There ex-
ist a number of methods for learning the parameters
of the potentials from training data (see (Li, 2001) for
an overview). In the context of images, Besag (1986)
for example uses the pseudo-likelihood criterion to learn
the parameters of a parametric potential function for a
pairwise MRF from training data. Applying pseudo-
likelihood in the high-order case is, however, hindered
by the fact that computing the necessary conditionals
is often difficult.

For Markov random field modeling in general (i. e.,
not specifically for vision applications), maximum like-
lihood (ML) (Geyer, 1991) is probably the most widely
used learning criterion. Nevertheless, due to its of-
ten extreme computational demands, it has long been
avoided. Hinton (2002) recently proposed a learning
rule for energy-based models, called contrastive diver-
gence (CD), which resembles maximum likelihood, but
allows for much more efficient computation. In this pa-
per we apply contrastive divergence to the problem of
learning Markov random field models of images; details
will be discussed below. Other learning methods in-
clude iterative scaling (Darroch and Ratcliff, 1972; della
Pietra et al., 1997), score matching (Hyvaärinen, 2005),
discriminative training of energy-based models (LeCun
and Huang, 2005), as well as a large set of variational
(and related) approximations to maximum likelihood
(Jordan et al., 1999; Yedidia et al., 2003; Welling and
Sutton, 2005; Minka, 2005).

In this work, Markov random fields are used to model
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prior distributions of images and potentially other scene
properties, but in the literature, MRF models have also
been used to directly model the posterior distribution
for particular low-level vision applications. For these
applications, it can be beneficial to train MRF models
discriminatively (Ning et al., 2005; Kumar and Hebert,
2006). This is not pursued here.

In low-level vision applications, most of these learning
methods have not found widespread use. Nevertheless,
maximum likelihood has been successfully applied to the
problem of modeling images (Zhu and Mumford, 1997;
Descombes et al., 1999). One model that is of particular
importance in the context of this paper is the FRAME
model of Zhu et al. (1998). It took a step toward more
practical MRF models, as it is of high-order and allows
its parameters to be learned from training data, for ex-
ample from a set of natural images (Zhu and Mumford,
1997). This method uses a “filter pursuit” strategy to
select filters from a pre-defined set of standard image
filters; the potential functions model the responses of
these filters using a flexible, discrete, non-parametric
representation. The discrete nature of this representa-
tion complicates its use, and, while the method exhib-
ited good results for texture synthesis, the reported im-
age restoration results appear to fall below the current
state of the art.

To model more complex local statistics a number of
authors have turned to empirical probabilistic models
captured by a database of image patches. Freeman et al.
(2000) propose an MRF model that uses example image
patches and a measure of consistency between them to
model scene structure. This idea has been exploited
as a prior model for image based rendering (Fitzgibbon
et al., 2003) and super-resolution (Pickup et al., 2004).
The roots of these models are in example-based texture
synthesis (Efros and Leung, 1999).

In contrast, our approach uses parametric (and differ-
entiable) potential functions applied to filter responses.
Unlike the FRAME model, we learn the filters them-
selves as well as the parameters of the potential func-
tions. As we will show, the resulting filters appear quite
different from standard filters and achieve better per-
formance than do standard filters in a variety of tasks.
A computational advantage of our parametric model is
that it is differentiable, which facilitates various learning
and inference methods.

2.3 Inference

To apply MRF models to actual problems in low-level
vision, we compute a solution using tools from prob-
abilistic inference. Inference in this context typically
means either performing maximum a-posteriori (MAP)
estimation, or computing expectations over the solution
space. Common to all MRF models in low-level vision is
the fact that inference is challenging, both algorithmi-
cally and computationally. The loopy structure of the

underlying graph makes exact inference NP-hard in the
general case, although special cases exist where poly-
nomial time algorithms are known. Because of that,
inference is usually performed in an approximate fash-
ion, for which there are a wealth of different techniques.
Classical techniques include Gibbs sampling (Geman
and Geman, 1984), deterministic annealing (Hofmann
et al., 1998), and iterated conditional modes (Besag,
1986). More recently, algorithms based on graph cuts
(Kolmogorov and Zabih, 2004) have become very pop-
ular for MAP inference. Variational techniques and re-
lated ones, such as belief propagation (Yedidia et al.,
2003), have also enjoyed enormous popularity, both for
MAP inference and computing marginals. Nevertheless,
even with such modern approximate techniques, infer-
ence can be quite slow, which has prompted the devel-
opment of models that simplify inference (Felzenszwalb
and Huttenlocher, 2004). While these may make infer-
ence easier, they typically give the answer to the wrong
problem, as the model does not capture the relevant
statistics well (cf. Fig. 2).

Inference in high-order MRF models is particularly
demanding, because the larger size of the cliques com-
plicates the (approximate) inference process. Because
of that, we rely on very simple approximate inference
schemes using the conjugate gradient method. Never-
theless, the applicability of more sophisticated inference
techniques to models such as the one proposed here,
promises to be a fruitful area for future work (cf. Potetz,
2007; Kohli et al., 2007).

2.4 Other regularization methods

It is worth noting that prior models of spatial struc-
ture are also often formulated as energy terms (e. g., log-
probability) and used in non-probabilistic regularization
methods (Poggio et al., 1985). While we pursue a prob-
abilistic framework here, the methods are applicable to
contexts where deterministic regularization methods are
applied. This suggests that our FoE framework is ap-
plicable to a wide class of variational frameworks (see
(Schnörr et al., 1996) for a review of such techniques).

Interestingly, many of these deterministic regulariza-
tion approaches, for example variational (Schnörr et al.,
1996) or nonlinear-diffusion related methods (Weickert,
1997), suffer from very similar limitations as typical
MRF approaches. This is because they penalize large
image derivatives similar to pairwise MRFs. Moreover,
in order to show the existence of a unique global op-
timum, many models are restricted to be convex, and
are furthermore mostly hand-defined. Non-convex reg-
ularizers often show superior performance in practice
(Black et al., 1998), and the missing connection to the
statistics of natural images or scenes can be viewed as
problematic. There have been variational and diffusion-
related approaches that try to overcome some of these
limitations (Gilboa et al., 2004; Trobin et al., 2008).
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2.5 Models of image patches

Even though typically motivated from an image-coding
or neurophysiological point of view, there is a large
amount of related work in the area of sparse coding and
component analysis, which attempts to model complex
image structure. Such models typically encode struc-
tural properties of images through a set of linear filter
responses or components. For example, Principal Com-
ponent Analysis (PCA) (Roweis and Ghahramani, 1999)
of image patches yields visually intuitive components,
some of which resemble derivative filters of various or-
ders and orientations. The marginal statistics of such
filters are highly non-Gaussian (Ruderman, 1994) and
are furthermore not independent, making this model un-
suitable for probabilistically modeling image patches.

Independent Component Analysis (ICA) (Bell and
Sejnowski, 1995), for example, assumes non-Gaussian
statistics and finds the linear components such that the
statistical dependence between the components is min-
imized. As opposed to the principal components, ICA
yields localized components, which resemble Gabor fil-
ters of various orientations, scales, and locations. Since
the components (i. e., filters) Ji ∈ Rn found by ICA are
by assumption independent, one can define a probabilis-
tic model of image patches x ∈ Rn by multiplying the
marginal distributions, pi(JT

i x), of the filter responses:

p(x) ∝
n∏
i=1

pi(JT
i x). (6)

Notice that projecting an image patch onto a linear com-
ponent (JT

i x) is equivalent to filtering the patch with a
linear filter described by Ji. However, in the case of im-
age patches of n pixels it is generally impossible to find
n fully independent linear components, which makes the
ICA model only an approximation. Somewhat similar
to ICA are sparse-coding approaches (e. g., Olshausen
and Field, 1996), which also represent image patches in
terms of a linear combination of learned filters, but in a
synthesis-based manner (see also Elad et al., 2006).

Most of these methods, however, focus on image
patches and provide no direct way of modeling the
statistics of whole images. Several authors have ex-
plored extending sparse coding models to full images.
For example, Sallee and Olshausen (2003) propose a
prior model for entire images, but inference with this
model requires Gibbs sampling, which makes it some-
what problematic for many machine vision applications.
Other work has integrated translation invariance con-
straints into the basis finding process (Hashimoto and
Kurata, 2000; Wersing et al., 2003). The focus in that
work, however, remains on modeling the image in terms
of a sparse linear combination of basis filters with an em-
phasis on the implications for human vision. Modeling
entire images has also been considered in the context of
image denoising (Elad and Aharon, 2006). While these

approaches are motivated in a way that is quite different
from Markov random field approaches as emphasized
here, they are similar in that they model the response
to linear filters and even allow the filters themselves to
be learned. Another difference is that the model of Elad
and Aharon (2006) is not trained offline on a general
database of natural images, but the parameters are in-
stead inferred “online” in the context of the application
at hand. While this may also have advantages, it for ex-
ample makes the application to problems with missing
data (e. g., inpainting) more difficult.

