
Behavioral/Systems/Cognitive

Decoding Complete Reach and Grasp Actions from Local
Primary Motor Cortex Populations

Carlos E. Vargas-Irwin,1 Gregory Shakhnarovich,2,3 Payman Yadollahpour,2,3 John M. K. Mislow,1,4 Michael J. Black,2

and John P. Donoghue1,5

Departments of 1Neuroscience and 2Computer Science, Brown University, Providence, Rhode Island 02912, 3Toyota Technological Institute, Chicago,
Illinois 60637, 4Department of Neurosurgery, Brigham and Women’s Hospital, Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts
02115, and 5Department of Veterans Affairs, Providence Veterans Affairs Medical Center, Providence, Rhode Island 02908

How the activity of populations of cortical neurons generates coordinated multijoint actions of the arm, wrist, and hand is poorly
understood. This study combined multielectrode recording techniques with full arm motion capture to relate neural activity in primary
motor cortex (M1) of macaques (Macaca mulatta) to arm, wrist, and hand postures during movement. We find that the firing rate of
individual M1 neurons is typically modulated by the kinematics of multiple joints and that small, local ensembles of M1 neurons contain
sufficient information to reconstruct 25 measured joint angles (representing an estimated 10 functionally independent degrees of
freedom). Beyond showing that the spiking patterns of local M1 ensembles represent a rich set of naturalistic movements involving the
entire upper limb, the results also suggest that achieving high-dimensional reach and grasp actions with neuroprosthetic devices may be
possible using small intracortical arrays like those already being tested in human pilot clinical trials.

Introduction
Coordinated actions of the upper limb may engage more than a
dozen cortical areas (Kalaska et al., 1997; Shadmehr and Wise,
2005), with each contributing to various components of reach
and grasp (Jacob and Jeannerod, 2003). Primary motor cortex
(M1) plays a central role among these areas (Lemon, 1993) and is
one site in which motor plans involving proximal and distal joints
are likely to merge. Despite being the focus of numerous studies,
M1 activity has seldom been analyzed in the context of natural-
istic multijoint movements. Most of the behavioral tasks used to
examine M1 activity require the subjects to operate in a restricted
movement space (such as a horizontal plane) and/or use averaged
neural responses over multiple repetitions of similar movements.
These constraints tend to remove trial-specific details and result
in artificially high correlations between multiple joint angles,
making it difficult to determine the relationship between move-
ment variables and neuronal firing.

There is abundant evidence that neurons related to distal and
proximal actions intermingle considerably within M1. Electrical

stimulation and spike-triggered averaging of electromyographic
(EMG) activity show that small regions and even single neurons
in M1 can facilitate the movement of both proximal and distal
joints (Donoghue et al., 1992; McKiernan et al., 1998; Park et al.,
2001). Recent M1 recordings in humans with tetraplegia show
that nearby neurons are engaged by imagined proximal and distal
actions (Hochberg et al., 2006). Understanding how local M1
populations control highly flexible coordinated limb movements
not only has important implications for understanding volitional
movement control but also for the design of neuroprosthetic
devices that attempt to reproduce reach and grasp actions from
neural activity.

The goal of this study was to determine whether local neuro-
nal populations in M1 encode information sufficient to recon-
struct the joint angles of the arm, wrist, and hand across a broad
range of naturalistic reach and grasp actions aimed at various
objects moving through a three-dimensional (3D) workspace.
Such actions elicit correlations among joints that approach those
occurring during natural movements, which are much weaker
than those observed during repetitive, stereotyped behaviors typ-
ically used in experimental settings. To relate motion of the entire
upper limb to neural activity, we combined marker-based mo-
tion capture techniques capable of measuring 25 individual joint
angles with cortical recordings from 96-microelectrode arrays
chronically implanted in the arm/hand region of M1. We dem-
onstrate the presence of information related to the entire limb by
reconstructing the full set of 25 joint angles during continuous
reach and grasp movements using population activity, showing
that it is possible to extract information related to the large num-
ber of degrees of freedom (DoFs) engaged in naturalistic move-
ments from a small region of M1. Our findings further suggest
that current microelectrode array technology, identical to that
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now being evaluated in human pilot clin-
ical trials, could potentially be used to
control a realistic robotic arm and hand or
even reanimate multiple muscles in a par-
alyzed limb using extant functional elec-
trical stimulation techniques (Moritz et
al., 2008), going far beyond the few di-
mensions of neural control that have
been achieved in able-bodied monkeys
(Carmena et al., 2003; Velliste et al., 2008)
or in humans with paralysis (Hochberg et
al., 2006; Kim et al., 2008).

Materials and Methods
Task. The data presented were gathered from
two male macaque monkeys (monkeys C and
G) over four different experimental sessions
(two for each monkey). The behavioral task
they performed was designed to elicit a broad
range of reach and grasp movements that
would differentially engage multiple joints of
the hand and arm. Monkeys were trained to
single-handedly intercept and hold objects
swinging toward them at the end of a string.
The trajectories and speeds of the objects were
varied to elicit a variety of different reach-to-
grasp movements. After holding an object for
�1 s, they received a fruit juice reward. The
objects used in the grasping task (Fig. 1) were
made of plastic or wood and included balls (2
and 7 cm diameter), cylinders (0.8 cm diame-
ter � 12 cm long and 3.2 cm diameter � 15 cm
long), a cube (faces 3.5 cm), a rectangular
prism (9 � 1.1 � 1.1 cm), an isosceles triangu-
lar prism (8.8 � 2.3 � 3.4 cm), a disk (4.2 cm
diameter, 1.1 cm thickness), and a ring (7.5 cm
diameter, 0.9 cm thickness). The combination
of objects used for each session is summarized
in supplemental Table 1 (available at www.
jneurosci.org as supplemental material).

