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Please see the main paper for a description of the optical flowmodel, its optimization, and the main
results. Sections 1-3 below provide more details of the experiments in the main paper, as well as
some additional results. Section 4 provides detailed formulas for the gradients of the energy function
with respect to the optical flow and hidden layer support fields.

1 Implementation Details

To gain robustness against lighting changes, we follow [6] and apply the Rudin-Osher-Fatemi (ROF)
structure texture decomposition method [3] to pre-processthe input grayscale sequences. We lin-
early combine the texture and structure components in the proportion20:1. The parameters are set
according to [6].

We use the generalized Charbonnier penalty functionρ(x) = (x2 + ǫ2)a with ǫ = 0.001 and
a = 0.45 [4] for ρd(·) in the data term,Edata, andρs(·) in the spatial flow term,Eaff.

We compute the initial flow field using the Classic+NL method [4] and fitK affine motion fields to
the initial forward flow field. The fitting method is similar toK-means, where we cluster the flow
vectors and fit the affine parameters of each cluster. A pixel is visible at the layer that best explains
its motion and invisible at the other layers. To avoid local minima, we perform25 independent
runs of the fitting method and select the result with the lowest fitting error. Warping the resultant
segmentation using the backward flow field produces the initial segmentation of the next frame.

To convert the hard segmentation into the initial hidden fields, thekth (k < K) hidden field takes
value 1.5 at pixels visible at thekth layer and−1.5 otherwise. Around occlusion/disocclusion
regions, the layer assignment tends to change from one frameto the next. We detect pixels where the
layer assignments, aligned by the initial flow field, disagree. For these pixels we divide their initial
hidden field values by10 to represent our uncertainty about the initial layer assignment in these
occlusion/disocclusion regions. The initial motion of thevisible pixels in each layer is the same as
the initial flow field from Classic+NL, while the motion of theinvisible pixels is interpolated by the
fitted affine motion to the flow field.

2 More Experimental Results on the Middlebury Data Set

Table 1 provides the full end-point error (EPE) results for every training sequence using all the
methods discussed in the main paper. We also evaluate several variants of the proposed method.
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The results in the main paper are obtained with20 warping steps per level, which is computationally
expensive. Using3 warping steps has slightly better overall performance for1-3 layers, but20
warping steps produces more accurate results in motion boundary regions.

To evaluate the method’s sensitivity to the initialization, we compare the energy of the final solu-
tions with initial flow fields from the Classic++ and the Classic+NL methods. As shown in Table 2,
solutions with the Classic++ initialization have similar energy as those with the Classic+NL initial-
ization. Table 1 shows that the average EPE obtained from both initializations is also similar. This
suggests that the method works as long as the initializationis sensible. We expect that our current
inference methods would not be able to recover from a really poor initialization.

Figure 3 and 4 show screen shots of the Middlebury public table for end-point error (EPE) and
average angular error (AAE). The proposed method (“Layer++”) is ranked first at the time of writing
(end of Oct. 2010) and also has the lowest average EPE and average AAE both overall and in
boundary regions.

We also provide the visual results of the proposed method on the training set in Figure 1 and on the
test set in Figure 2. Layers++ reduces many of the errors madeby the Classic+NL method in the
motion boundary regions, produces sharp boundaries that correspond well to image structure, and is
able to recover fine structures such as the leaf stems in the “Schefflera” sequence.

Finally average EPE and average AAE for all the test sequences are shown in Table 3.

Table 1: Average end-point error (EPE) on the Middleburytraining set.
Avg. EPE Venus Dimetrodon Hydrangea RubberWhale Grove2 Grove3 Urban2 Urban3

Weiss [7] 0.487 0.510 0.179 0.249 0.236 0.221 0.608 0.614 1.276
Classic++ 0.285 0.271 0.128 0.153 0.081 0.139 0.614 0.336 0.555

Classic+NL 0.221 0.238 0.131 0.152 0.073 0.103 0.468 0.220 0.384
20 warping steps (WS)

1layer 0.248 0.243 0.144 0.175 0.095 0.125 0.504 0.279 0.422
2layers 0.212 0.219 0.147 0.169 0.081 0.098 0.376 0.236 0.370
3layers 0.200 0.212 0.149 0.173 0.073 0.090 0.343 0.220 0.338
4layers 0.194 0.197 0.148 0.159 0.068 0.088 0.359 0.230 0.300
5layers 0.196 0.195 0.151 0.169 0.063 0.086 0.345 0.211 0.351

20 WS w/ WMF : overall (method from main paper)
1layer 0.231 0.235 0.144 0.155 0.075 0.106 0.462 0.245 0.426
2layers 0.204 0.217 0.149 0.156 0.070 0.090 0.357 0.219 0.373
3layers 0.195 0.211 0.150 0.161 0.067 0.086 0.331 0.210 0.345
4layers 0.193 0.195 0.150 0.155 0.064 0.087 0.351 0.222 0.321
5layers 0.197 0.196 0.149 0.173 0.065 0.087 0.347 0.214 0.346