Popular approaches to modeling images also include
wavelet-based methods (Portilla et al., 2003). Since
neighboring wavelet coefficients are not independent, it
is beneficial to model their dependencies. This has for
example been done in patches using Products of Experts
(Gehler and Welling, 2006) or over entire wavelet sub-
bands using MRFs (Lyu and Simoncelli, 2007). While
such a modeling of the dependencies between wavelet
coefficients bears similarities to the FoE model, these
wavelet approaches do not directly yield generic image
priors due to the fact that they model the coefficients of
an overcomplete wavelet transform. Their applicability
has thus mostly been restricted to specific applications,
such as denoising.

2.6 Products of Experts

Products of Experts (PoE) (Hinton, 1999) have also
been used to model image patches (Welling et al., 2003;
Teh et al., 2003) overcoming some of the limitations of
the complete (square) ICA model in (6). Since the ideas
behind this model are very important for understand-
ing the model we propose here, we will discuss them
in some detail. The idea behind the PoE framework is
to model high-dimensional probability distributions by
taking the product of several expert distributions, where
each expert works on a low-dimensional subspace that
is relatively easy to model. Usually, experts are defined
on linear one-dimensional subspaces or directions (corre-
sponding to the basis vectors in sparse coding models).
Projection onto these directions corresponds to filter-
ing the image patch with the basis vector, Ji. Based
on the observation that responses of linear filters ap-
plied to natural images typically exhibit highly kurtotic
marginal distributions that resemble a Student-t distri-
bution, Teh et al. (2003) propose the use of Student-t
experts. The full Product of t-distribution (PoT) model
can be written as

p(x; Θ) =
1

Z(Θ)

N∏
i=1

φ(JT
i x; αi), (7)

where Θ = {θ1, . . . , θN} with θi = {αi,Ji} are the pa-
rameters to be learned. The experts φ(·; ·) have the
form

φ(JT
i x; αi) =

(
1 +

1
2

(JT
i x)2

)−αi

, (8)
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Figure 4: Selection of the 5 × 5 filters obtained by
training the Product-of-Experts model on a generic im-
age database.

and Z(Θ) is the normalizing, or partition, function. It is
important to note that x here is now an image patch and
not the full image. The αi are assumed to be positive,
which is needed to make the φ proper distributions, but
note that the experts themselves are not assumed to be
normalized. It will later be convenient to rewrite the
probability density in Gibbs form as

p(x; Θ) =
1

Z(Θ)
exp(−EPoE(x,Θ)) (9)

with

EPoE(x,Θ) = −
N∑
i=1

log φ(JT
i x; αi). (10)

One important property of this model is that all param-
eters can be learned from training data, i. e., both the
αi and the image filters Ji. The advantage of the PoE
model over the ICA model is that the number of experts,
N , is not necessarily equal to the number of dimen-
sions, n (i. e., pixels). The PoE model permits fewer ex-
perts than dimensions (under-complete), equally many
(square or complete), or more experts than dimensions
(over-complete). The over-complete case is particularly
interesting because it allows dependencies between fil-
ters to be modeled and consequently is more expressive
than ICA.

Fig. 4 shows a selection of the 24 filters obtained by
training this PoE model on 5× 5 image patches. Train-
ing was done on the image data as described in Sec-
tion 3.4 using the learning algorithm described by Teh
et al. (2003). The filters learned by this model are simi-
lar to those obtained using a non-parametric ICA tech-
nique or standard sparse coding approaches. Here the
shape of the t-distribution has the effect of a sparse-
ness prior. It is possible to train models that are several
times over-complete (Olshausen and Field, 1997; Teh
et al., 2003); the characteristics of the filters remain the
same.

Despite the fact that the PoT models small image
patches rather than defining a prior model over an en-
tire image, Welling et al. (2003) suggest an algorithm
that uses the filters to denoise images of arbitrary size.
The resulting algorithm, however, does not easily gener-
alize to other image restoration problems such as image
inpainting. Our focus here is not on any specific appli-
cation such as denoising, but rather on finding a good

general purpose framework for priors in low-level vision.
We argue that to that end it is important to model whole
images and not just small patches.

3 Fields of Experts

3.1 Basic model

To overcome the limitations of pairwise MRFs and
patch-based models we define a high-order Markov ran-
dom field for entire images x ∈ RL×M using a neighbor-
hood system that connects all nodes in an m×m square
region (cf. Geman et al., 1992; Tjelmeland and Besag,
1998; Zhu et al., 1998). This is done for all overlapping
m×m regions of x, which now denotes an entire image
rather than a small image patch. Every such neighbor-
hood centered on a node (pixel) k = 1, . . . ,K defines a
maximal clique x(k) in the graph. Without loss of gen-
erality we usually assume that the maximal cliques in
the MRF are square pixel patches of a fixed size. Other,
non-square, neighborhoods can be used (cf. Geman and
Reynolds, 1992), and will be discussed further in Sec-
tion 5.3.

We propose to represent the MRF potentials as a
Product of Experts (Hinton, 1999) with the same ba-
sic form as in Eq. (7). This means that the potentials
are defined with a set of expert functions that model
filter responses to a bank of linear filters. This global
prior for low-level vision is a Markov random field of
“experts”, or more concisely a Field of Experts (FoE).
More formally, Eq. (7) is used to define the potential
function (written as factor):

f(x(k)) = fPoE(x(k); Θ) =
N∏
i=1

φ(JT
i x(k); αi). (11)

Each Ji is a linear filter that defines the direction
(in the vector space of the pixel values in x(k)) that
the corresponding expert φ(·; ·) is modeling, and αi is
its corresponding (set of) expert parameter(s). Θ =
{Ji,αi | i = 1, . . . , N} is the set of all model parame-
ters. The number of experts and associated filters, N ,
is not prescribed in a particular way; we can choose it
based on criteria such as the quality of the model and
computational expense (see also Section 5.3). Since each
factor can be unnormalized, we neglect the normaliza-
tion component of Eq. (7) for simplicity. Note that we
assume in this paper that the image x is a continuous-
valued random vector; discrete-valued spatial data can
be dealt with in similar ways (Stewart et al., 2008).

Overall, the Field-of-Experts model is thus defined as

pFoE(x; Θ) =
1

Z(Θ)

K∏
k=1

N∏
i=1

φ(JT
i x(k); αi). (12)

All components retain their definitions from above. It
is very important to note here that this definition does
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not imply that we take a trained PoE model with fixed
parameters Θ and use it directly to model the poten-
tial function. This would be incorrect, because the
PoE model described in Section 2.6 was trained on in-
dependent patches. In case of the FoE, the pixel re-
gions x(k) that correspond to the maximal cliques are
overlapping and thus not independent. Instead, we use
the untrained PoE model to define the potentials, and
learn the parameters Θ in the context of the full MRF
model. What distinguishes this model from that of Teh
et al. (2003) is that it explicitly models the overlap of
image patches and the resulting statistical dependence;
the filters Ji, as well as the expert parameters αi must
account for this dependence (to the extent they can).
It is also important to note that the FoE parameters
Θ = {Ji,αi | i = 1, . . . , N} are shared between all max-
imal cliques and their associated factors. This keeps
the number of parameters moderate, because it only de-
pends on the size of the maximal cliques and the number
of experts, but not on the size of the image itself. Be-
yond that, the model applies to images of an arbitrary
size and is translation invariant because of the homo-
geneity of the potential functions. This means that the
FoE model can be thought of as a translation-invariant
PoE model.

Comparing the FoE to the FRAME model of Zhu
et al. (1998), we should note that while the models
look similar (both are high-order MRF models with “ex-
perts” modeling linear filter responses), there are impor-
tant differences. While the FRAME model allows learn-
ing some of the parameters of the potential functions
from data, the candidate set of filters used to define the
potentials is chosen by hand. In the model developed
here, we learn the filters alongside the other parameters;
to enable that, our expert functions are parametric and
thus less flexible.

Similar to the PoE (at least in its overcomplete form)
(Teh et al., 2003) and to most Markov random field
models (Li, 2001), computing the partition function
Z(Θ) of the FoE is generally intractable. One impor-
tant fact to note is that the partition function depends
on the parameters, Θ, of our model. Nevertheless, most
inference algorithms, such as the ones discussed in Sec-
tion 3.5, do not require this normalization term to be
known. During learning, on the other hand, we do need
to take the normalization term into account, as we will
see shortly.

We should also note that the FoE model has cer-
tain similarities to convolutional neural networks (Ning
et al., 2005). Both types of models apply banks of lin-
ear filters to whole images in a convolutional fashion
and model the filter responses using a non-linear func-
tion. A crucial difference is that convolutional networks
are typically trained discriminatively in the context of
a specific application, whereas the probabilistic nature
of the FoE allows us to learn a generic prior that can be

directly used in different applications.
We will frequently work with the log of the FoE

model, and it is thus convenient to rewrite the model
as

pFoE(x; Θ) =
1

Z(Θ)
exp {−EFoE(x; Θ)}

=
1

Z(Θ)
exp

{
K∑
k=1

N∑
i=1

ψ(JT
i x(k); αi)

}
,

(13)

where log-experts are defined as ψ(·; αi) = log φ(·; αi).