Motion capture. Upper limb motion from shoulder to fingers was re-
corded using reflective markers tracked with an optical motion capture
system (Vicon Motion Systems; Oxford Metrics Group) and synchro-
nized through hardware with neural recordings. We analyzed a compre-
hensive catalog of 25 anatomically defined upper extremity joint angles
(for details, see supplemental material, available at www.jneurosci.org).
The system used 12 infrared cameras operating at 240 frames/s to track
the position of multiple reflective markers (4-mm-diameter hemisphe-
roids) with submillimeter accuracy. A total of 29 markers were attached
to each monkey using mild water-soluble adhesive (Fig. 2a). A kinematic
model of the arm and hand (Fig. 2b) was specified and fit to observed
marker data, by least-squares error minimization using a commercially
available software package (Vicon iQ). The model was rooted at the
shoulder, extending to the distal interphalangeal joints. Parameters of the
articulated model (segment lengths, marker offsets) were calibrated in
the beginning of each session. Values for each DoF were derived from an
articulated model fit to the measured positions of markers attached to the
arm and hand. In particular, Euler angles were used to represent relative
joint rotations. The representation for shoulder rotations was converted
to polar coordinates (azimuth, elevation, and internal/external rotation).
Supplemental Movie 1 shows a sample of the captured arm and hand
movements (available at www.jneurosci.org as supplemental material).

Neural recording. Neural data were recorded using microelectrode ar-
rays (Cyberkinetics Neurotechnology Systems) chronically implanted
into the M1 upper limb area of two macaque monkeys (just anterior to
the central sulcus at the level of the genu of the arcuate sulcus). The
position of each array on the cortical surface is shown in supplemental
Figure 1 (available at www.jneurosci.org as supplemental material). Each

array contained a 4 � 4 mm grid with 96 silicon-based electrodes 1 mm
in length and spaced 400 �m apart (for details on array structure and
surgical procedures, see Suner et al., 2005). Monkeys were head fixed
during recording. Data acquisition and storage were accomplished using
a Cerebus multichannel data acquisition system (Cyberkinetics Neuro-
technology Systems). Differences in spike waveform shape and ampli-
tude were used to identify single-unit activity using custom-made
software (Vargas-Irwin and Donoghue, 2007). We recorded 122 and 88
neurons in two sessions in monkey C and 35 and 30 neurons in two
sessions in monkey G. Within-animal recordings may have included
overlapping populations. The degree of uniqueness of each population is
impossible to establish definitively. Consequently, we treated each data-
set as an independent population for analysis.

Decoding 25-dimensional movement. Linear state-space models were
used to reconstruct the time-varying value of each DoF using neural
ensemble firing rates (for an introduction to state space models, see
Ljung, 1999). Firing rates were calculated in partially overlapping 100 ms
bins successively shifted by 41.67 ms (equivalent to 10 motion capture
frames). At each time step k, a new “hidden state,” xk, was calculated
based on the previous hidden state, xk�1, and a vector of firing rates, uk:

xk � F xk�1 � L uk � wk, (1)

The matrix F represents the evolution of the hidden state vector x based on
the previous state, L represents the influence of firing rates u on the state
vector x, and wk represents Gaussian zero-mean noise in the state dynamics.
The output, zk, representing predicted motion, is a linear function of the
hidden state vector (Eq. 2) corrupted by zero-mean Gaussian noise (Vk):

zk � C xk � vk. (2)

Figure 1. The monkeys used different grasping strategies characterized by varied patterns of grip aperture scaling and wrist
motion to intercept and hold each of the objects. Monkeys were trained to intercept and hold objects of various shapes and sizes
swinging toward them at the end of a string. Measurements of grip aperture, wrist pronation/supination, and wrist flexion/
extension are shown for nine segments of data in which different objects were grasped. The objects are shown above the plots, and
consistent scaling was used to preserve relative dimensions. All measurements were taken during a single session (C2).

9660 • J. Neurosci., July 21, 2010 • 30(29):9659 –9669 Vargas-Irwin et al. • Decoding Complete Reach and Grasp Actions from M1



Note that although, at a given time instant, the relationship between the
neural input and the kinematic output is linear, this relationship changes
in time as a result of the evolution of the hidden state. The size of the
hidden state vectors was empirically set to 3. The model was trained
(optimized) using an iterative algorithm implemented in the system
identification toolbox of MatLab (MathWorks). Although the values of
the hidden states are unobserved, optimization of the matrices F, L, and
C was accomplished by iterating between reestimating the most likely
values of the hidden states and minimizing, via gradient descent, the
output prediction error under these values.

The computational complexity of the decoding algorithm can be de-
scribed as follows. Suppose the hidden state x has dimension d, the di-
mension of neural signal u is c, and the kinematic value predicted is a
scalar (i.e., we decode a single DoF). After the model has been trained, the
computations for each time step require (1) predicting the state, which
takes d 2 � dc � d operations in Equation 1, and (2) predicting the
kinematic value in d � 1 operations in Equation 2. Thus, for n time steps,
the complexity of decoding is O(nd(d � c � 2)), which is linear in the
number of time steps as well as in the dimension of the neural signal. For
the datasets described here, model building using training data was per-
formed in under 1 min for each decoding variable (using a MacPro with
a 2.9 GHz Quad-Core Intel Xeon processor). Once model building was
complete, the algorithm reconstructed individual positions for each de-
gree of freedom in �0.1 ms. This is considerably less time than what is
required to obtain spike counts for a single 100 ms time bin, demonstrat-
ing that the algorithm is fast enough for real-time online decoding.

