
Bayesian Population Decoding of Motor Cortical

Activity using a Kalman Filter

Wei Wu� Yun Gao� Elie Bienenstock�� John P. Donoghue� Michael J. Black�

�Division of Applied Mathematics, �Department of Neuroscience,

�Department of Computer Science,

Brown University, Providence, RI 02912, USA

weiwu@dam.brown.edu, gao@dam.brown.edu, elie@dam.brown.edu,

john donoghue@brown.edu, black@cs.brown.edu

May 3, 2005

NC ms 3018

Correspondence:

Wei Wu

Department of Organismal Biology and Anatomy

University of Chicago,

Chicago, IL 60637, USA

Phone: (773) 702-5594, FAX: (773) 702-0037

Email: weiwu@uchicago.edu

1

Keywords: neural decoding, primary motor cortex, Kalman filter, multi-electrode ar-

ray, Bayesian inference, neural prosthesis.

Acknowledgments: This work was supported in part by: the DARPA BioInfoMicro

Program, the NIH NINDS Neural Prosthesis Program and Grant #NS25074, and the

NSF ITR Program award #0113679. We thank D. Mumford, E. Brown, M. Serruya, A.

Shaikhouni, J. Dushanova, C. Vargas-Irwin, L. Lennox, D. Morris, D. Grollman, and

M. Fellows for their assistance.

JPD is a cofounder and shareholder in Cyberkinetics, Inc., a neurotechnology company

that is developing neural prosthetic devices.

The basic Kalman filter method was presented at the 16th Annual Conference on Neural

Information Processing System, in Vancouver, Canada, December 2002. This submis-

sion adds significant new material and expands upon the conference paper. We repeat

some of of results so that the current manuscript is self-contained.

2

Abstract

Effective neural motor prostheses require a method for decoding neural activity

representing desired movement. In particular, the accurate reconstruction of a

continuous motion signal is necessary for the control of devices such as computer

cursors, robots, or a patient’s own paralyzed limbs. For such applications we

developed a real-time system that uses Bayesian inference techniques to estimate

hand motion from the firing rates of multiple neurons. In this study, we used

recordings that were previously made in the arm area of primary motor cortex in

awake behaving monkeys using a chronically implanted multi-electrode microar-

ray. Bayesian inference involves computing the posterior probability of the hand

motion conditioned on a sequence of observed firing rates; this is formulated in

terms of the product of a likelihood and a prior. The likelihood term models the

probability of firing rates given a particular hand motion. We found that a linear

Gaussian model could be used to approximate this likelihood and could be readily

learned from a small amount of training data. The prior term defines a probabilis-

tic model of hand kinematics and was also taken to be a linear Gaussian model.

Decoding was performed using a Kalman filter which gives an efficient recursive

method for Bayesian inference when the likelihood and prior are linear and Gaus-

sian. In off-line experiments, the Kalman-filter reconstructions of hand trajectory

were more accurate than previously reported results. The resulting decoding algo-

rithm provides a principled probabilistic model of motor-cortical coding, decodes

hand motion in real time, provides an estimate of uncertainty, and is straightfor-

3

ward to implement. Additionally the formulation unifies and extends previous

models of neural coding while providing insights into the motor-cortical code.

4

1 Introduction

Recent research on developing neural motor prostheses has demonstrated the feasibility

of direct neural control of computer cursor motion and other devices using implanted

electrodes in non-human primates (Wessberg et al., 2000; Serruya et al., 2002; Taylor

et al., 2002; Carmena et al., 2003). These results are enabled by a variety of mathemat-

ical decoding methods that produce an estimate of the subject’s state (e.g. hand posi-

tion) from a sequence of measurements (e.g. the firing rates of a population of cells). A

number of algorithms have been proposed for decoding extracellularly recorded neural

firing activity in the arm area of primary motor cortex (MI) to perform off-line recon-

struction of hand motion or on-line control of cursors or robotic devices (see (Schwartz

et al., 2001; Serruya et al., 2003) for a brief overview). Here we pose this problem as

one of Bayesian inference in which the goal is to estimate the a posteriori probability

of hand kinematics conditioned on an observed sequence of firing rates. The Bayesian

approach formulates this posterior probability as the product of a likelihood term and

an a priori probability. The likelihood term models the probability of the firing rates

given the current hand motion and can be learned from training data. The prior com-

bines a model of how the hand moves over time with an estimate of the kinematics at

the previous time instant. The Kalman filter (Gelb, 1974; Kalman, 1960) provides an

efficient recursive algorithm to optimally estimate the posterior probability when the

likelihood and prior models are linear and Gaussian.