3.2 The experts

To make this general framework more specific, we have
to choose appropriate expert functions φ(y; α); y here
stands for the response to one of the linear filters. Sim-
ilar to the PoE model, we have substantial freedom in
doing so. The important criteria for choosing experts
from a mathematical point of view are that the expert
and its log are continuous and differentiable with respect
to y and α; we will rely on these criteria during learning
and inference. From a modeling perspective, we want
to choose experts that in the context of the full model
give rise to statistical properties that resemble the data
we want to model. As mentioned above, natural images
and other scene properties have heavy-tailed marginal
distributions, which motivates the use of heavy-tailed,
highly kurtotic experts.

There are two experts that we consider here: (1) The
very heavy-tailed Student t-distribution as it has been
used in the PoE framework for modeling image patches
(Teh et al., 2003) (cf. Eq. (8)). (2) A less heavy-tailed
expert that is loosely based on the L1 norm, which has
been successfully applied to a number of problems in
image restoration (e. g., Donoho et al., 2006). Since the
L1 norm is not differentiable, we employ the “smooth”
penalty function proposed by Charbonnier et al. (1997),
which leads to the following expert:

φC(y; α, β) = e−α
√
β+y2

. (14)

We fix the offset β to 1, but because y can be arbi-
trarily scaled through the filter norms, this incurs no
loss of generality. One aspect to note is that the Char-
bonnier expert is convex (more precisely its energy is
convex). Consequently, FoE models with Charbonnier
experts have a convex energy.

Later on, we will require the logarithm of the expert
functions, as well as the partial derivatives of the log
w. r. t. α and y. Since none of these are hard to derive,
we omit the details for brevity.

3.3 Contrastive divergence learning

The parameters, θi ∈ Θ, which include the expert pa-
rameters αi and the elements of the filters Ji, can
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be learned from a set of D training images X =
{x(1), . . . ,x(D)}, like those in Figure 5, by maximizing
its likelihood. Maximizing the likelihood of a training
set of images for the PoE and the FoE model is equiva-
lent to minimizing the Kullback-Leibler divergence be-
tween the model and the data distribution, and so guar-
antees that the model distribution is as close to the data
distribution as possible under the model. Since there is
no closed form solution for the ML parameters, we per-
form a gradient ascent on the log-likelihood. Taking the
partial derivative of the log-likelihood with respect to a
parameter θi leads to the parameter update

δθi = η

[〈
∂EFoE

∂θi

〉
p

−
〈
∂EFoE

∂θi

〉
X

]
, (15)

where η is a user-defined learning rate, 〈·〉X denotes
the average over the training data X, and 〈·〉p the ex-
pectation value with respect to the model distribution
p(x; Θ). While the average over the training data is easy
to compute, there is no general closed form solution for
the expectation over the model distribution. However,
it can be computed approximately by repeatedly draw-
ing samples from p(x; Θ) using Markov chain Monte
Carlo (MCMC) sampling. In our implementation, we
use a hybrid Monte Carlo (HMC) sampler (Neal, 1993),
which is more efficient than many standard sampling
techniques such as Metropolis sampling. The advan-
tage of the HMC sampler stems from the fact that it
uses the gradient of the log-density to explore the space
more effectively.

Despite using efficient MCMC sampling strategies,
training such a model in this way is still not very prac-
tical, because it may take a very long time until the
Markov chain approximately converges. Instead of run-
ning the Markov chain until convergence we use the idea
of contrastive divergence (Hinton, 2002) to initialize the
sampler at the data points and only run it for a small,
fixed number of steps. If we denote the data distribu-
tion as p0 and the distribution after j MCMC iterations
as pj , the contrastive divergence parameter update is
written as

δθi = η

[〈
∂EFoE

∂θi

〉
pj

−
〈
∂EFoE

∂θi

〉
p0

]
. (16)

The intuition here is that running the MCMC sampler
for just a few iterations starting from the data distri-
bution will draw the samples closer to the target dis-
tribution, which is enough to estimate the parameter
updates. Hinton (2002) justifies this more formally and
shows that contrastive divergence learning is typically
a good approximation to a maximum likelihood estima-
tion of the parameters.

Figure 5: Subset of the images used for training. The
training database has images of animals, landscapes,
people, architecture, etc.

3.4 Implementation details

In order to correctly capture the spatial dependencies
of neighboring cliques (or equivalently the overlapping
image patches), the size of the images in the training
data set should be substantially larger than the clique
size. On the other hand, large images would make the
required MCMC sampling inefficient. As a trade-off, we
train on image regions that have 3 to 5 times the width
and height of the maximal cliques; e. g., in case of 5× 5
cliques we train on 15 × 15 images. The training data
contains 20000 image regions randomly cropped from
the images of the Berkeley Segmentation Benchmark
(Martin et al., 2001). The color images were converted
to the YCbCr color space, from which we obtained gray
scale versions by ignoring the chromatic channels Cr
and Cb. While we do not explore modeling color im-
ages here, the FoE has been applied to color images as
well. McAuley et al. (2006) describe an extension to
RGB images, in which the cliques and filters are sim-
ply extended to the third dimension (corresponding to
the color channels). Even though the authors did not
use the full learning approach proposed here, they still
obtained encouraging color denoising results.

Instead of using the entire dataset at each iteration
of the contrastive divergence procedure, we split the
data into “mini batches” of 200 images each, and used
only the data from one batch at each iteration. This
so-called stochastic gradient ascent procedure (Bottou,
2004) sped up learning considerably. In most of our ex-
periments we used 5000 stochastic gradient iterations,
each performing a single contrastive divergence step
(i. e., j = 1) with a learning rate of η = 0.01. The con-
trastive divergence step relied on hybrid Monte Carlo
sampling using 30 leaps; the leap size was adjusted au-
tomatically, so that the acceptance rate was near 90%.
In our experiments we found the results were not very
sensitive to the exact values of these parameters.

Due to the necessary Monte Carlo sampling, the pa-
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rameter updates are stochastic and thus exhibit a cer-
tain degree of variation due to sampling. To stabilize the
learning procedure, we introduce a momentum term as
suggested by Teh et al. (2003); each parameter update
is a weighted sum of the previous update (weight 0.9)
and the intended update (weight 0.1) as determined by
the current samples. The stochastic character of the
updates also makes it difficult to establish automated
convergence criteria. We thus manually monitor con-
vergence. The learning algorithm can furthermore be
stabilized by ensuring that the expert parameters αi
are positive. Positive expert parameters are required to
make each expert have a proper probability density, but
we should note that due to the “overcompleteness” of
the FoE model, not all the αi have to be positive for the
FoE to represent a proper probability density. In most
of our experiments, we ensure positivity of the expert
parameters by updating their logarithm.

As we will discuss in some more detail alongside the
experiments in Section 5.3, we investigated representing
the filter vectors in 3 different bases. In other terms, in-
stead of learning the filters J directly, we represented
the filters as J = ATJ̃, where A is the basis in which
the filters are defined, and learn the basis representation
J̃ using contrastive divergence. It is important to note
that this does not change the learning objective in any
way, but due to the fact that we use a local stochas-
tic learning rule, it may still lead to different learned
parameters. For most of our experiments we use an
inverse whitening transformation as the basis (see Sec-
tion 5.3.1). Furthermore, we also make the model in-
variant to global changes in gray level by removing the
basis vector that represents uniform patches.

Fig. 6 shows the filters learned by training a FoE
model with 5× 5 pixel cliques, 24 filters, and Student-t
experts. These filters respond to various edge and tex-
ture features at multiple orientations and scales and,
as demonstrated below, capture important structural
properties of images. They appear to lack, however,
the clearly interpretable structure of the filters learned
using the standard PoE model (cf. Fig. 4). We conjec-
ture that this results from the filters having to account
for the statistical dependency of the image structure in
overlapping patches, and show in Section 5.3 that these
somewhat unusual filters are important for application
performance.

Despite the stochastic gradient procedure and the use
of efficient sampling techniques, learning is still compu-
tationally intensive. Training a 3×3 model with 8 filters
on 15×15 patches takes 8 CPU hours on a single PC (In-
tel Pentium D, 3.2 GHz). Training a 5 × 5 model with
24 filters requires roughly 24 CPU hours. We should
note though that training occurs offline ahead of appli-
cation time, and is done only once per kind of data to
be modeled.

0.162 0.156 0.155 0.148 0.113

0.112 0.102 0.100 0.089 0.088

0.085 0.050 0.050 0.046 0.038

0.034 0.026 0.020 0.019 0.013

0.013 0.012 0.011 0.009

Figure 6: 5× 5 filters obtained by training the Field-of-
Experts model with Student-t experts on a generic im-
age database. Each filter is shown with the correspond-
ing αi, which can be viewed as weights multiplying the
log experts in the energy formulation of the model.