All decoding was performed offline on test data not used for training
the decoder. Although all kinematic variables and neural activity were

recorded simultaneously, each DoF was decoded individually. Each ses-
sion consisted of six to nine trial blocks, and each block (�2 min in
duration) consisted of 20 – 40 reaching and grasping actions using a sin-
gle object. Each trial block was subdivided into training, validation, and
testing segments. The training segment spanned the first 60% of the data
for each block, whereas the validation and testing segments each included
20%. The training and validation sets were used to generate and optimize
the decoding models. The final decoding results were obtained by run-
ning the optimized models on the “test” dataset (20% of the data col-
lected for each object). The accuracy of the decoding results was
evaluated using Pearson’s correlations (r) between measured and recon-
structed kinematics. For each parameter, we evaluated the statistical sig-
nificance of the decoding results using a Monte Carlo approach. We
calculated the correlation between kinematic variables reconstructed us-
ing neural test data and sets of kinematics of equivalent length taken from
the training and validation segments. This strategy estimates the
“chance” performance by comparing decoded movements with kine-
matics collected from the same monkey at a different point in the session.
By shifting the training/validation data sampling window by 0.25 s inter-
vals, we performed �2000 comparisons for each dataset (with all com-
parisons made between data segments collected the same day from the
same monkey). Overall, this procedure allowed us to sample �8000
chance correlations for each kinematic variable. We used the empirical
95% confidence limit over these distributions of values as the bound for
chance performance. Note that this procedure relies on the large varia-
tion in movement parameters present in our data. Applying this method
to highly stereotyped repetitive movements, chance levels of perfor-
mance would easily match decoding results. Additionally, this evaluation

Figure 2. The dynamic grasping task elicits a wide range of upper limb movements. a, Movement was recorded by tracking 29 reflective markers attached to the monkey with mild water-soluble
adhesive. b, Model of the hand and arm fit to the 3D position of the markers to calculate the joint angles for each frame. c, Distribution of measured grip apertures (top) and wrist angles (bottom).
d, Projection of the position of the arm endpoint (proximal wrist marker) onto the coronal, sagittal, and transverse planes (dataset C1). Color saturation indicates the density of the points. Marginal
distributions of density are shown along each axis. Crosses denote the mean and quartiles. The highest density of points (highest color saturation) was noted at the location where the monkeys
typically rested their arm after each reach and grasp action.
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method guards against overfitting, because
chance correlations are evaluated with the data
used to generate the decoding models. Overall,
hidden state models improved decoding accu-
racy by �20% (on average) compared with a
simple least-squares linear filter (results not
shown). All decoders were constructed using
0th-order kinematics (for example, joint an-
gles). Explicitly decoding velocities and accel-
erations using the same model did not improve
performance (results not shown).

Results
Kinematic properties of the dynamic
reaching and grasping task
During the task, monkeys reached for and
grasped objects across a volume of 3D
space �25 � 25 � 25 cm. This covers a
considerable portion of the space the
monkeys can comfortably reach (given
that their arms are �30 cm long). Hand
speeds were broadly distributed (mean �
SD of 9 � 12 cm/s, with a maximum of 93
cm/s). The presentation of objects of var-
ious sizes and shapes swinging in different
directions both close to and away from the
monkey elicited a broad range of reaches
and grasps. The distribution of grip aper-
tures (the distance between the distalmost
markers on the thumb and index), wrist
angles, and hand locations is shown in
Figure 2, c and d. Different objects elicited
varying patterns of grip aperture and wrist
motion associated with a range of possible
one-handed reaching and grasping strategies (Fig. 1).

Although the behavioral task produced a rich variety of differ-
ent reaches and grasps, the inherent natural correlations across
joint angles were not completely dissociated. Kinematic correla-
tions across a representative set of joints are shown in Figure 3a
(mean correlations averaged over four sessions). Stronger corre-
lations were most evident among actions about the same joint
(such as the wrist or shoulder). Digit joint angles also tended to be
highly correlated with each other because the monkeys nearly
always grasped objects while moving all fingers in concert (in Fig.
3a, these variables are summarized using grip aperture). Despite
these correlations, the task primarily decoupled three main
groups of kinematic variables: those related to the upper arm, the
wrist, and the hand.

Although we measured 25 joint angles, their correlations
demonstrate they are not all used independently (as is to be ex-
pected in a linked and constrained system). We used principal
component analysis (PCA) to estimate the number of linearly
uncorrelated DoFs that were actually engaged in the task. PCA
generates a linear transform that maps the space of measured
joint angles onto a new coordinate system in which axes are
aligned with the directions of maximum angular variation.
Our results show that an average of 10 principal components
(PCs) accounted for �95% of the variance across all datasets
(Fig. 3b), suggesting that the recorded actions could be closely
reproduced by a 10-dimensional control signal. Previous studies
using PCA to estimate the underlying dimensionality of arm and
hand movements in both monkeys and humans have reported
both lower and higher values, depending on the number of DoFs
measured and the relative complexity of the behavior analyzed

(Mason et al., 2001, 2004; Todorov and Ghahramani, 2004;
Ingram et al., 2008).

Neuron tuning properties
Our analysis of the movements elicited by dynamic reaching and
grasping task show that the upper limb operates in a complex
multidimensional space. Our next goal was to determine what
types of motion were most closely related to changes in the activ-
ity of individual neurons. We first evaluated the relationship be-
tween neural activity and motor behavior by calculating
Pearson’s correlations (r) between single-neuron firing rates and
individual kinematic variables. Rather than being highly corre-
lated with small subsets of tightly coupled joint angles, the firing
rates of M1 neurons tended to be moderately correlated with
multiple relatively independent joint angles (often including
both proximal and distal joints). Of these correlation coefficients,
95% had an absolute value �0.38 and 50% were �0.16 (Fig. 3c).

Correlations between a neuron and multiple kinematic pa-
rameters will necessarily reflect the correlation among the kine-
matics themselves to some degree. Multiple regression analysis
using the conventions described by Cohen and Cohen (1983) was
used to determine the extent to which neural correlations could
be accounted for by kinematic correlations. In the first step of the
analysis, coefficients of multiple correlation (R) between the full
set of joint angles (and their velocities) and the firing rates of
individual neurons (in 100 ms bins) were computed as follows:
linear regression was used to obtain a least-squares prediction of
the firing rate for each neuron given the full set of joint angles. R
values were then obtained by computing the Pearson’s correla-
tion (r) between measured firing rates and predicted firing rates.