Previous methods for decoding MI activity include the population-vector algorithm

(Georgopoulos et al., 1986; Moran and Schwartz, 1999b; Moran and Schwartz, 1999a;

5

Schwartz and Moran, 1999; Taylor et al., 2002), linear filtering (Paninski et al., 2004;

Sanchez et al., 2003; Serruya et al., 2002; Wessberg et al., 2000), and artificial neural

networks (Wessberg et al., 2000). Each of these methods can be viewed as a direct

method that attempts to estimate the hand kinematics x as a function of the neural firing

z; that is

x � ���z��

In contrast, most models of neural coding can be viewed as generative models where

the neural activity is a function of a behavior or stimulus x; that is

z � ���x� � �����

where the noise might be assumed to be Poisson. The Bayesian approach presented

here provides a clear and rigorous way of taking generative models of neural encoding

and exploiting them to perform decoding.

Previous authors have explored the relationship between firing rates in MI and var-

ious aspects of hand motion (position, direction, speed, velocity, or acceleration) (Ket-

tner et al., 1988; Georgopoulos et al., 1986; Moran and Schwartz, 1999b; Flament and

Hore, 1988). While previous studies have typically viewed these behavioral variables in

isolation, we found that decoding performance is improved when the encoding model

simultaneously takes into account all these variables. This suggests the need for a richer

model of neural coding than is typically considered. Additionally, our results demon-

strate the importance of modeling correlated noise in the firing rates of multiple cells.

Decoding performance drops significantly when cells are assumed to be conditionally

independent.

6

Much of the prior work on motor cortical decoding has focused on relatively con-

strained “center-out” motions rather than the continuous motions considered here (Panin-

ski et al., 2004). To cope with continuous motion we adopt a very simple prior model

of hand motion that, in contrast to previous decoding methods, explicitly models the

temporal evolution of the hand kinematics. Bayesian methods have been exploited pre-

viously to infer the 2D location of a rat from hippocampal place-cell activity (Brown

et al., 1998; Twum-Danso and Brockett, 2001; Zhang et al., 1998). The application

of Bayesian decoding to motor cortical data was proposed in (Gao et al., 2002) with

various Kalman filter formulations being recently studied (Sanchez et al., 2002; Wu

et al., 2002; Wu et al., 2003). Some of the results in the present paper were previously

reported in Wu et al. (Wu et al., 2003).

The Kalman filter has a number of desirable properties for motor cortical decoding.

The inclusion of prior information about the system state enables an efficient recur-

sive formulation of the decoding algorithm and effectively smooths noisy estimates in

a mathematically principled way; this is particularly important for decoding complex,

natural, hand motions required for neural motor prostheses. We reconstructed hand tra-

jectories from pre-recorded neural firing rates and found that the Kalman filter method

was more accurate than previous approaches while also being computationally efficient.

The detailed application of the method provides insight into neural coding in MI and is

useful for examining optimal time lags between spiking activity and hand movement,

the accuracy of different models of hand kinematics, the contributions of different neu-

ral population sizes, and the effect of temporal bin sizes for estimating neuronal firing

rate. We describe the implementation and structure of a Kalman-filter method that is

7

computationally efficient to learn, requires little training data, provides real-time de-

coding, is applicable to the complex natural motions, and thus, seems well suited to

prosthetic applications.