3.5 Inference

There are a number of methods that can be used for
probabilistic inference with the Field-of-Experts model.
In most of the applications of the model, we are inter-
ested in finding the solution that has the largest pos-
terior probability (MAP estimation). As already dis-
cussed in Section 2.3 in the context of general MRF
models, inference with FoEs will almost necessarily have
to be approximate, not only because of the loopy graph
structure, but also because of the high dimensionality of
images, and the large state space (large number of gray
levels, even when discretized). In principle, sampling
techniques, such as Gibbs sampling, can be employed
in conjunction with the FoE model. Due to the cost of
sampling the posterior model, they are computationally
very intensive.

Recently, work on approximate inference in graphical
models has focused on belief propagation (BP) (Yedidia
et al., 2003), a message passing algorithm that typ-
ically leads to very good approximations (if it con-
verges). Efficient variants of belief propagation have
been recently applied to image restoration problems,
which were previously infeasible due to the large num-
ber of states (gray values) in images (Felzenszwalb and
Huttenlocher, 2004). For these efficient methods sim-
ple pairwise Markov random fields are used to model
images. In the case of the FoE model on the other
hand, applying belief propagation is unfortunately not
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straightforward, because the larger cliques cause an ex-
plosion in the state space size: A 5 × 5 FoE model,
for example, has maximal cliques with 25 variables (as
compared to just 2 in the pairwise case). Every factor
node in the factor graph representation of the MRF,
on which the BP message passing scheme is based (cf.
Yedidia et al., 2003), thus subsumes 25 pixels. Assum-
ing 256 gray levels at each pixel, each factor node has
25625 states, which makes it intractable to store the be-
liefs and messages. Some progress has been made in
applying belief propagation to high-order MRF models
including FoEs (Lan et al., 2006; Potetz, 2007). So far,
this has been limited in practice to cliques of 2×2 pixels.

In our experiments in Sections 4 and 5, we instead
use very simple gradient-based optimization techniques
for approximate MAP inference. They find a local op-
timum, but require much less computational power and
memory than BP. To perform the optimization, we re-
quire the gradient of the log-density with respect to the
image itself. Following Zhu and Mumford (1997), we
can express the gradient using simple convolution oper-
ations (see (Roth, 2007) for details):

∇x log pFoE(x; Θ) =
N∑
i=1

J(i)
− ∗ψ

′(J(i) ∗ x; αi). (17)

Here J(i) is a convolution filter corresponding to Ji, J(i)
−

is a convolution filter that has been obtained by mir-
roring J(i) around its center, and ψ′ is the derivative
of the log-expert. In contrast to the FRAME model
(Zhu et al., 1998), this derivative can be computed with-
out making approximations to the model due to the
parametric nature of the experts. Because the over-
all expression is based on convolutions, it is very simple
and efficient to implement. Moreover, these gradient-
based techniques bear interesting connections to non-
linear diffusion and many related PDE methods (We-
ickert, 1997).

4 Example Applications

To illustrate the capabilities of the Field-of-Experts
model as a prior model of images, we demonstrate its
use in experiments on image denoising and image in-
painting.

4.1 Image denoising

Image denoising is a widely studied problem. Some
of the most accurate techniques are based on overcom-
plete wavelet decompositions and model the joint statis-
tics of several neighboring wavelet coefficients (Portilla
et al., 2003; Gehler and Welling, 2006; Lyu and Si-
moncelli, 2007). Another widely used category of tech-
niques is based on partial differential equations or varia-
tional approaches and includes nonlinear diffusion (We-

ickert, 1997). Recently, a number of authors have pro-
posed denoising algorithms based on non-local averaging
(Buades et al., 2004; Kervrann and Boulanger, 2006). A
more thorough review of denoising techniques is beyond
the scope of this paper, but is given in the mentioned
references.

In contrast to a number of the above schemes, we
focus on a Bayesian formulation with a probabilistic
prior model of the spatial properties of images. As
in a general Bayesian image restoration framework, our
goal is to find the true image x given an observed im-
age y by maximizing the posterior probability p(x|y) ∝
p(y|x) ·p(x). To simplify the evaluation, we assume ho-
mogeneous, pixelwise independent Gaussian noise, as is
common in the denoising literature (for an example of
FoE denoising with real noise and more realistic noise
models see (Moldovan et al., 2006)). Accordingly, we
write the likelihood as

p(y|x) ∝
L·M∏
k=1

exp
(
− 1

2σ2
(yk − xk)2

)
, (18)

where k ranges over the pixels in the image. Fur-
thermore, we use the FoE model as the prior, i. e.,
p(x) = pFoE(x).

To emphasize the practicality of the proposed model,
we performed a simple gradient-based local optimization
of the logarithm of the posterior probability. Together
with an optional weight ω for the log-prior, we can write
the gradient of the log-posterior as follows:

∇x log p(x|y) = ω·

[
N∑
i=1

J(i)
− ∗ψ

′(J(i) ∗ x; αi)

]
+

1
σ2

(y−x).

(19)
If we performed a standard gradient ascent based on
this expression, we could directly relate the algorithm to
nonlinear diffusion methods (Zhu and Mumford, 1997).
In particular, if we had only two filters (x- and y-
derivative filters) then the gradient ascent procedure
would be very similar to standard nonlinear diffusion
filtering with a data term. Instead of standard gradient
ascent, we use a conjugate gradient method for opti-
mization in our experiments based on the implementa-
tion of Rasmussen (2006). The optional weight ω can
be used to adjust the strength of the prior compared to
the likelihood. If both prior and likelihood were very
accurately modeled and if we could find the global op-
timum of the denoising objective, such a weight would
not be necessary. In practice, we learn the value of this
parameter on a validation set, which can substantially
improve performance. To make the interpretation eas-
ier, we parametrized this weight as ω(λ) = λ

1−λ , where
λ ∈ (0, 1).

Even though denoising proceeds in very similar ways
to nonlinear diffusion, our prior model uses many more
filters. The key advantage of the FoE model over stan-
dard diffusion techniques is that it tells us how to build
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richer prior models that combine more filters over larger
neighborhoods in a principled way.

4.2 Image inpainting

In image inpainting (Bertalmı́o et al., 2000), the goal
is to remove certain parts of an image, for example
scratches on a photograph or unwanted occluding ob-
jects, without disturbing the overall visual appearance.
Typically, the user supplies a mask, M, of pixels that
are to be filled in by the algorithm.

To define an appropriate likelihood, we assume that
the masked pixels can take on any gray value with
equal probability, and simply make the likelihood uni-
form there. Pixels that are not masked should not be
modified at all; we can model this using a Dirac delta
centered on the pixel value to be preserved. We thus
write the likelihood for image inpainting as

p(y|x) =
L·M∏
k=1

p(yk|xk) ∝
L·M∏
k=1

{
1, k ∈M
δ(yk − xk), k 6∈ M .

(20)
To perform inpainting, we use a simple gradient as-

cent procedure, in which we leave the unmasked pix-
els untouched, while modifying the masked pixels only
based on the FoE prior. We can do this by defining a
mask matrix M that sets the gradient to zero for all
pixels outside of the masked region M:

x(t+1) = x(t) + ηM

[
N∑
i=1

J−i ∗ψ
′(Ji ∗ x(t); αi)

]
. (21)

Here, η is the step size of the gradient ascent procedure.
In contrast to other algorithms, we make no explicit use
of the local image gradient direction; local structure in-
formation only comes from the responses to the learned
filter bank. The filter bank as well as the αi are the
same as in the denoising experiments.

Levin et al. (2003) have a similar motivation in that
they exploit learned models of image statistics for in-
painting. Their approach however relies on a small num-
ber of hand-selected features, which are used to train
the model on the image to be inpainted. We instead
use a generic prior and combine information from many
automatically determined features.

One important limitation of our approach is that it
cannot fill in texture, but only “shading”. Other tech-
niques have been developed that can also fill in textured
areas by synthesizing or copying appropriate textures
(e. g., Criminisi et al., 2004).

5 Experimental Evaluation

Using the FoE model trained as in Section 3 (5 × 5
cliques with 24 filters and Student-t experts) we per-
formed a number of denoising experiments. The ex-

periments conducted here assume a known noise distri-
bution, which allows us to focus on the effects of the
prior alone. The extension of our exposition to “blind”
denoising, for example using robust data terms or auto-
matic stopping criteria, will remain the subject of future
work. The evaluation of the denoising performance re-
lies on two measurements: (1) The peak signal-to-noise
ratio (PSNR) defined as

PSNR = 20 log10

255
σe

, (22)

where σe is the standard deviation of the pixelwise im-
age error. PSNR is given in decibels (dB); a reduction
of the noise by a factor of 2 leads to a PSNR increase of
about 6dB. The PSNR is a very widely used evaluation
criterion for denoising, but has the limitation that it
does not fully reflect the perceptual quality of an image
to the human observer. (2) Since the goal of most im-
age restoration problems is to optimize perceived image
quality, we also employ the structural similarity index
(SSIM) (Wang et al., 2004). SSIM provides a percep-
tually more plausible image error measure, which has
been verified in psychophysical experiments. SSIM val-
ues range between 0 and 1, where 1 is a perfect restora-
tion.