20 WS w/ WMF: boundary region
1layer 0.545 0.617 0.222 0.379 0.218 0.295 0.868 0.703 1.061
2layers 0.468 0.456 0.250 0.390 0.206 0.231 0.652 0.670 0.889
3layers 0.451 0.441 0.252 0.409 0.197 0.220 0.596 0.610 0.885
4layers 0.436 0.348 0.250 0.393 0.182 0.230 0.636 0.647 0.801
5layers 0.437 0.345 0.250 0.438 0.182 0.221 0.626 0.602 0.834

3 WS w/ WMF: overall
1layer 0.219 0.231 0.119 0.152 0.074 0.097 0.454 0.230 0.394
2layers 0.195 0.211 0.122 0.159 0.070 0.084 0.364 0.205 0.346
3layers 0.190 0.212 0.128 0.163 0.066 0.080 0.347 0.206 0.321
4layers 0.194 0.192 0.132 0.158 0.063 0.081 0.365 0.227 0.337
5layers 0.196 0.192 0.136 0.159 0.063 0.080 0.362 0.224 0.349

3 WS w/ WMF: boundary region
1layer 0.551 0.642 0.218 0.385 0.229 0.291 0.859 0.710 1.074
2layers 0.472 0.464 0.236 0.414 0.218 0.238 0.672 0.662 0.876
3layers 0.463 0.441 0.254 0.428 0.207 0.221 0.630 0.632 0.891
4layers 0.465 0.353 0.264 0.415 0.187 0.229 0.665 0.671 0.934
5layers 0.466 0.354 0.271 0.418 0.191 0.220 0.653 0.662 0.962

20 WS w/ WMF: Classic++ init
1layer 0.248 0.232 0.144 0.155 0.079 0.107 0.523 0.261 0.487
2layers 0.206 0.218 0.149 0.156 0.072 0.090 0.373 0.218 0.372
3layers 0.203 0.212 0.151 0.161 0.066 0.087 0.339 0.210 0.396
4layers 0.198 0.195 0.149 0.155 0.064 0.087 0.342 0.229 0.360
5layers 0.192 0.194 0.148 0.161 0.063 0.085 0.326 0.231 0.327

Table 2: Energy (×106) of the solutions obtained by the proposed method with threelayers. The
energy is shown for all the sequences in thetraining set using two different initializations.

Venus Dimetrodon Hydrangea RubberWhale Grove2 Grove3 Urban2 Urban3
“Classic+NL” Init -1.814 -2.609 -2.370 -3.039 -2.679 -1.979 -3.198 -3.044
“Classic++” Init -1.814 -2.613 -2.369 -3.039 -2.680 -1.974 -3.200 -2.998
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Figure 1:Results on the Middleburytraining set. Left to right: first image, initial flow field given by Clas-
sic+NL, final flow field, motion segmentation, and detected occlusions (black). Best viewed in color and better
enlarged for comparing the flow fields.

3 Results on the “Hand” Sequence

While the method performs well on the Middlebury evaluation, how well do the results generalize
to other sequences? To find out, we apply the proposed model with 3 layers to the challenging
“Hand” sequence [1], as shown in Figure 5. With the parametersettings tuned to the Middlebury
training sequences, the proposed model does not recover theregions between fingers (Figure 5,
top row). With a different parameter setting (λd = 5, andλb = 90), the proposed model can
successfully recover the regions between fingers. The EPE for this sequence drops from2.754 to
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Figure 2:Results on the Middleburytest set. Left to right: first image, initial flow field given by Classic+NL,
final flow field, motion segmentation, and detected occlusions (black). Best viewed in color and better enlarged
for comparing the flow fields.

1.909. Moreover, note that the model successfully recovers from failures of the initialization in the
regions between the fingers.

Table 4 compares this new parameter settings with the old settings on the Middlebury training se-
quences. The new settings produces an average training EPE of 0.215 which is about10% worse
than the result reported in the main paper.

This suggests that the proposed method may suffer from over fitting to the Middlebury evaluation.
Future work should consider learning the parameters using amore representative data set [5] and
automatically adapting the parameters to a particular sequence.

4



Figure 3: Screen shot of the Middlebury public end-point error (EPE) table; the proposed method is
“Layer++”.

Figure 4: Screen shot of the Middlebury public average angular error (AAE) table; the proposed method is
“Layer++”.