The structure of this paper is as follows: Section 2 summarizes the experimental

paradigm used previously to obtain the neural recordings. This section also introduces

the linear Gaussian model of motor cortical activity, our Bayesian framework, the un-

derlying statistical assumptions, the Kalman filter decoding algorithm, and an approach

for estimate optimal time lags. Section 3 describes the decoding results as well as ex-

perimental results related to various modeling choices that are important for accurate

decoding. It also compares the Kalman filter with previous decoding methods (the

linear filter and population vector methods). Section 4 discusses related work and of-

fers conclusions. The Appendix provides the mathematical details of the Kalman filter

algorithm, a comparison with the Wiener filter and a few additional algorithmic and

modeling details with associated experimental results.

2 Materials and Methods

2.1 Experimental Methods

The neural data used here was pre-recorded and has been described elsewhere (Paninski

et al., 2004; Serruya et al., 2002). Briefly, after initial task training, two macaque mon-

keys were implanted with silicon microelectrode arrays containing 100 platinized-tip

probes (Cyberkinetics Inc., Foxboro, MA). Details of the array and recording protocols

are described elsewhere (Maynard et al., 1997; Maynard et al., 1999). The devices were

implanted in the arm area of primary motor cortex (MI) (see (Donoghue et al., 1998)

8

for details). All procedures were in accordance with protocols approved by Brown

University Institutional Animal Care and Use Committee. Signals were amplified and

digitized using commercial hardware (Plexon Inc, Dallas TX). As is common practice

in the literature, waveforms crossing experimenter-determined thresholds were further

processed to detect action potentials; the details differed for each of the two behavioral

tasks described below. Action potentials were then counted within fixed time windows

(bins) and the firing rate (number of spikes per unit time) within each bin was computed

for each neuron. All encoding/decoding analysis was performed using these discrete

approximations to the firing rate.

The behavioral paradigms for the two tasks below are described in (Paninski et al.,

2004) and (Serruya et al., 2002). In each task, the monkey viewed a computer monitor

while continuously moving a manipulandum on a 	
�� � 	
�� tablet (with approx-

imately a ���� � ���� workspace) that was parallel to the floor. The position of

the manipulandum (hand position) controlled the 2D motion of a feedback cursor on

the monitor. The hand position and neural activity were recorded simultaneously. In

addition to hand position we computed derivatives of the position using finite differ-

ences; these approximated velocity, acceleration, and higher-order hand kinematics.

For example, given a time series of positions ���� ��� at time �� we approximated the

velocity, ������ ����� as ��������
��

� �������
��

� (where
� is the time step length). It is well

known that this approach results in noisy estimates of the derivatives with the effects

of noise being more pronounced in the higher derivatives. Consequently we also ex-

perimented with using splines to smoothly interpolate the position data. Differentiating

these splines produced less noisy derivatives but did not significantly improve decoding

9

performance. It also increased the complexity of the method and complicated real-time

decoding. Consequently in all further analysis we used the simple, discrete, derivative

approximations to represent the hand kinematics.

Pursuit Tracking Task. The Pursuit Tracking task was clearly described in (Paninski

et al., 2004). Briefly, a target dot moved slowly on the monitor and the behavioral

task required moving the feedback cursor with the manipulandum so that it tracked the

target within a given distance range. On each trial, the target motion followed a unique

random walk from a different random starting location. Each trial ended when the dot

was out of the tracking range and lasted at most 10 seconds with the majority of trials

lasting approximately 8 or 9 seconds. Short trials, in which the monkey was unable

to track the target for more than 5 seconds, were judged unsuccessful and were not

considered. Our subsequent analysis was based on the remaining 182 trials. The 2D

histograms of the hand position, velocity and acceleration of over all trials are shown

in Fig. 1 (first row). Note that these distributions are significantly different from those

obtained during simple, stylized, movements found in center-out reaching tasks (Taylor

et al., 2002). While the hand motions were more “general” than those in stereotyped

reaching tasks, the motion was still constrained to follow a particular path.

After thresholding, detected waveforms were analyzed off-line using commercial

software (Plexon Inc, Dallas TX). Twenty five well isolated individual units (neurons)

were detected (Serruya et al., 2003) and the firing rate for each unit was computed in

non-overlapping �
�	 time bins. The hand kinematics were sub-sampled to match the

�
�	 time intervals.