We performed denoising using at most 5000 iterations
of conjugate gradient. In essentially all of the cases,
the ascent terminated in fewer than 5000 iterations be-
cause a local optimum had been reached. Experimen-
tally, we found that the best results were obtained with
an additional weight as introduced above, which fur-
thermore depended on the amount of noise added. We
determined the appropriate λ trade-off parameter for
denoising using an automatic training procedure that
was carried out for each noise standard deviation that
we used. We manually picked a representative set of 10
images from the training database, cropped them ran-
domly to 200×200 pixels, and added synthetic Gaussian
noise of the appropriate standard deviation. Each ar-
tificially corrupted image was then denoised using the
conjugate gradient method, and the optimal λ parame-
ter with respect to the PSNR was determined in a two
stage process: First, we denoised the training set us-
ing all λ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. We
then fit a cubic spline through the PSNR values for
these λ values and found the value λ̂ that maximized
the PSNR. In the second stage, the search was refined
to λ ∈ λ̂+{−0.06, −0.04,−0.02, 0, 0.02, 0.04, 0.06}. The
PSNR values for all λ values were again fit with a cu-
bic spline, and the value λ∗ that maximized the PSNR
across all 10 training images was chosen.

Results were obtained for two sets of test images. The
first set consisted of images commonly used in denoising
experiments (Lena, Boats, etc.; obtained from (Portilla,
2006a)). Table 1 provides PSNR and SSIM values for
this set and various levels of additive Gaussian noise (cf.
Portilla et al., 2003). Portilla et al. (2003) report some
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Table 1: Peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) for images (from Portilla, 2006a)
denoised with a FoE prior.

PSNR in dB SSIM (Wang et al., 2004)
σ Noisy Lena Barbara Boats House Peppers Noisy Lena Barbara Boats House Peppers
1 48.13 47.84 47.86 47.69 48.32 47.81 0.993 0.991 0.994 0.994 0.993 0.993
2 42.11 42.92 42.92 42.28 44.01 42.96 0.974 0.974 0.983 0.978 0.982 0.981
5 34.15 38.12 37.19 36.27 38.23 37.63 0.867 0.936 0.957 0.915 0.930 0.950

10 28.13 35.04 32.83 33.05 35.06 34.28 0.661 0.898 0.918 0.860 0.880 0.923
15 24.61 33.27 30.22 31.22 33.48 32.03 0.509 0.876 0.884 0.825 0.866 0.901
20 22.11 31.92 28.32 29.85 32.17 30.58 0.405 0.854 0.841 0.788 0.850 0.879
25 20.17 30.82 27.04 28.72 31.11 29.20 0.332 0.834 0.805 0.754 0.836 0.853
50 14.15 26.49 23.15 24.53 26.74 24.52 0.159 0.741 0.622 0.614 0.763 0.735
75 10.63 24.13 21.36 22.48 24.13 21.68 0.096 0.678 0.536 0.537 0.692 0.648

100 8.13 21.87 19.77 20.80 21.66 19.60 0.066 0.615 0.471 0.473 0.622 0.568

of the most accurate results on these test images and
their method is tuned to perform well on this dataset.
We obtained signal-to-noise ratios that were close to
their results (mostly within 0.5dB), and in some cases
even surpassed their results (by about 0.3dB). Note that
their wavelet model was actually trained on the noisy
version of the image to be denoised. To the best of
our knowledge, no other generic Markov random field
approach has so far been able to closely compete with
such wavelet-based methods on this dataset. Also note
that the prior was not trained on, or tuned to these
examples.

5.1 Denoising experiments

To test more varied and realistic images we denoised a
second test set consisting of 68 images from the sepa-
rate test section of the Berkeley segmentation dataset
(Martin et al., 2001). Figure 9(a) shows example images
from this test set. For various noise levels we denoised
the images using the FoE model, the method of Portilla
et al. (2003) (using the software and default settings
provided by Portilla (2006b)), simple Wiener filtering
(using MATLAB’s wiener2 with a 5× 5 window), and
a standard nonlinear diffusion scheme (Weickert, 1997)
with a data term. For this last method, the diffusivity
was modeled using a robust Huber function. This algo-
rithm can be viewed as gradient ascent inference for an
MRF model using only first derivative filters. For this
standard nonlinear diffusion scheme, a λ weight for the
prior term was trained as in the FoE case and the stop-
ping time was selected to produce the optimal denoising
result (in terms of PSNR) giving the best case result.
Note that in case of the FoE denoising was not stopped
at the point of optimal PSNR, but rather automatically
at convergence. Figure 7 shows the performance of these
methods for one of the test images. Visually and quan-
titatively, the FoE model outperformed both Wiener fil-
tering and nonlinear diffusion and nearly matched the
performance of the specialized wavelet denoising tech-
nique. FoE denoising results for other images from this
set are shown in Figure 8.

Figure 9 shows a performance comparison of the vari-
ous denoising techniques over all 68 images from the test
set at various noise levels. The FoE model consistently
outperformed both Wiener filtering and standard non-
linear diffusion in terms of PSNR, while closely match-
ing the performance of the current state of the art in
image denoising (Portilla et al., 2003). A signed rank
test showed that the performance differences between
the FoE and the other methods were mostly statisti-
cally significant at a 95% confidence level (indicated by
an asterisk on the respective bar). In terms of SSIM, the
relative performance was very similar to that measured
using the PSNR, with two notable exceptions: (1) When
looking at the SSIM, the FoE performed slightly worse
than nonlinear diffusion for two of the four noise levels,
but the performance difference was not statistically sig-
nificant in these cases. In the two cases where the FoE
outperformed standard diffusion, the difference was sig-
nificant, on the other hand. We should also keep in
mind that nonlinear diffusion was helped substantially
by the fact that it was stopped at the optimal PSNR,
which is not possible in real applications. (2) On one
of the noise levels, the FoE performed on par with the
method of Portilla et al. (2003) (i. e., there was no sig-
nificant performance difference). Overall, this means
that in the majority of the cases the FoE performed
significantly better than Wiener filtering and nonlinear
diffusion, but also that the Wavelet method was still
significantly better than the FoE (at a 95% confidence
level). In making this comparison, it is important to
keep in mind that Fields of Experts are generic image
models with wide range of applications well beyond just
image denoising.

5.2 Inpainting experiments

Figure 10 shows the result of applying our inpainting
scheme in a text removal application in which the mask
corresponds to all the pixels that were occluded by the
text. The color image was converted to the YCbCr color
model, and the algorithm was independently applied to
all 3 channels. Since the prior was trained only on gray
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(a) (b) (c) (d) (e) (f)

Figure 7: Denoising with a Field of Experts: Full image (top) and detail (bottom). (a) Original noiseless image.
(b) Image with additive Gaussian noise (σ = 25); PSNR = 20.29dB. (c) Denoised image using a Field of Experts;
PSNR = 28.72dB. (d) Denoised image using the approach of Portilla et al. (2003); PSNR = 28.90dB. (e) Denoised
image using non-local means (Buades et al., 2004); PSNR = 28.21dB. (f) Denoised image using standard non-linear
diffusion; PSNR = 27.18dB.

Figure 8: Other Field of Experts denoising results. Noisy input (left) and denoised image (right).
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(a) Subset of the images used to evaluate the FoE
model.
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Figure 9: Denoising results on Berkeley database. Example images and denoising results for the following models
(from left to right): Wiener filter, standard nonlinear diffusion, FoE model, and the two variants from (Portilla,
2006b). The horizontal axes denote the amount of noise added to the images (PSNR in dB). The error bars
correspond to one standard deviation. The yellow asterisks denote cases where the performance differs significantly
from that of the FoE model.

(a) (b) (c)

Figure 10: Inpainting with a Field of Experts. (a) Original image with overlaid text. (b) Inpainting result
from diffusion algorithm using the FoE prior. (c) Close-up comparison between a (left), b (middle), and the results
of Bertalmı́o et al. (2000) (right).

scale images, this is obviously suboptimal, but neverthe-
less gives good results. In order to speed up convergence
we ran 5000 iterations of Eq. (21) with η = 10. Since
such a large step size may lead to some numerical insta-
bilities, we followed this with 250 more iterations with
η = 0.01.

The inpainted result is very similar to the original
and qualitatively superior to that by Bertalmı́o et al.
(2000). Quantitatively, our method improved the PSNR
by about 1.5dB (29.06dB compared to 27.56dB); the
SSIM showed a sizable improvement as well (0.9371
compared to 0.9167; where higher is better). Note that
to facilitate quantitative comparison with the results of
Bertalmı́o et al. (2000), we measured these results using
a GIF version of the input image that was used there3.
To get a better idea of the performance of the FoE on
high-quality input, we also measured results on a JPEG
version of the same image. The PSNR was 32.22dB in
that case and the SSIM was 0.9736. The advantage of
the FoE prior can be seen in the continuity of edges
which is better preserved compared with (Bertalmı́o

3Personal communication with Marcelo Bertalmı́o.

et al., 2000). Figure 10(c) also shows a few detail re-
gions comparing our method (center) with (Bertalmı́o
et al., 2000) (right). We can see, for example, that the
axle and the wheels of the carriage have been restored
very well. Similar qualitative differences can be seen in
many parts of the restored image.