4 Gradients of the Energy Function w. r. t. the Flow and the Hidden Fields

We use gradient-based methods to optimize the proposed energy function and this section summa-
rizes the gradients with respect to the flow and the hidden fields. We derive the gradient for each

Table 3: Average end-point error (EPE) and angular error (AAE) on the Middlebury optical flow
benchmark (test set).

Rank Average Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy
EPE
Layers++ 4.3 0.270 0.08 0.19 0.20 0.13 0.48 0.47 0.15 0.46
Classic+NL 6.5 0.319 0.08 0.22 0.29 0.15 0.64 0.52 0.16 0.49
EPE in boundary regions
Layers++ 0.560 0.21 0.56 0.40 0.58 0.70 1.01 0.14 0.88
Classic+NL 0.689 0.23 0.74 0.65 0.73 0.93 1.12 0.13 0.98
AAE
Layers++ 4.1 2.556 3.11 2.43 2.43 2.13 2.35 3.81 2.74 1.45
Classic+NL 5.8 2.904 3.20 3.02 3.46 2.78 2.83 3.40 2.87 1.67
AAE in boundary regions
Layers++ 6.525 8.22 7.02 5.77 9.71 3.02 11.40 4.01 3.05
Classic+NL 7.823 8.72 10.60 8.84 14.30 3.68 9.09 3.82 3.53
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Table 4: Average end-point error (EPE) on the Middleburytraining set by the proposed model with
3 layers and two different sets of parameters.

Avg. EPE Venus Dimetrodon Hydrangea RubberWhale Grove2 Grove3 Urban2 Urban3
3layers (λb = 10, λd = 9) 0.195 0.211 0.150 0.161 0.067 0.086 0.331 0.210 0.345
3layers (λb = 90, λd = 5) 0.215 0.210 0.155 0.169 0.071 0.090 0.373 0.273 0.379

Figure 5:Results on the “Hand” sequence. Top: using same parameters as those used for the Middlebury data
set (EPE2.754). Bottom: using parameters tuned for hand (EPE1.909). Left to right: first image, initial flow
field given by Classic+NL, final flow field, motion segmentation, and detected occlusions (black). Best viewed
in color.

individual term in the objective. From these it is easy to obtain the formula for the overall objective.
Most of the derivations are straightforward and we only elaborate where there are subtle points.

4.1 Gradients w. r. t. the Hidden Field

Temporal Coherence Term The hidden fieldgt,k appears in the temporal coherence term at time
t andt− 1. For the one at timet,

∂Etime(gt,k,gt+1,k,utk,vtk)

∂gtk(i, j)
= 2(gtk(i, j)− gt+1,k(i+ uij

tk, j + vijtk)). (1)

The termEtime(gt−1,k,gt,k,ut−1,k,vt−1,k) involves the expressiongtk(i + uij
t−1,k, j + vijt−1,k),

which we compute using bi-linear interpolation. This is a linear operation applied to the hidden field
gtk and we can express it as a matrix,Wt−1,k, applied to the vectorized hidden fieldgt,k(:). Here
“ :” means arranging the matrix into a vector in a column-major way; that is, in the same way as the
MATLAB vectorization operator. NowWt−1,kgt,k(:) is the vectorized, warped result using the
flow field from framet− 1 to framet and

Etime(gt−1,k,gtk) = ||gt−1,k(:)−Wt−1,kgtk(:)||
2. (2)

Its gradient w. r. t.gtk(:) is

∇gtk
Etime(gt−1,k,gtk) = 2WT

t−1,k(Wt−1,kgtk(:)− gt−1,k(:)). (3)
Note that there is no need to construct the matrixWt−1,k in the implementation and we just need to
perform the interpolation operation and its transpose.

Data Term Similarly, the hidden fieldgt,k appears in the data term at timet andt − 1. What is
subtle is that the hidden field of a front layer influences the data term of the layers behind. We will
first give the gradient of the soft layer assignment w. r. t. the hidden field, which plays a major role
of the later derivations. Recall that the soft layer assignment is

s̃tk(i, j) =

{

σ(λegtk(i, j))
∏k−1

k′=1 σ(−λegtk′(i, j)), 1 ≤ k < K
∏K−1

k′=1 σ(−λegtk′(i, j)), k = K.
(4)

Using the property of the logistic functionσ′(x) = σ(x)σ(−x), we can obtain its gradient w. r. t. the
hidden field

∂s̃tk(i, j)

∂gtl(i, j)
=











0, k < l

λes̃tk(i, j)σ(−λegtl(i, j)), k = l

−λes̃tk(i, j)σ(λegtl(i, j)), k > l.

(5)
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Note that thek < l case means that the hidden field of a layer behind does not influence the data
term of the layers in front of it.