10

Pinball Task. The Pinball task (Serruya et al., 2002) was designed to test a direct

neural control task and differed from the Pursuit Tracking task in that the target did

not move continuously but rather appeared in random locations on the monitor. The

monkey was required to move the feedback dot with the manipulandum to “hit” the

target (within a pre-specified distance). When the target was acquired, it disappeared

and then reappeared in a new random location. Each time the target appeared, the

monkey moved to hit the new location. The motions made by the monkey on the 2D

plane were less constrained than in the Pursuit Tracking task since the exact motion

used to reach the targets was under the control of the subject.

From this experiment, we obtained two sets of trials: one was approximately 3.5

minutes in length and was used as training data to learn our encoding model; the other

was approximately 1 minute in length and was used as test data for decoding. The

2D histograms of position, velocity and acceleration of all data are shown in Fig. 1

(second row). Note that the distribution over position is more uniform than in the

Pursuit Tracking task. Also note that the magnitude of the velocity and acceleration of

the hand was significantly higher in this task.

The recording of hand motion and the approximation of the temporal derivatives

(velocity, acceleration, etc.) was exactly the same as in the Pursuit Tracking task. The

waveforms, however, were sorted on-line into units using manually-set thresholds with-

out a separate off-line sorting process. All the waveforms crossing the thresholds were

treated as action potentials from a single unit potentially resulting in multi-unit data.

The firing rate was computed for each such unit in �
�	 time bins and there were 42

such units for this task.

11

The firing rates of the cells were significantly higher than in the Pursuit Tracking

task (likely due to the faster hand motion). Quantitatively, the average hand speeds were

approximately �������
	 (Pinball) and ������
	 (Pursuit Tracking), while the aver-

age firing rates over all cells were approximately 	
spikes
	 (Pinball) and �
spikes
	

(Pursuit Tracking).

2.2 Statistical Methods

Our focus here is on a probabilistic, Bayesian, approach for inferring hand movement

from the firing rate of neurons in MI. We want our approach to (1) have a sound proba-

bilistic foundation; (2) explicitly model noise in the data; (3) indicate the uncertainty in

estimates of hand position; (4) make the statistical assumptions about the data explicit;

(5) require a minimal amount of “training” data; (6) provide on-line estimates of hand

position with short delay (less than 200ms); and (7) provide insight into the neural cod-

ing of movement. To that end, we developed a Kalman-filtering method (Gelb, 1974;

Welch and Bishop, 2001) that provides a rigorous and well understood framework that

addresses these issues. This approach provides a control-theoretic model for the encod-

ing of hand movement in motor cortex and for inferring, or decoding, this movement

from the firing rates of a population of neurons. The approach generalizes and extends

previous coding models.

2.2.1 Modeling Neural Coding of Hand Kinematics

Georgopoulos et al. (1982) observed that the firing rate of cells in MI were approxi-

mated by a cosine “tuning function.” In particular the firing rate, ��, of a cell at some

12

time �� is related to movement direction, ��, by

�� �
� �
���	��� � ��� (1)

where �� is the cell’s “preferred” direction (i.e. direction of maximal response) and
�

and
� are scalar constants. Equivalently, this can be expressed as

�� �
� �
�	������ �
���	����� (2)

where
��
� are scalar parameters that can be fit to training data.

The above model has formed the foundation for much of the analysis of motor

cortical encoding of motion. For general prosthetic applications, however, this model

is insufficient as it only relates neural activity to movement direction. Since it does not

capture the full kinematics of hand motion, decoding using this approach has focused

on “center-out” tasks where movement direction is the key component of the motion.

Moran and Schwartz (Moran and Schwartz, 1999b) extended the above model to

include the speed, �����, of the hand

�� �
� � ������
�	������ �
���	������ (3)

This is equivalent to modeling the firing rate as a linear function of velocity in the �

and � coordinates:

�� �
� �
����� �
������ (4)

where ���� and ���� represent the hand velocity in the � and � directions respectively at

time ��.