Figure 11 shows various image inpainting results for
test images that were corrupted using synthetic masks.
An application of this inpainting algorithm to a problem
of scratch removal in a photograph is shown in Figure 1.
Furthermore, Gisy (2005) conducted a detailed study of
Fields of Experts in conjunction with image inpainting.
The reader is referred to his work for more detailed in-
painting experiments.

5.3 Quantitative evaluation of FoE pa-
rameters

To evaluate the influence of the various parameters and
design decisions on the quality of the learned FoE mod-
els, we performed a series of experiments. As an ex-
ample, we varied the size or the number of the filters.
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Figure 11: Other image inpainting results. The top
row show the masked images; the red areas are filled in
by the algorithm. The bottom row show the correspond-
ing restored images that were obtained using a 5×5 FoE
model with 24 filters.

Unfortunately, we cannot directly compare the good-
ness of various models by considering their likelihood,
because it is intractable to compute the partition func-
tion for FoE models (note, however, that it may be pos-
sible to use likelihood bounds such as the ones derived
by Weiss and Freeman (2007)). Instead, we evaluated
FoE models in the context of image restoration applica-
tions, mostly using image denoising with the same basic
setup as in Section 5.1. Note also that the performance
numbers presented here are not fully indicative of the
quality of the FoE model itself, but instead describe the
performance of the model in the context of a particu-
lar application and a particular approximate inference
scheme.

The general setup of the experiments was the follow-
ing: The models were trained on 20000 image patches of
15× 15 pixels as described in Section 3.4, except where
indicated otherwise. All models suppressed the mean in-
tensity either through choosing an appropriate basis for
the filters, or by subtracting the mean from the data and
the filters. Except for explicit special cases, the models
were initialized with αi = 0.01, and a random set of fil-
ters drawn i. i. d. from a unit covariance Gaussian (pos-
sibly in a transformed space, as indicated alongside the
experiments). If not indicated otherwise, we ran con-
trastive divergence with one step, where each step was
performed using hybrid Monte-Carlo sampling with 30
leaps tuned so that the acceptance rate was around 90%.
We always performed 5000 iterations of contrastive di-
vergence with a learning rate of 0.01. As a baseline, we

used models with 3× 3 cliques and 8 filters, since those
were faster to train and also led to faster inference due
to faster convolution operations. In some of the cases,
we also considered 5× 5 cliques with 24 filters.

Once the models were trained, we determined the
appropriate λ trade-off parameter for denoising that
weighs the FoE prior against the Gaussian image like-
lihood. We used the same procedure as described in
Section 5.1.

Using the estimated weight λ∗, every model was eval-
uated on 68 images from the test portion of the Berkeley
segmentation database (Martin et al., 2001) (this is the
same set as was used in Section 5.1). We added i. i. d.
Gaussian noise with σ = 20 to every image, and subse-
quently denoised the images with the conjugate gradient
method described above.

To analyze the FoE model, we evaluated the effects of
the following aspects on performance in the respective
section:

• 5.3.1: Choice of the filter basis A.

• 5.3.2: Size and shape of the filters.

• 5.3.3: Choice of the number of filters.

• 5.3.4: Using fixed, random filters as opposed to
learning them.

• 5.3.5: Using fixed filters from patch-based models,
instead of learning them.

• 5.3.6: Choice of the expert function.

We measured the performance using the described de-
noising task and give both PSNR and SSIM results av-
eraged over all 68 test images. To reduce the influence
of the image border on the measurements, we ignore
10 pixels around the border when computing the PSNR
and SSIM.

5.3.1 Learning the filters in transformed spaces

In this first set of experiments, we evaluated how the
choice of the basis A, in which the filters Ji are defined,
affects the performance. As we discussed in Section 3.4,
defining the filters in other bases does not change the
actual learning objective. But since contrastive diver-
gence learning entails a local gradient ascent procedure,
it is susceptible to local optima, and the choice of the
filter basis may thus prove important for convergence
to a good local optimum. We used three different bases
here: (1) A basis that defines the filters in their origi-
nal space; that is AO = I. This means that every filter
coefficient in this space directly corresponds to a clique
pixel. (2) A basis based on whitening the filter space
defined as AW = Λ

1
2 UT, where UΛUT is an eigende-

composition of the covariance matrix Σ of natural im-
age patches that have the same size as the filters. If we
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chose the matrix of all transformed filters J̃ as the iden-
tity matrix, then the filters J = AT

W J̃ in the original
space are just the principal components scaled accord-
ing to their standard deviation. This means that the
low-frequency principal components have a larger norm
than the high-frequency ones, which makes it easier to
find low-frequency filters. (3) A basis based on an “in-
verse” whitening, defined as AI = Λ−

1
2 UT. If we chose

the transformed filters J̃ as the identity matrix in this
case, then the filters J = AT

I J̃ in the original space are
also the principal components, but are now scaled ac-
cording to their inverse standard deviation. In this case
the high-frequency principal components have a larger
norm than the low-frequency components, which makes
it easier to find high-frequency filters.

When training with these three different bases we
found filters with high-frequency, and seemingly non-
regular structures in all three cases. Figure 6 shows
the filters obtained when training with the “inverse”
whitening basis AI , which compared to the filters ob-
tained with the other bases (see (Roth, 2007) for details)
are the most localized. While the filters exhibit some
qualitative differences depending on the choice of ba-
sis, there are even stronger quantitative differences. As
Table 2 shows, the denoising performance deteriorated
when using the whitened basis as opposed to training
in the original space. Using “inverse” whitening, on the
other hand, led to quantitatively superior results. These
findings were consistent for models with 3×3 cliques and
5 × 5 cliques. As we have seen, whitening the space in
which training is performed can impact the nature of the
recovered filters and one must be careful in evaluating
the resulting filters with respect to any such processing
(cf. Hinton and Teh, 2001). Furthermore, we found that
updating the logarithm of the expert parameters αi to
enforce their positivity led to better results in almost
all of the cases compared to updating the αi directly,
sometimes to significantly better results.

These quantitative findings strongly suggest that
high-frequency filters are important to achieving good
performance with FoE models in an image denoising ap-
plication. As we will see below, experiments with vari-
ous random filters led to results that are fully consistent
with this observation. Since the “inverse” whitening ba-
sis encourages high-frequency filters and consistently led

to the best quantitative results, we used it as baseline
for most of our experiments, unless indicated otherwise.
Furthermore, since updating the log of the expert pa-
rameters led to better results, we also adopted this as
part of the baseline for the remaining experiments.

5.3.2 Varying the clique size and shape

In the second set of experiments, we evaluated how the
size and the shape of the maximal cliques influenced
the performance of the Field-of-Experts model. Fig-
ure 12 shows some of the clique shapes and sizes that
were evaluated. The simplest conceivable model based
on the FoE framework is the regular pairwise Markov
random field shown in Figure 12(a), where each node
is connected to its top, bottom, left, and right neigh-
bors. Here, there are two types of maximal cliques:
pairs of nodes connected by either horizontal or vertical
edges. These can be modeled in the FoE framework by
restricting 2× 2 filters to pairs of horizontal or vertical
pixels as depicted in the figure. In Figure 12(b), we see
a more complicated non-square clique structure, where
the 4-neighborhood around a central pixel (marked red)
is fully connected. This clique shape was achieved by
forcing the filter coefficients of 3 × 3 filters to be zero
outside of the diamond shape. In Figure 12(c), we see a
simple, square 3×3 clique, where a pixel and its 8 neigh-
bors are all fully connected. We can also also have larger
diamond-shaped cliques as shown in Figure 12(d), where
the filter coefficients of 5×5 filters were forced to be zero
outside of the diamond. Finally, in Figure 12(e) we can
see square 5 × 5 cliques that were obtained once again
by fully connecting all nodes inside the square. Beyond
what is shown here, we also evaluated the performance
of models with 7×7 filters, both in the diamond-shaped
and in the square case. In each case we used the general
experimental setup as outlined above, in particular we
used “inverse” whitening for defining the filter basis.

In each of the cases, we evaluated the performance us-
ing two experiments: First, we trained and tested mod-
els with a fixed number of 8 filters. Then we trained and
tested models with p− 1 filters, where p is the number
of nodes in the maximal cliques. Since, as for all the
experiments in this section, we ignored the mean gray
value component of each clique-sized patch, this means
that there were as many experts per clique as there were

Table 2: Denoising performance of the FoE model when trained with different filter bases. The filters are trained
either in original, whitened, or “inverse” whitened coordinates (see text). In the indicated cases the log of the
expert parameters αi was updated, otherwise the αi were updated directly.

Model 3× 3, 8 filters 5× 5, 24 filters
“inverse” “inverse”

Filter basis whitened, AW original, AO whitened, AI whitened, AW original, AO whitened, AI

Update α direct log direct log direct log direct log direct log direct log

PSNR in dB 27.24 27.34 28.09 28.06 28.40 28.79 27.12 25.76 27.90 28.31 28.37 29.07
SSIM 0.757 0.759 0.784 0.778 0.794 0.813 0.773 0.665 0.782 0.792 0.800 0.819
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(a) (b) (c) (d) (e)

Figure 12: FoE clique structure for various clique shapes and sizes (illustrated by solid black outlines). (a) 2 × 1
cliques of pairwise MRF. (b) Diamond-shaped 3 × 3 clique or fully connected 4-neighborhood. (c) Square 3 × 3
clique or fully connected 8-neighborhood. (d) Diamond-shaped 5× 5 clique. (e) Square 5× 5 clique.