Figure 3. The dynamic grasping task essentially decouples the DoFs of the hand, wrist, and arm. a, Correlations display the
relative coupling between DoFs, which are weaker as distance between joints increases. Values for eight representative parameters
averaged across monkeys are shown. s., Shoulder; e., elbow; w., wrist; int./ext. rot., internal/external rotation; pron./sup., prona-
tion/supination; uln./rad., ulnar/radial deviation; flex./ext., flexion/extension. b, Dimensionality estimation for reach and grasp
actions. This plot shows the cumulative percentage of variance accounted for as a function of the number of PCs used to represent
the joint angles for each of four sessions. c, The firing rate of individual M1 neurons was only moderately correlated with any given
joint angle. Correlation coefficients (CC) between the firing rate of each neuron and each measured joint angle are divided into
three groups: those related to the arm (shoulder and elbow, 4 DoFs), the wrist (3 DoFs), and the hand (18 DoFs).
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Initially all lags were set to 50 ms. To find the optimal combina-
tion, the lag for each kinematic variable was adjusted to maximize
the value of R (computed with all variables) over five iterations
through the full set of kinematics. To approach the conditions of
online decoding, only lags in which neural activity preceded
movement were tested. Lags ranging from �50 to �300 ms rel-
ative to movement (in 50 ms steps) were considered. For each
neuron, only the regression results with optimized lags were an-
alyzed further. Squaring the value of R yields an estimate of the
variance in firing rate explained by the kinematic parameters. The
distributions of R 2 values for both monkeys is shown in Figure
4a. All R 2 values calculated were statistically significant ( p �
0.01). The R 2 values obtained in the first step of the analysis were
then used to calculate semipartial correlations between firing
rates and three sets of joint angles: those associated with the arm
(shoulder and elbow), the wrist, and the hand. Squared semipar-
tial correlation coefficients (sr 2) for each of these sets of kine-
matic variables were calculated by subtracting the values of R 2

obtained with the full set of kinematics from the values of R 2

obtained with a reduced set excluding the variables of interest.
This procedure excludes the fraction of variance redundantly ac-
counted for by multiple sets of kinematics. Values of sr2 can there-
fore be interpreted as the amount of firing rate variance accounted
for by one set of kinematics (arm, wrist, or hand) beyond what is
accounted for by the other two. In this sense, the values of sr 2

reflect the variance in firing rates exclu-
sively related to one set of kinematic vari-
ables. We shall refer to neurons as having a
set-specific relationship (i.e., with a spe-
cific subset of kinematic variables) when
the values of sr 2 are statistically significant
( p � 0.01) and �0.05 (representing �5%
of the variance in firing rate). Note that a
cell can have multiple set-specific relation-
ships if the variance in firing rates can be
most completely explained by linear re-
gression when multiple sets of kinematics
are used (with each set explaining a non-
overlapping portion of the variance).

The distribution of sr 2 over all re-
corded neurons is shown in Figure 4b– d.
For monkey C, 84.2% of the neurons had
a set-specific relationship to hand kine-
matics, demonstrating that neural corre-
lations to hand joints exceeded what
could be accounted for by kinematic cor-
relations for most of the neurons exam-
ined. A relatively smaller fraction of
neurons, 46.6%, displayed a set-specific
relationship with arm kinematics, and
only 3.8% of the neurons displayed a set-
specific relationship with wrist kinemat-
ics. Similar results were obtained for
monkey G, although the fraction of neu-
rons with a significant relationship to the
wrist were not as markedly reduced (with
62.9, 39.9, and 12.1% for the hand, arm,
and wrist respectively). The groups of
neurons with significant sr 2 values for
arm and hand joints overlapped consider-
ably (Fig. 4e), indicating that many neu-
rons were involved in controlling
movement about multiple joints, often

including proximal and distal; approximately one-third of the
neurons in each monkey showed a set-specific relationship for
both hand and arm kinematics (44.7% in monkey C and 30.7% in
monkey G). It is important to note that these overlaps, by defini-
tion, cannot be accounted for by the linear correlations in the
kinematic variables. Other combinations comprised relatively
small fractions of the neuronal populations with one exception:
neurons with a set-specific relationship only to the hand ac-
counted for either 37.6% (monkey C) or 26.1% (monkey G) of
the total number of neurons. Raster plots showing the
movement-related activity of various kinds of neurons classified
according to their semipartial correlations are shown in Figure 5.

Although Figure 4e shows that �40% of the sampled neurons
have significant semipartial correlations to multiple sets of kine-
matic parameters, it does not show whether these neurons em-
phasize one particular set over others (that is to say, if one
particular set tends to contribute to most of the variance). To
determine whether there were groups of neurons that were more
closely associated with arm, wrist, or hand kinematics, we defined
a descriptive statistic referred to as the index of kinematic selec-
tivity. The index of kinematic selectivity for arm joints was calcu-
lated for each neuron by dividing the squared semipartial
correlation (sr 2) for arm joints by the sum of the sr 2 values for
arm, wrist, and hand joints and expressing the result as a percent-
age (Fig. 6a). A value of zero for arm selectivity means that what-