13

A similar linear model was proposed to relate firing rate and hand position (Kettner

et al., 1988):

�� � �� � ���� � ����� (5)

where �� and �� represent hand position and ��� ��� �� are the linear coefficients which

are fit to training data.

We found that linear models of position and velocity (Equations (5) and (4) respec-

tively) provided reasonable approximations to our data. In the Pursuit Tracking data,

23 of the total 25 cells are appropriately characterized by Equations (5), and 25 are by

Equations (4) (multiple regression, � test, � � 0.05). In the Pinball data, these num-

bers are 39 and 41 of the total 42 cells (multiple regression, � test, � � 0.05). Some

examples of linear fits are shown in Fig. 2 for illustration. In addition to position and

velocity, the firing rate has also been shown to be related to hand acceleration (Flament

and Hore, 1988).

Based on this previous work we assume (for now) that the population activity is

related to the position, velocity and acceleration of the hand (this will be verified and

extended later). We then define the system state to be a six-dimensional vector x� �

��� �� ��� ��� ��� ���
�
� representing the �-position, �-position, �-velocity, �-velocity, �-

acceleration, and �-acceleration of the hand at time �� � �
� where
� � �
�	

(Pinball task) or �
�	 (Pursuit Tracking task) in our experiments. Other models of the

hand kinematics are possible and are explored in the experimental results.

Below we show how to estimate this system’s state in a principled way that extends

previous work, incorporates an explicit noise model, and models correlations between

14

the activity of different cells.

2.2.2 Bayesian Formulation

The above models all linearly relate components of the system state to the firing rates of

individual neurons. Generalizing this idea, let observations z� � �
� represent a � � �

vector containing the firing rates at time �� for � observed neurons within a
� time

interval. Let Z� � �z�� z�� � � � � z��� represent the history of measurements up to time

bin �.

We pose the problem of estimating the system state as one of Bayesian inference.

Let ��x��Z�� be the a posteriori probability of the system state conditioned on the

measurements. We make two Markov assumptions:

��x��x���� x���� � � � � x�� � ��x��x����� (6)

and

��z��x��Z���� � ��z��x��� (7)

These state that, given the hand kinematics at time �� �, the hand kinematics at time �

is conditionally independent of the previous hand motions and that, conditioned on the

current state, the firing rates are independent of the firing rates at previous time instants.

Then, using Bayes Theorem and simple algebra we can write the posterior probability

as:

��x��Z�� � � ��z��x��
�

��x��x������x����Z���� �x���� (8)

where ��z��x�� is called the likelihood of the state, ��x��x���� is a temporal prior that

models how the state evolves from one time instant to the next, and ��x����Z���� is

15

simply the posterior probability at the previous time instant. The term � is a normalizing

term, independent of x�, which ensures that posterior integrates to 1.

Decoding then involves estimating the posterior probability, ��x��Z��, at each time

instant, which we can do recursively using Eq. (8). Having a representation of the

full posterior has advantages over methods that estimate x� with no representation of

uncertainty. Given the posterior, one can compute an estimate of x� in a variety of stan-

dard ways. For example, one can compute the expected value of x�, ��x��Z��, or the

value that maximizes ��x��Z�� resulting in a maximum a posteriori (MAP) estimate. In

the general case, the posterior probability, ��x��Z��, can be an arbitrary, non-Gaussian,

multi-modal distribution (Gao et al., 2002; Cisek and Kalaska, 2002), and the inte-

gral in (8) can be numerically approximated using Monte Carlo integration techniques

(Brockwell et al., 2004; Gao et al., 2002; Shoham, 2001). To achieve a real-time de-

coding algorithm, we assume that the likelihood and the prior are both Gaussian, and

this leads to a closed-form recursive solution for estimating the posterior (which is also

Gaussian); this is known as the Kalman filter (Kalman, 1960; Gelb, 1974; Welch and

Bishop, 2001).

To fully specify the decoding model we must define the likelihood, the temporal

prior, and the algorithm for estimating the posterior. These are described below.