Table 3: Denoising performance of FoE models with various clique sizes and shapes.
Size 2× 1 3× 3 5× 5 7× 7

Shape pairwise diamond square diamond square diamond square
# of filters 1 4 8 4 8 8 12 8 24 8 24 8 48

PSNR in dB 26.58 27.81 27.90 28.63 28.79 28.81 28.88 28.80 29.07 28.78 28.98 28.74 29.04
SSIM 0.718 0.766 0.769 0.805 0.813 0.815 0.816 0.811 0.819 0.811 0.817 0.812 0.818

0.193 0.179 0.165 0.165 0.147 0.136 0.103 0.081

(a) Square 3× 3 cliques with 8 filters.

0.221 0.191 0.182 0.166 0.131 0.129

(b) Diamond-shaped 5 × 5 cliques with 12 filters (first 6
shown).

0.190 0.162 0.156 0.135 0.110

0.101 0.095 0.090 0.088 0.086

(c) Square 7× 7 cliques with 48 filters (first 10 shown).

Figure 13: Learned models with various clique sizes and
shapes. The number above each filter denotes the cor-
responding expert parameter αi.

degrees of freedom. Figure 13 shows some of the learned
models (see also Figure 6 for a 5× 5 model with square
cliques). Table 3 gives the performance measurements
from these experiments.

We can see that the pairwise model performed sub-
stantially worse than the high-order models with square
cliques. This again showed that FoEs with large cliques
are able to capture structure in natural images that
cannot be captured using pairwise MRF models alone.
In the 3 × 3 case, square cliques substantially outper-
formed diamond-shaped ones. For 5×5 and 7×7 FoEs,
diamond-shaped cliques performed on par with square

ones with few filters, but performed worse than square
ones with many filters. Models with square 3×3 cliques
and 8 filters already performed quite well, but a 5 × 5
model with 24 filters nevertheless outperformed the sim-
pler model by a considerable margin. A 7 × 7 FoE
with 48 filters was able to match the performance of the
5× 5 model with 24 filters, but did not exceed it. Inter-
estingly, the performance of models with larger cliques
(5× 5 and 7× 7) was best when many filters were used;
with only 8 filters the 3× 3 FoE performed on par. We
conclude that while cliques larger than 3 × 3 improved
performance and captured more structure of natural im-
ages, models with square 3×3 cliques already captured a
large amount of the variation in natural images, at least
of the variation that can be captured with linear projec-
tions and Student t-experts. It is conceivable that this
could be improved upon with other experts, or with ex-
perts that model nonlinear features of the clique pixels,
but explorations of this are left for future work.

5.3.3 Varying the number of filters

The next set of experiments determined the impact of
the number of filters on the denoising performance. To
that end we trained and tested 3 × 3 models with 1
through 18 filters otherwise using the baseline setup.
Figure 14 graphs the denoising performance as a func-
tion of the number of experts, measured both in terms
of PSNR and SSIM and, as usual, averaged over all
68 images from the test set. We can see that about
four to five filters were necessary to make the model
perform well, and that the performance improvements
became quite minor beyond eight filters. Nonetheless,
there were small improvements in test set performance
even for large numbers of filters, which is an important
indication that we were not overfitting the training data.
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Figure 14: Denoising performance of 3×3 models with a
varying number of filters shown in terms of PSNR (solid
black, circular markers) and SSIM (dashed blue, square
markers).

5.3.4 Using fixed, random filters

One might observe that the learned FoE filters look
somewhat “random”. In order to determine the effect
of learning the filters, we performed two kinds of exper-
iments. Here, we compared with fixed, random filters
and only learned the parameters αi and the norm of the
filters (while keeping their direction fixed). In the fol-
lowing section, we will compare with using fixed filters
that have been determined ahead of time using another
method. For the random filter experiments we worked
with three basic setups corresponding to different filter
bases: (1) We first drew filters randomly in the original
space (corresponding to AO from above) by drawing all
coefficients Ji,j of the matrix J of all filters i. i. d. from
a unit normal (i. e., Ji,j ∼ N (0, 1)). (2) In the sec-
ond case we drew filters randomly in whitened space so
that J = AT

W J̃, where J̃i,j ∼ N (0, 1). Typical random
filters obtained in this way look quite smooth, because
the low-frequency principal components are scaled up by
their (large) standard deviation. (3) In the final case we
drew filters randomly using “inverse” whitening. Here,
J = AT

I J̃, where the coefficients of the transformed fil-
ter matrix J̃ were again drawn from a unit normal. In
this case, the typical filter samples were dominated by
high-frequency structures, because the high-frequency
principal components are scaled up in this case due to
their small standard deviation. In all three cases we
tested both 3 × 3 models with 8 filters and 5 × 5 mod-
els with 24 filters. As a reminder, training here means

learning the parameters αi and the norms of the filters.
The norms of the filters were trained by only considering
the component of the filter gradient that coincides with
the fixed filter direction. This projects the filter gradi-
ent onto the manifold of matrices with fixed direction
column vectors (i. e., filters), but variable filter length.
Note that since we did not learn the filter direction in
this experiment, we did not use any form of filter basis
during training. Beyond what is reported here, we also
investigated normalizing the random filter vectors prior
to learning. Since we did not observe important perfor-
mance changes, we do not report those results here (see
(Roth, 2007) for results). Figure 15 shows portions of
the 5× 5 models for each of the 3 different filter bases.

The quantitative results shown in Table 4 once again
underline the importance of high-frequency filters for
achieving good denoising performance with Fields of Ex-
perts. Filters drawn in the whitened space performed
poorly, particularly in case of the 5 × 5 model. Fil-
ters drawn in the original space performed better, but
still not nearly as well as filters drawn in the “inverse”
whitened space, which emphasizes high-frequencies with
a certain structure. It is also interesting to note that
this space was the only one where the 5× 5 model out-
performed the corresponding 3× 3 model with random
filters. When we compare the results to those in Ta-
ble 3, we see that even with “inverse” whitening the
performance with random filters was about 1dB short
of that with learned filters. While the model gener-
ally performed well with random filters (at least with
“inverse” whitening), learning the filters substantially
improved performance.

5.3.5 Using fixed filters from patch-based mod-
els

The next set of experiments was similar to the previous
one in that we used a fixed set of filters, and only trained
the parameters αi as well as the norm of the filters. In-
stead of using randomly drawn filters, we here used fil-
ters obtained by various patch-based learning methods:
(1) First, we used filters obtained by principal compo-
nent analysis of image patches with the same size as the
cliques. (2) We then used filters obtained by indepen-
dent component analysis of image patches. In particu-
lar, we used the software of Gävert et al. (2005) using
the standard settings and extracted 8 independent com-
ponents for 3× 3 patches and 24 for 5× 5 patches. (3)

Table 4: Denoising performance of the FoE model with random filters. The filters are drawn either in original,
whitened, or “inverse” whitened coordinates (see text).

Model 3× 3, 8 filters 5× 5, 24 filters
“inverse” “inverse”

Space whitened original whitened whitened original whitened

PSNR in dB 26.61 27.28 27.80 25.70 26.57 27.99
SSIM 0.746 0.761 0.779 0.694 0.748 0.783
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Table 5: Denoising performance of the FoE model with filters determined by PCA, ICA, and PoT.
Model 3× 3, 8 filters 5× 5, 24 filters
Filters PCA ICA PoT PCA ICA PoT

PSNR in dB 27.86 28.02 28.12 28.08 28.37 28.51
SSIM 0.782 0.781 0.783 0.782 0.790 0.791

0.090 0.040 0.033 0.021 0.021

(a) Model with random filters in whitened space.

0.120 0.102 0.100 0.093 0.082

(b) Model with random filters in original space.

0.092 0.072 0.066 0.061 0.059

(c) Model with random filters in “inverse
whitened” space.

0.071 0.068 0.066 0.062 0.061

(d) Model with PCA filters.

0.085 0.077 0.077 0.068 0.065

(e) Model with ICA filters.

0.079 0.065 0.063 0.062 0.059

(f) Model with PoT filters.

Figure 15: FoE models based on various kinds of fixed
filters. Each model has 5 × 5 cliques and 24 filters.
The number above each filter denotes the corresponding
expert parameter αi. The filters are sorted according to
these expert parameters in descending order, and only
every fifth filter is shown.

Finally, we used filters obtained by training a Product-
of-Experts model with Student t-experts as described by
Teh et al. (2003). Figure 15 shows parts of the learned
5× 5 models; 24 filters were used in all three cases.