a b

e
c

d

Figure 4. Neural correlations with multiple sets of kinematic parameters cannot be accounted for by correlations among the
kinematics themselves. In all histograms, results are shown in solid gray for monkey C and in black outlines for monkey G. a,
Coefficients of multiple correlation (R 2) for each of the recorded neurons. These values can be interpreted as the fraction of variance
in firing rates accounted for by linear relationships with the full set of kinematics (joint angles and joint angle velocities). Note that
in all cases neural activity preceded movement, because the analysis was limited to predictive lags to approximate online decoding
conditions. b– d, Semipartial correlation coefficients (sr2) for three sets of kinematic variables. These values can be interpreted as
the amount of firing rate variance accounted for by one set of kinematic variables (arm, wrist, or hand) beyond that accounted for
by the other two. Thus, b shows the variance in neuronal firing rates explained exclusively by arm kinematics after removing the
variance explained by hand and wrist variables. c and d show similar distributions for wrist and hand joint angles. e, Overlap
between groups of neurons that show statistically significant semipartial correlations �0.5 (representing �5% of the variance in
firing rate) to arm, wrist, or hand kinematics. Values for monkeys C and G are shown separately in each partition. Overall, 86.7% of
the neurons recorded in monkey C and 75.4% of the neurons recorded in monkey G displayed a set-specific relationship with at least
one set group of kinematic variables. Note that the areas in the Venn diagram are not to scale. MAD, Median absolute deviation.
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ever variance in firing rate can be
explained by arm kinematics is redun-
dantly explained by either wrist or hand
kinematics. A value of 100% means that
all set-specific variance (the sum of all
semipartial correlations) is accounted for
by arm kinematics, meaning that, aside
from variance explained by arm kinemat-
ics, no additional variance is explained by
the hand or wrist. Indices of kinematic se-
lectivity for the wrist and hand were com-
puted in a similar manner (Fig. 6b,c). As
expected from the semipartial correlations,
wrist kinematics tended to contribute a rel-
atively small portion of independent vari-
ance in firing rates. Most of the variance
could be attributed to hand and arm joint
angles. If neurons mainly reflected either
proximal or distal kinematics, we would ex-
pect to see a bimodal distribution of hand
and arm kinematic selectivity indices with
peaks close to 0 and 100, indicating that
only one set of parameters accounted for
most of the variance of a given neuron.
The observed pattern did not conform to
this hypothesis: there was not a sharp di-
vision between neurons more tightly cou-
pled to either hand or arm. There was a
bias toward higher kinematic selectivity
for the hand, with median values of 60.40
and 46.83 for monkeys C and G, respec-
tively (compared with 28.35 and 32.85%
for arm selectivity). However, �65% of
neurons (66.19 in monkey C and 73.85 in
monkey G) displayed hand selectivity values between 30 and 70.
Likewise, between 46.19% (monkey C) and 60% (monkey G) of
the neurons analyzed displayed arm selectivity indexes between
30 and 70. This pattern suggests that the properties of individual
neurons span a broad spectrum of combinations between prox-
imal and distal kinematics, often emphasizing both to a generally
comparable extent. These findings contradict the hypothesis that
neurons are directly correlated to a single kinematic parameter
and that any correlation to others is merely an incidental reflec-
tion of the relationship among the kinematics themselves. Our
results support the alternative hypothesis that neural encoding
operates in high dimensional spaces and that these spaces can
include combinations of proximal and distal kinematic parameters.

Multidimensional activation profiles for M1 neurons can il-
lustrate the relationship between firing and multiple behavioral
variables (akin to a tuning function or receptive field). Although
it is not possible to visualize the full 25-dimensional joint move-
ment space, it is possible to display multiple 2D slices represent-
ing the relationship between pairs of variables and neuronal
spiking. Examples of these activation profiles for neurons simul-
taneously tuned to grip aperture, shoulder, and wrist kinematics
are shown in Figure 7. The intermingling of kinematic represen-
tations is also evident in the spatial organization of neurons,
which can be derived from the regular 10 � 10 organization of the
electrode array. Neurons with similar primary features (highest
joint angle correlates) showed no clear spatial pattern of aggrega-
tion across the regularly sampled region of the electrode array
(supplemental Fig. 2, available at www.jneurosci.org as supple-
mental material).

Figure 5. Single-unit activity in M1 during naturalistic reaching and grasping movements. Raster plot showing the action
potentials fired by 25 individual neurons over a span of 5.5 s. Raster plots are colored according to set specific relationships with
kinematics (significant semipartial correlations �0.05; for details, see Results, Neuron tuning properties): blue, hand only; green,
wrist only; red, hand only; orange, hand � wrist; magenta, hand � arm; black, hand � arm � wrist. The data shown corre-
sponds to session G2. Of the 30 neurons recorded in M1, only the 25 shown had set-specific relationships to at least one set of
kinematic parameters. During the time span shown, the monkey performed three separate reach-to-grasp movements targeting
a small ball. Grip aperture measures are overlaid over the raster plot to highlight the moments when prehension occurs (troughs).
The full posture of the arm is shown for four time points in the first movement.

a

b

c

Figure 6. Most neurons were not preferentially related to specific subsets of kinematic pa-
rameters, even after removing the influence of correlations between kinematics. In all panels,
results are shown in solid gray for monkey C and in black outlines for monkey G. a, Index of
kinematic selectivity for arm joints (for details, see Results). These values are a ratio of the
variance in firing rates exclusively represented by arm joints (semipartial correlation for arm
kinematics) over the total set-specific variance (the sum of semipartial correlations for the arm,
wrist, and hand). b, c, Index of kinematic selectivity for wrist and hand joints, respectively. MAD,
Median absolute deviation.
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Arm and hand movement reconstruction
Population decoding methods provide a means to test whether
information is contained in the activity of a set of neurons. Here
we tested the hypothesis that small neuronal populations con-
tained sufficient information to reconstruct entire reach and
grasp actions. Specifically, we used linear state space models (see
Materials and Methods) to reconstruct all 25 measured joint an-
gles based on neural firing rates. Four additional parameters,
including grip aperture and the x, y, and z position of the arm
endpoint, were also decoded in an identical way. The training set
(60% of the data) was used to select the lag maximizing the linear
correlation coefficient (r) between the firing rate of each cell and
each DoF. A set of lags from 50 to 300 ms (at intervals of 50 ms)
were considered. The distribution of lags used for decoding is
shown in supplemental Figure 3 (available at www.jneurosci.org
as supplemental material). The training set data was also used to
generate optimized decoding models. To avoid overfitting, the
subset of cells selected to reconstruct each DoF was chosen by
optimizing decoding accuracy on the validation set (20% of the
data) in the following procedure. First, a decoder was built using
the single cell with the highest r value (raw firing rate vs measured
DoF). Next, a new decoder was built using the two cells with the
highest r value (the same cell used in the first decoder plus a new
one). This process continued in a “greedy” manner by adding one
cell at a time and rebuilding the decoder. The mean r value (mea-
sured vs decoded) over all variables tended to peak or asymptote
when �30 neurons were used (Fig. 8a). Root mean squared error
measures displayed a similar pattern (supplemental Fig. 4, avail-
able at www.jneurosci.org as supplemental material). We there-
fore used 30 neurons per DoF to build the final set of decoders
used to reconstruct the kinematics from the testing data segment
(not used in parameter optimization steps). All decoding results
shown [except for Fig. 8a and supplemental Fig. 4 (available at
www.jneurosci.org as supplemental material)] were taken from