Likelihood Model. The likelihood relates the hand kinematics to the neural-firing

rates. We begin by defining a generative model for the activity of the population as

z� � ��x� � q�� (9)

16

where � � �� �� � � � �� , � is the number of time steps in the trial, and �� � �
���

is a matrix that linearly relates the six-dimensional hand state to the firing rates. We

assume that the noise in the observations is zero-mean and normally distributed with

covariance��; i.e. q� � ��
������� � �
��� .

Note that the assumption of zero-mean Gaussian noise in (9) is only applicable to

centralized (zero-mean) firing rates. The raw data is neither zero-mean nor truly Gaus-

sian. Consequently, before processing the firing rate data, it was first square-root trans-

formed (Maynard et al., 1999; Moran and Schwartz, 1999b) to make it better modeled

by a Gaussian. This pre-processing step is not absolutely necessary and only improves

decoding performance slightly; nevertheless we will assume square-root transformed

firing rates in the remainder of the paper. We then centralized the firing data as well as

the hand kinematics so that they both had zero mean; this was simply done by comput-

ing the mean firing and mean kinematics in the training set and subtracting this from

the data in both the training and test sets.

Previous work showed that the correlation in MI neurons is important for the encod-

ing of movement parameters (Fetz et al., 1991; Hatsopoulos et al., 1998). Consequently,

we take �� to be a full covariance matrix to model correlated noise in the firing rates.

Specifically, noise here results from errors in the predictions from the generative model.

This formulation of an explicit generative model with an explicit noise term general-

izes previous work. In our experiments we found that the full system state and full

covariance matrix produced the most accurate decoding results. The previous models

above can be viewed as using a reduced system state and a diagonal covariance matrix.

These simplified models resulted in degraded performance. This will be quantitatively

17

verified later for both tasks.

Temporal Prior. By modeling how the system state is expected to evolve over time,

the temporal prior can reduce the effects of noise and smooth the estimates in a math-

ematically principled way. We take the simple approach of assuming that the state

propagates in time according to a linear Gaussian model

x��� � ��x� � w�� (10)

where�� � �
��� is the coefficient matrix, and the noise term w� � ��
������� �

�
��� . As in the case of the the measurement model,�� is taken to be a full covariance

matrix. Equation (10) states that the hand kinematics (position, velocity and accelera-

tion) at time � � � is linearly related to the state at time �.

This is similar to the system model used in (Brown et al., 1998) for estimating a

rat’s position from the firing rates of hippocampal place cells. In contrast, here we

also model higher order hand kinematics (velocity and acceleration). While more com-

plex, non-linear, dynamical models could also be exploited, our focus here is on the

likelihood term which represents our model of the neural code.

2.2.3 Learning and Decoding with the Kalman Filter

In practice, ����������� may vary with time ��, however, we make the common

simplifying assumption that they are constant (independent of �). Thus, we can es-

timate all the constant parameters ������� from training data by maximizing the

joint probability ��X� �Z��, where both the hand kinematics X� � �x�� x�� � � � � x� ��

and the firing rates Z� are known for the � time instants in the training set.

18

Given our first-order Markov assumptions, the joint probability distribution over

states X� and firing rates Z� is

��X� �Z�� � ���x��
��
���

��x��x������
��
���

��z��x����

This is simply the product of the prior hand state ��x�� at the first time instant, the

probability of each new state conditioned on the previous one, and the likelihood at

each time instant. Given training data we maximize this probability with respect to

������� as described in the Appendix.

Decoding then involves reconstructing (or inferring) the system state at each time

instant given the prior estimate of the state and the new measurements of neural firing.

Since the measurement and system equations, (9) and (10), are both linear and Gaus-

sian, decoding can be performed using the Kalman filter (Kalman, 1960). The details

of the algorithm for recursive Bayesian inference are provided in the Appendix. The

Appendix also outlines the relationships between the Kalman filter, traditional linear

filtering methods, and the Wiener filter.

2.3 Estimating the Optimal Lag

The physical relationship between neural firing and arm movement implies the exis-

tence of a time lag between them (Moran and Schwartz, 1999b; Paninski et al., 2004).