It is straightforward to obtain the gradient of the data termat timet w. r. t. the hidden fieldgtl as

∂Edata(ut,vt,gt,gt+1)

∂gtl(i, j)
=

∑

k

(

ρd(I
s
t (i, j)− Ist+1(i + uij

tk, j + vijtk))− λd

)∂s̃tk(i, j)

∂gtl(i, j)
s̃t+1,k(i+ uij

tk, j + vijtk). (6)

The formula for the data term at timet − 1 is a little more complicated because it depends on
the soft layer assignment at timet warped by the flow field. To simplify the notation, we define

htk(i, j) =
(

ρd(I
s
t (i, j)− Ist+1(i + uij

tk, j + vijtk)) − λd

)

s̃tk(i, j) and rewrite the data term at time

t− 1 in the vector product form as

Edata(ut−1,vt−1,gt−1,gt) = ht−1,k(:)
TWt−1,k s̃tk(:), (7)

where the warping operatorWt−1,k is the same as above.

Now we can obtain the gradient of the data term w. r. t. the hidden fieldgtk as

∇gtk
Edata(ut−1,vt−1,gt−1,gt) = ∇gtk

stk(:)W
T
t−1,kht−1,k(:). (8)

Note that∇gtk
s̃tk(:) is a diagonal matrix because∂s̃tk(i,j)

∂gtk(i′,j′)
= 0 for (i, j) 6= (i′, j′).

Color-modulated Spatial Term It is easy to obtain the gradient ofEspacew. r. t. the hidden field
because of its quadratic form:

∂Espace(gtk)

∂gtk(i, j)
=

∑

(i′,j′)∈Γ(i,j)

2wij
i′j′(gtk(i, j)− gtk(i

′, j′)). (9)

4.2 Gradients w. r. t. the Horizontal Flow Field

Due to symmetry, we only give the gradient formulas for the horizontal flow field; the vertical case
is analogous.

Temporal Coherence Term Using the chain rule, we obtain

∂Etime(gt,k,gt+1,k,utk,vtk)

∂uij
tk

= 2
(

gt+1,k(i + uij
tk, j + vijtk)− gtk(i, j)

)∂gt+1,k

∂x
(I + uij

tk, j + vijtk)

(10)
where∂gt+1,k/∂x is the partial derivative of the hidden field in the horizontal image directionx.

Data Term The data term is different from the standard data term for optical flow estimation in
that the warped soft layer assignments̃t+1,k(i + uij

tk, j + vijtk) also depends on the flow field. As a
result

∂Edata(ut,vt,gt,gt+1)

∂uij
tk

=

− ρ′d(I
s
t (i, j)− Ist+1(i+ uij

tk, j + vijtk))
∂Ist+1

∂x
(i+ uij

tk, j + vijtk)s̃tk(i, j)s̃t+1,k(i+ uij
tk, j + vijtk)

+
(

ρd(I
s
t (i, j)− Ist+1(i+ uij

tk, j + vijtk))− λd

)

s̃tk(i, j)
∂s̃t+1,k

∂x
(i+ uij

tk, j + vijtk). (11)

Again the partial derivatives with respect tox correspond to partials in the horizontal image direc-
tion.
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Spatial Prior Term Before each warping step, we estimate the affine flow field(ūθtk , v̄θtk) for
each layer. We solve for the parametersθtk using a simple least squares estimate given the current
flow field for the layer. This could be improved by deriving thepartial derivatives of the affine
parameters w. r. t. the robust formulation and solving for them along with the other parameters. This
is future work.

With the affine flow field fixed, we can obtain the gradient of thespatial term w. r. t. the flow field as

∂Eaff(utk, θtk)

∂uij
tk

=
∑

(i′,j′)∈Γ(i,j)

ρ′s

(

(uij
tk − ūij

θtk
)− (ui′j′

tk − ūi′j′

θtk
)
)

. (12)

With these gradient formulas, it is straightforward to perform the incremental estimation for the flow
field [2].

References

[1] C. Liu, W. T. Freeman, E. H. Adelson, and Y. Weiss. Human-assisted motion annotation. InCVPR, 2008.

[2] S. Roth and M. J. Black. On the spatial statistics of optical flow. IJCV, 74(1):33–50, August 2007.

[3] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms.Phys. D,
60(1-4):259–268, 1992.

[4] D. Sun, S. Roth, and M. J. Black. Secrets of optical flow estimation and their principles. InCVPR, 2010.

[5] D. Sun, S. Roth, J. P. Lewis, and M. J. Black. Learning optical flow. InECCV, pages 83–97, 2008.

[6] A. Wedel, T. Pock, C. Zach, D. Cremers, and H. Bischof. An improved algorithm for TV-L1 optical flow.
In Proc. of the Dagstuhl Motion Workshop, LNCS. Springer, September 2008.

[7] Y. Weiss. Smoothness in layers: Motion segmentation using nonparametric mixture estimation. InCVPR,
pages 520–526, Jun 1997.

8