this testing segment. Note that this method may yield a different
set of cells in the decoder for each DoF. However, neuron sub-
groups chosen to decode individual DoFs tended to overlap ex-
tensively, even when a large number of neurons (80 –100) were
available (supplemental Fig. 5, available at www.jneurosci.org as
supplemental material). In monkey C, more than one-fourth of
the neurons recorded in each session were simultaneously used in
decoders for at least one DoF from the hand, wrist, and upper
arm (supplemental Table 2, available at www.jneurosci.org as
supplemental material). Because 30 or 35 units (session 1 or ses-
sion 2) were recorded from monkey G, nearly all were used to
decode each DoF. Despite the limited number of neurons for
monkey G, decoding accuracy was similar between the two ani-
mals (Fig. 8c). Although the magnitude of the angular errors was
significantly higher for monkey G (two-sample Kolmogorov–
Smirnov test, p � 1 � 10�6), the difference between the median
absolute error measures for both monkeys was only slightly more
than 1° (3.72° for monkey C and 4.79° for monkey G). The dis-
tribution of errors over all joint angle reconstructions (including
both monkeys) had a mean � SD of �0.26 � 9.52° (indicative of
an unbiased estimator). The median absolute error across every
monkey and joint angle was 4.13°. This is equivalent to 6.15%
when normalized with respect to the measured movement range for
each DoF (for details on individual DoFs, see supplemental Fig. 6,
available at www.jneurosci.org as supplemental material). For every
session, decoding accuracy for all measured DoFs was above the 95%
confidence limit for chance performance (for details on statistical
testing, see Materials and Methods). Figure 9a shows a sample of
measured and decoded postures from a single trial (for a sample of
fully reconstructed movement sequences, see supplemental Movie 2,
available at www.jneurosci.org as supplemental material). Figure 9b
shows 1D reconstructions of two individual kinematic parameters in
detail. The Pearson’s correlation coefficient (r) between measured
and decoded variables for each of the four datasets is summarized

Figure 7. M1 neurons are simultaneously tuned to proximal and distal DoFs. Pairs of measured DoFs were discretized into 100 equally sized 2D bins spanning 99% of the data (after removing
outliers at each extreme). Colored circles show the average firing rate for each bin (color was interpolated for the space between the circles). Each row shows the activity of a single M1 neuron. The
first column shows firing rate as a function of shoulder elevation and grip aperture. The second and third columns have similar displays, using grip aperture versus wrist pronation/supination and
shoulder elevation versus wrist pronation/supination.
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in Figure 9a. The mean � SD r across ses-
sions over all decoded joint angles was
0.72 � 0.094; �90% of the r values were
above 0.6, and �60% were above 0.7. Al-
though decoding accuracy was signifi-
cantly higher for monkey C (two-sample
Kolmogorov–Smirnov test, p � 0.02), the
difference between the distributions of r
values was small, with means of 0.74 and
0.70 for monkeys C and G, respectively.
The r values obtained for hand, wrist, and
arm joints (with medians of 0.72, 0.73,
and 0.73, respectively) were not signifi-
cantly different in monkey G (two-sample
Kolmogorov–Smirnov test, p � 0.60 for
arm vs wrist, p � 0.28 for arm vs hand,
p � 0.93 for wrist vs hand). For monkey C,
there was a trend toward more accurate
decoding of arm joints (median of 0.80)
than wrist (median of 0.7) or hand (me-
dian of 0.74) joints (two-sample Kolmog-
orov–Smirnov test, p � 0.032 for arm vs
wrist, p � 0.049 for arm vs hand, p � 0.33
for wrist vs hand).

The lack of significant differences in
decoding accuracy across joints shows
that the neuronal population in monkey
G contained similar amounts of informa-
tion about all measured DoFs. Although movement reconstruc-
tions in monkey C tended to be more accurate for arm joint
angles, wrist and hand kinematics were also decoded above
chance levels. Our findings show that it is possible to reconstruct
complex naturalistic multidimensional reaching and grasping
movements using the firing rates of relatively small populations
of M1 neurons. These results demonstrate that local neighbor-
hoods of M1 neurons carry diverse information simultaneously
related to both proximal and distal joints used in reaching and
grasping motions of the upper limb.

Discussion
We demonstrated that it is possible to reconstruct a broad range
of naturalistic reach-to-grasp movements from local ensembles
of M1 arm/hand area neurons using standard decoding algo-
rithms. In every session, the decoding accuracy of all 25 measured
DoFs exceeded chance performance. Decoding accuracy of each
DoF was approximately comparable with what has been reported
in previous studies decoding simpler movements (supplemental
Table 3, available at www.jneurosci.org as supplemental mate-
rial). At least 10 cells were needed to achieve near-optimal decod-
ing accuracy for any one DoF (Fig. 8a) (supplemental Fig. 4,
available at www.jneurosci.org as supplemental material). At the
same time, groups of neurons selected for hand, wrist, and arm
joint angle decoders formed primarily overlapping sets (Fig. 8b),
and small populations of as few as 30 neurons were capable of
providing information related to the entire upper limb. The fact
that decoding results were very similar between the two ani-
mals (although the number of neurons recorded in monkey G
was much smaller) suggests that neuron selection is not criti-
cal. Our decoding models faithfully replicated the complex high-
dimensional characteristics observed in the behavioral task
(supplemental Fig. 7, available at www.jneurosci.org as supple-
mental material) and could generalize well across different types
of movements. For example, decoded grip aperture values could