If an “optimal lag” can be found, it should improve the model’s encoding ability and

the accuracy of the decoding. Introducing a time lag in the model means that to esti-

mate the state x� at time �� we should consider measurements, z��	 at some previous

(or future) instant in time ���	 for some integer �.

19

2.3.1 Uniform Lag

The simplest assumption is that all cells exhibit the same lag. Finding the optimal lag

then involves fitting the Kalman model for a variety of integer values � and choosing the

one that gives the best encoding or decoding performance. Since we can easily bound

the range of possible lags, this search is straightforward to perform.

In our experiments, the data was binned into 70 or 50�	 time bins. We found that

a uniform lag of 2 or 3 time bins, corresponding to 140 or 150�	, produced the most

accurate decoding results. This result is similar to Moran and Schwartz (Moran and

Schwartz, 1999b) where 145�	 were chosen as the average time lag between firing

activity and hand velocity.

2.3.2 Non-Uniform Lag

We found, however, that the best decoding results were obtained by allowing each cell

to have its own lag (within a pre-defined range of possible lags consistent with known

lags for cells in MI). To deal with different lags for each cell we extend our notation:

let �	 � �
� �� � � � � �� be the lag of the ��
 cell, � � �� �� � � � � � (� is the total number of

cells). Let ���� � ���� � � � � ��� be some set of lag times for the � units. As suggested

by the optimal 140 or 150�	 uniform time lag for both tasks, we took the maximum

lag to be � � � in the Pinball task (corresponding to
�	 � lag � ��
�); and � � �

in the Pursuit Tracking task (corresponding to
�	 � lag � ��
�). The ��
 firing-

rate vector is �� � ������ ����� � � � � �����, in which each �	�� is the firing rate of cell �

at time step � � �	. For each possible assignment, ����, of lags to cells one could train

the Kalman-filter model. The Kalman filtering algorithm generates the error covariance

20

matrix �� (for � large enough, it is approximately constant). Letting �	������� be the

sum of the first two components on the main diagonal of �� (equivalent to the mean-

squared error of position), our goal is to find the optimal assignment of lags to cells

����; that is,

argmin������������

 ����	�������� ����	��������

A brute-force search of all possible combinations of lags would require estimating

the Kalman model for �� possibilities. This is impractical so, instead, we devise a fast,

randomized, greedy searching approach which is able to obtain very stable approxima-

tions to the desired time lags. The algorithm is sketched in Table 1.

The algorithm works by optimizing the lag time for cells individually; that is, it

solves for the lag of one cell while holding the lags of all the other cells fixed. The

algorithm then cycles through all the cells in a random order updating their lag in this

way. This process is repeated multiple times, and we found that it converges quickly in

practice (after three or four passes through the cells).

This algorithm requires that the Kalman filtering algorithm be applied to the training

data only ��� times. In our experiments we took the number of iterations, �, to be

5. In the Pinball experiment, for example, the number of cells, �, was �� resulting in a

computational cost that was much lower than the �� operations required for exhaustive

search.

21

1. Randomly choose initial lag �	 � �
� �� � � � � �� for each cell � � �� �� � � � � �.

2. For ��� ����� = 1 to �

% Randomize the order in which cells are considered

% to minimize effects of dependencies between cells

For � iterations

select a cell index � at random from ��� � � � � �� without replacement

hold all other lags constant (i.e. ��� � 	� �).

Update �� by minimizing:

�� � argmin����������� ����	������ � � � � ��� � � � � �����
3. Return the final set of values ����.

Table 1: Greedy algorithm for estimating individual lag times for each cell.

22

3 Results

The Kalman filter is well known and its implementation is quite standard. Our focus

here is on the development of this method for neural prosthetic applications. This ap-

plication to neural decoding requires a number of modeling choices which are explored

below in detail. Optimizing these modeling choices may provide insight into neural

coding in MI. Below, we report results for the two different continuous hand-motion

tasks described in the Methods section, on two different animals.