Table 5 shows the results from using these fixed fil-
ters. We found that PCA filters worked relatively
poorly, which was not a surprise given that random fil-
ters drawn in the same space also did not perform very
well. Nonetheless, the performance was better than
with random filters drawn in the same space, which

may be attributable to the fact that principal compo-
nents contain some high-frequency filters. Filters from
independent component analysis worked slightly better,
particularly in the 5 × 5 case. Finally, filters obtained
from a PoT model worked best in this comparison, but
still performed between 0.4 and 0.6dB worse than fully
learned filters. This further suggests the importance
of learning the filters in conjunction with a high-order
MRF model such as the FoE. It is furthermore very re-
vealing to closely examine the learned models shown
in Figure 15. As we can see, high-frequency filters
had the highest weight (expert parameter) in all three
cases, while smooth looking filters consistently received
smaller weights. In particular, it is interesting how in
the case of the PCA filters the sorting based on decreas-
ing weight is almost exactly the reverse of a singular
value-based sorting. This says that minor components
were assigned more weight, and were thus more impor-
tant than major components, which is consistent with
the theoretical findings by Weiss and Freeman (2007).
Both findings suggest that smooth derivative (e. g., Ga-
bor) filters are not the best choice in conjunction with
such a framework and that the kinds of filters found
by the full learning algorithm are important for getting
good performance.

5.3.6 Charbonnier expert

One interesting question is whether the quality of the
model and the properties of the filters are affected by the
choice of the Student-t expert. While a complete treat-
ment of this question is warranted, here we analyzed the
Charbonnier expert as introduced in Section 3.1. This is
essentially a differentiable version of an exponential dis-
tribution (or an L1-norm, when viewed as energy). One
advantage of the Charbonnier expert is that its energy
is convex, which makes optimization in the context of
denoising much easier. The Gaussian likelihood model
we are using here is convex as well (more precisely the
associated energy), which makes the posterior energy
convex. This means that we can actually find global
optima during denoising using the conjugate gradient
algorithm. We trained both 3× 3 models with 8 filters
as well as 5 × 5 with 24 filters. Each kind of model
was trained with the filters defined in the original space
as well as the filters defined in the “inverse” whitened
space. Except for the different expert function, training
was largely identical to the Student-t case. Figure 16
shows the filters obtained by training a 5 × 5 model in
the original filter space (note that inverse whitening led
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0.011 0.010 0.008 0.008 0.008

0.008 0.007 0.007 0.007 0.007

0.007 0.007 0.006 0.006 0.005

0.005 0.005 0.004 0.004 0.004

0.004 0.003 0.003 0.003

Figure 16: Filters learned for a 5 × 5 FoE model with
Charbonnier experts. The number above each filter de-
notes the corresponding expert parameter αi.

Table 6: Denoising performance of the FoE model with
Charbonnier experts.

Model 3× 3, 8 filters 5× 5, 24 filters
“Inverse” whitening N Y N Y

PSNR in dB 28.69 28.52 28.74 28.47
SSIM 0.806 0.792 0.808 0.790

to inferior performance in conjunction with Charbon-
nier experts). Similar to the Student-t case, we found
high-frequency filters.

Table 6 shows the denoising results obtained with
these Charbonnier experts. We can see that the model
performed best when trained in the original space, and
that the performance with 3 × 3 and 5 × 5 cliques was
virtually identical. In either case, the performance was
worse than with Student t-experts, in the case of 5× 5
filters somewhat substantially (0.35 dB). This result
reinforces the observation that non-convex regulariza-
tion is important for achieving good performance in
low-level vision applications (e. g., Black et al., 1998).
While this obviously makes optimization more difficult,
we observed better performance using non-convex mod-
els even though they rely on simple local optimization
methods. It is interesting to note, however, that de-
noising using the Charbonnier expert was considerably
faster, as many fewer conjugate gradient iterations were
needed in practice (about 300 as opposed to 3000 or
more iterations). In applications where computational
performance is crucial, it may thus be interesting to use
FoE models with convex experts (when they are viewed
as energies).

5.3.7 Other experiments

We have conducted a range of other experiments to in-
vestigate the properties of Fields of Experts. For exam-
ple, we tested how the denoising performance depends
on the initialization of the model and found only rel-
atively minor dependencies. While the learned filters
generally differ between different initializations, they
all share the same kind of high-frequency structures.
Furthermore, we also analyzed whether it might be ad-
vantageous to model the image intensity in a different
domain. As is the default with most digital images,
the images from the database used here are gamma-
compressed, but we also evaluated modeling linear or
logarithmic images. However, neither affected perfor-
mance favorably. More detailed results, including a
range of other experiments, can be found in (Roth,
2007).

6 Discussion

Despite significantly increasing the modeling power
compared to pairwise MRFs, Fields of Experts natu-
rally have several limitations that should be addressed
in the future. One such limitation is that the presented
framework models images only at their original spatial
scale (resolution), and is not able to model the scale in-
variance property of natural images. In particular, its
5 × 5 filters are too small to capture statistics at very
coarse spatial scales, but computational considerations
prevent us from making them much bigger. Our re-
sults with 7× 7 filters furthermore indicate that simply
making the filters larger will not necessarily help. The
FRAME model (Zhu and Mumford, 1997), on the other
hand, uses derivative filters of various spatial scales to
capture marginal statistics across scales. Wavelet-based
approaches (e. g., Portilla et al., 2003) also make use
of multiple spatial scales and moreover model scale de-
pendencies, which may explain their better denoising
performance. While with the FoE we have observed
improved denoising performance compared to standard
MRF approaches, there is still more to be done with
regards to modeling natural image statistics. As noted
by Roth (2007), images sampled from the learned model
do not look “natural”, and moreover the marginal dis-
tributions of the learned model (obtained from sam-
pled images) are not a good match to natural image
marginals. We hypothesize that multi-scale (or longer-
range) representations and better learning algorithms
will be necessary to capture more properties of natural
scenes. Considering the denoising and inpainting results
from Section 5, we find that the FoE has a tendency to
make relatively smooth regions even smoother; on the
other hand, noise in highly textured areas is not fully
removed. This should be further investigated. Another
limitation is that we have only considered relatively sim-
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ple parametric expert functions so far. More flexible
Gaussian scale mixtures have also been used as experts
(Weiss and Freeman, 2007; Roth and Black, 2007a), but
non-parametric experts such as in the FRAME model
might be considered as well.

Another issue that has not been addressed yet is that
the clique sizes and shapes have been chosen a priori
here, but may instead be selected automatically. In
our experiments, we have furthermore assumed that the
model is homogeneous. Certain applications may bene-
fit from spatially varying statistics, which motivates fur-
ther research on inhomogeneous models; this will likely
require significantly more training data. In other work
(Roth and Black, 2007a), we have shown that Markov
random fields can significantly benefit from steering the
filters to the local predominant image orientation. So
far, this has only been done for MRFs based on simple
derivative filters; learning steerable filters in an FoE-
like framework seems like a promising avenue for future
work. The presented FoE framework has solely focused
on modeling the prior distribution of natural images
or other low-level vision representations, and has been
combined with simple hand-designed likelihood models.
For certain applications it would be beneficial to learn
these likelihood models as well, or to learn a model of
the application-specific posterior directly.

An important issue that arises with the use of high-
order MRF models is the increased difficulty of inference
with such models. While, for the applications presented
here, gradient-based optimization methods proved vi-
able, they are less appropriate in other domains, such
as stereo, where inference techniques such as graph cuts
or belief propagation have been shown to be superior,
at least in the context of pairwise MRF models of dis-
parity. The increased clique size makes it difficult to
apply these methods here, and so far only small cliques
(Potetz, 2007) or restricted kinds of models (Kohli et al.,
2007) can be handled. Further investigation of advanced
inference techniques for high-order MRF models such as
FoEs is needed.

7 Summary and Conclusions

While Markov random fields are popular in machine vi-
sion for their formal properties, their ability to model
complex natural scenes has been limited. To make it
practical to model expressive image priors we formu-
lated a high-order Markov random field model based
on extended cliques that capture local image statistics
beyond simple pairwise neighborhoods. We modeled
the potentials for these extended cliques based on the
Product-of-Experts paradigm. The resulting Field of
Experts is based on a rich set of learned filters, and is
trained on a generic image database using contrastive
divergence. In contrast to previous approaches that
use a pre-determined set of filters, all parameters of

the model, including the filters, are learned from data.
The resulting probabilistic model can be used in any
Bayesian inference method requiring a spatial image
prior. We have demonstrated the usefulness of the FoE
model with applications to denoising and inpainting.
The denoising algorithm is straightforward, yet achieves
performance close to the best special-purpose wavelet-
based denoising algorithms. The advantage over most
wavelet-based methods lies in the generality of the prior
and its applicability across different vision problems.

There are many avenues for future work beyond fur-
ther extending the capabilities of the model as discussed
above. By making MRF models more powerful, many
problems can be revisited with an expectation of im-
proved results. We have already shown that optical
flow estimation can benefit from FoE models (Roth
and Black, 2007b), and expect that applications such
as dense stereo estimation, object boundary detection
and others will benefit as well. The methods may also
be extended to non-image-based graphs such as surface
meshes or MRF models of object parts.
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