be consistently decoded, although six to nine different objects
(engaging apertures between 10 and 70 mm) were grasped during
each session (Fig. 1) (supplemental Fig. 8, available at www.
jneurosci.org as supplemental material). Based on these results,
we can conclude that local neuronal populations in the M1 arm/
hand area contain information related to a large set of non-
redundant DoFs of the upper limb. Our examination of neural
activity supports and expands this hypothesis by showing that
even individual neurons are capable of representing unrelated
kinematic parameters such as shoulder elevation and grip aper-
ture (which are not only anatomically distant but are also shown
to be only weakly correlated in the data we collected). Multiple
regression analysis showed that approximately one-third of the
neurons in each monkey displayed a direct relationship with both
proximal and distal joint angles exceeding what can be accounted
for based solely on kinematic correlations (Fig. 4). Classifying
these cells as “hand” or “arm” neurons would ignore the richness
of their tuning properties. Instead of pigeonholing neurons into
fixed classes, we developed the index of kinematic selectivity to
represent the strength of the relationship between firing rates and
kinematics along a continuous scale. Rather than clustering at
extreme values (as would be expected if proximal and distal
movements were represented separately at the level of individual
neurons), the range of selectivity indices observed for arm and
hand kinematics suggests that the properties of individual neu-
rons span a broad spectrum of combinations between proximal
and distal movement parameters (Fig. 6). The rich variety of
information represented at the level of single neurons would help
explain why relatively small ensembles are sufficient to perform
high-dimensional movement reconstructions.

Our results may seem at odds with previous studies that iden-
tify neurons with strong correlations to particular movement
parameters. However, most of these studies operate in restricted
movement spaces, which tend to enhance correlations across ki-
nematic variables. This type of experimental paradigm could ef-

Figure 8. Optimal decoding was accomplished using populations of 30 neurons to reconstruct each DoF. a, Mean r (over all
variables) between measured and decoded kinematics as a function of the number of neurons used to decode each DoF. Neurons
were added to the models in order from most to least correlated with the DoF being decoded (following the “greedy”’ selection
method described in Results, Arm and hand movement reconstruction). Based on this graph, the final set of decoding models were
constructed using 30 neurons for each DoF. The total number of neurons used for decoding in each session (pooled across all DoFs)
is shown next to each plot as a fraction of the total number of neurons recorded. For details on the overlap of populations used to
decode arm, wrist, and hand movements, see supplemental Figure 7 (available at www.jneurosci.org as supplemental material).
b, Error distribution across all joint angles reconstructed across all test datasets using sets of 30 neurons (solid gray histogram for
monkey C and outlined black histogram for monkey G). Triangles along the x-axis denote the range that encompasses 95% of the
data for each distribution (green for monkey G and red for monkey C). More than 50% of the reconstructed joint angles were within
5° of the measured values. MAD, Median absolute deviation.
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fectively collapse complex multidimensional tuning functions
into simpler forms, resulting in artificially higher correlations
between kinematics and neural activity.

The results of previous studies analyzing complex movements
representative of the natural behavioral repertoire of primates
support our conclusions about the information content of indi-
vidual M1 neurons. Aflalo and Graziano (2006, 2007) measured

eight DoFs of the upper limb while recording M1 neural activity
using single electrodes. This study also used semipartial correla-
tions to evaluate the relationship between neural activity and
individual DOFs. They concluded that neurons were, on average,
significantly related to four of the eight parameters measured, sug-
gesting that M1 neurons simultaneously represent various aspects of
limb motion, with different neurons emphasizing different combi-

Figure 9. Decoding continuous 25-dimensional movement. a, Examples of measured (ghost) and decoded (solid) arm postures from a reach and grasp trial (with each of the 25 joint angles
decoded independently). b, Detailed view of measured (blue) and reconstructed (black) values for grip aperture and shoulder azimuth. c, Correlation coefficients between measured and decoded
variables. Colored dots represent the values for each experimental session, and solid bars mark the mean over all sessions. Black asterisks represent chance levels of performance (95% confidence
limit for correlations between reconstructed kinematics and temporally shifted kinematics; for details, see Results). In addition to joint angles, grip aperture, as well as the x, y, and z position of the
endpoint of the arm were directly decoded. Decoding accuracy was above chance for every degree of freedom examined. MAE, Mean absolute error; In./Ex. Rot., internal/external rotation; Flex./Ext.,
flexion/extension; Ul./Rad., ulnar/radial deviation; Pron./Sup., pronation/supination; MCP, metacarpophalangeal; Ante./Retro., anteposition/retroposition; Rad. Ab./Ad., radial abduction/adduc-
tion; Palm. Ab./Ad., palmar abduction/adduction; PIP, proximal interphalangeal.
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nations. Jackson et al. (2007) reached a similar conclusion based on
the relationship between neural activity and EMG data obtained
from the forearm, suggesting that “precise information about ac-
tivation of a particular arm muscle can be readily obtained from
most cells in the arm area of motor cortex.” In agreement with
these findings, our results suggest that M1 uses a distributed con-
trol scheme in which multiple DoFs are represented simulta-
neously even at the level of individual neurons, often including
both proximal and distal joints (Figs. 4, 7). Our findings expand
on previous work by quantifying the independent contribution of
different groups of joints to single-neuron activity and demonstrat-
ing that information reflecting high-dimensional movement of the
entire upper limb can be extracted from simultaneously recorded
local neuronal ensembles. Simultaneous multielectrode recordings
also allowed us to evaluate all neurons under precisely the same set of
behavioral conditions, which was not the case for previous single-
electrode studies.

Although we showed that joint angles could be directly de-
coded from neural activity, this does not mean that these vari-
ables are directly encoded by M1 neurons: any correlate of joint
angles may be the “true” coded variable. Our results cannot con-
clusively determine how M1 represents or transforms informa-
tion for reach and grasp actions, but they do mean that theories of
M1 function must incorporate the presence of integrated reach
and grasp information at the single-cell and local population
level. Our data does not include EMG or other records of move-
ment dynamics. It is possible that synergies relating the activity of
some individual neurons to many joints could be explained by a
representation of multi-articulate muscles instead of multijoint
kinematics. However, simple anatomical explanations cannot ac-
count for the combinations of anatomically disparate, weakly
correlated parameters that we observe.

Implications for cortical organization
It is well established that the output of M1 neurons diverges to
multiple muscles (Shinoda et al., 1981; Buys et al., 1986; Fetz et
al., 1989), sometimes including groups acting on both proximal
and distal joints (McKiernan et al., 1998). Conversely, the input
to a given muscle appears to converge from a wide area of cortex
(typically several square millimeters) that overlaps extensively
with the neuronal pools of other muscles (Landgren et al., 1962;
Andersen et al., 1975; Jankowska et al., 1975; Sato and Tanji,
1989; Donoghue et al., 1992; Schieber and Hibbard, 1993;
Schieber, 1996; Sanes and Schieber, 2001; Smith and Fetz, 2009).
Although these findings support the concept of a holistic control
scheme in which individual neurons influence many DoFs, no
previous study has explored how M1 ensembles relate to multi-
dimensional naturalistic movements engaging the entire limb.
The fact that we can extract information related to the arm, wrist,
and hand from a relatively small area of cortex is consistent with
a highly integrated representation that controls reach and grasp
as a functional collective. Although the area spanned by our mi-
croelectrode arrays does not constitute a comprehensive survey
of M1, our findings suggest that at least some small regions are
capable of representing entire limb actions. Our recordings were
limited to a 4 � 4 mm area on the surface of M1, and it is possible
that the region located deeper within the bank of the central
sulcus [which has been shown to contain most of the M1 neurons
with direct cortico-motoneuronal connections to distal muscu-
lature (Rathelot and Strick, 2009)] could display higher selec-
tively to particular upper extremity muscles.

Implications for neuroprosthetics
Among all motor areas, M1 has the most direct influence on �
motor neuron pools driving upper limb muscles (Dum and
Strick, 1991) and is therefore a promising location for the detec-
tion of complex multidimensional control signals for neuropros-
thetic devices. Our findings suggest that signals from small
regions of motor cortex of persons with tetraplegia could poten-
tially provide control signals, allowing high-dimensional control
of robotic limbs or functional electrical stimulation systems ca-
pable of reanimating multiple paralyzed muscles. Previous stud-
ies have accomplished robotic limb control but with many
dimension-reducing constraints that limit the range and flexibil-
ity of possible motions. Hochberg et al. (2006) showed that a
person with tetraplegia was able to operate a 1D proportional
control robotic hand and could use a 2D interface to perform
reach and grasp with a simple robot arm. Velliste et al. (2008)
demonstrated neural control of a robotic arm by able-bodied
monkeys. This was accomplished by decoding velocity informa-
tion for a 3D endpoint and converting it to 4D joint angle coor-
dinates by setting a fixed elbow swivel angle. Although the arm
was equipped with a gripper under proportional control, the task
only required binary control (open or closed). In a similar exper-
iment, Carmena et al. (2003) demonstrated explicit proportional
control of grip force, although arm endpoint trajectories were
restricted to a 2D plane. In both of these studies, correlations
induced by the constraints of the task mean that the intrinsic
dimensionality may have been lower than the three or four de-
coded DoFs. In comparison, we successfully measured and re-
constructed 25 joint angles. Although correlations among joints
reduced the intrinsic DoFs necessary to describe the task to �10,
this is substantially more than addressed by any previous study.
This marked dimensionality increase in the control signal is of
great relevance for neural prosthetic systems, because it could
allow direct and simultaneous control of arm posture (elbow and
shoulder), hand orientation in space (wrist), and grip aperture
from a local M1 population using signals that may be used in the
CNS to accomplish the same function. Because our task did not
elicit significant individuated finger movements, our results can-
not address the ability to reconstruct them from the same M1
population providing reach and grasp information. Additional
experimentation will be required to determine whether it is pos-
sible to decode the more complex movements of the fingers in-
dependently to achieve direct neural control of an even higher
number of functional DoFs.

Significant challenges still remain before high-dimensional
neuroprosthetic technology can be fully developed for clinical
applications. Although we restricted our decoding analysis to rely
exclusively on neural activity preceding movement to minimize
the influence of proprioceptive inputs, the results presented here
were obtained in primates with intact somatic sensation. Al-
though low-dimensional cursor control has been demonstrated
for paralyzed humans with limited somatosensory feedback
(Hochberg et al., 2006; Kim et al., 2008), additional studies will be
necessary to determine whether high-dimensional control can be
achieved under similar conditions. Despite the difficulties
posed by implementing real-time closed-loop systems, it is
also possible that the presence of natural or artificial feedback
could improve the accuracy of high-dimensional neuropros-
thetic control through online error correction. However, means
to correlate the desired movement of multiple joints with neural
activity related to intended or imagined actions for those who
cannot actually move (and may have compromised sensory feed-
back) is not obvious. Our data suggests that taking into account
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the integrated nature of neural representations may be important
for the development of neuroprosthetic training regimens. If M1
neurons do indeed operate in high-dimensional spaces that inte-
grate diverse aspects of movement kinematics, characterizing the
activity of a given neuron while one joint moves and the rest
remain fixed would only yield a one-dimensional projection of
the full activation profile of a neuron. A proper characterization
of neural activity would require a wide sampling of possible ki-
nematics, which would be impossible to achieve one joint at a
time. Therefore, training data including naturalistic movement
such as the ones elicited by our behavioral task may be necessary
for effective multijoint decoding.

Although our decoding strategy produced accurate results for
a wide range of complex actions, improved control might be
obtained with more advanced mathematical methods. In our
current decoding scheme, each DoF is reconstructed indepen-
dently without taking into account interactions between multiple
DoFs. However, our observations suggest that the activity of M1
neurons reflects these interactions, potentially providing an even
greater source of information for decoding algorithms to exploit.
It is possible to modify our state space model to represent multi-
ple kinematic parameters simultaneously. However, as the di-
mensionality of the decoding space grows, the amount of training
data required to provide a representative sample increases expo-
nentially (a problem commonly referred to as the “curse of di-
mensionality”). When dealing with a limited set of training data,
this generally results in decreased decoding accuracy. Algorithms
that efficiently represent the integrated motion of the limb using
dimensionality reduction techniques could potentially circum-
vent this problem and improve decoding accuracy.
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