The accuracy of the reconstructions is reported using two different criteria: the cor-

relation coefficient (��, describing the similarity) and the mean squared error (�!�,

describing the Euclidean distance) between the reconstructed and true hand trajectories.

Assume ����� ���� is the estimate for the true position ���� ���, � � �� � � � � " , then �!�

and �� are defined as follows:

�!� �
�

"

��
���

���� � ����
� � ��� � ����

���

and

�� �

�
�

�
���� � ������� � ������

���� � ����
�

����� � �����
�

�
���� � ������� � ������

���� � ����
�

����� � �����

�
� �

where �� and �� represent the means of the � and � positions respectively. Note that

while we computed the full kinematic state vector, we characterized the error solely in

terms of position, since position accuracy is the key criterion for many neural-control

tasks. We note also that the �!� is more meaningful for prosthetic applications where

the subject needs precise control of cursor position; we observed decoding results with

23

relatively high correlation coefficients that were sometimes far from the true 2D hand

trajectory.

Below, we first explore the basic Kalman model and its decoding performance for

the two different movement tasks. We then analyze its behavior with respect to a num-

ber of modeling choices. Finally, we compare it with other techniques (the population

vector and linear filter).

3.1 Decoding

Pinball Task. To be practical, we must be able to train the model (i.e. estimate�,�,

�,�) using a small amount of data. Experimentally we found that approximately 2.5

minutes of training data sufficed for accurate reconstruction (this is similar to the result

for fixed linear filters reported in (Serruya et al., 2002)). The exact amount needed will

increase as the number of parameters in the model (neurons and kinematic variables)

increases. We explore the effect of varying the amount of training data below.

After learning the Kalman model as described in the Methods section and Ap-

pendix, we evaluate it by reconstructing test trajectories off-line using approximately

1 minute of recorded neural data not present in the training set. At the beginning of a

test trial, we made the assumption that hand kinematics were unknown and we let the

predicted initial condition be equal to the average of the kinematics in the training data.

The Kalman filter was then applied to reconstruct the hand kinematics. Some examples

of the reconstructed hand trajectory are shown in Fig. 3 (A) while Fig. 4 shows the re-

construction of each component of the state variable (position, velocity and acceleration

in � and �) for 1/3 of the test data. Note that, since the ground-truth velocity and accel-

24

eration curves were computed from the position data with simple finite differences, the

ground truth for these variables is quite noisy.

Pursuit Tracking Task. The data from the pursuit tracking task consisted of 182

short trials from which we randomly selected 130 trials (approximately 17 minutes) as

training data and took the remaining 52 trials (approximately 6.5 minutes) as test data.

In contrast to the Pinball task, here each test trial was of short duration, and conse-

quently the choice of initial starting state for the hand kinematics had a large impact on

the accuracy of the results. Whereas in the Pinball task we let the starting kinematics

be equal to the mean state in the training data, here we took it to be the true initial con-

dition. Starting from this state, the Kalman filter algorithm was applied to reconstruct

the system state as before. Figure 3 (B) shows some examples of reconstructed hand

trajectories. Numerical results are presented below for various lags.

3.2 Real-time Performance

The encoding and decoding software was written in Matlab (The Mathworks Inc., Nat-

ick, MA) and the experiments were run on a computer with a Pentium III 866MHz pro-

cessor. For the Pursuit Tracking task with ����� of training data, the Kalman model

took ���
	 to learn while the Pinball task with approximately 	����� of training data

took
���	 to train.

Decoding was performed at a rate of
����	 per �
�	 time bin for the Pursuit

Tracking task and �����	 per �
�	 time bin for the Pinball task. This decoding cost

is insignificant relative to these bin sizes. Note that decoding for the Pinball data took

25

Method �� ��� �� �!� (���)
Kalman (0�	 lag) (0.78, 0.91) 7.01
Kalman (70�	 lag) (0.80, 0.93) 6.25
Kalman (140�	 lag) (0.82, 0.93) 5.87
Kalman (210�	 lag) (0.81, 0.89) 6.80
Kalman (280�	 lag) (0.76, 0.82) 8.81
Kalman (non-uni lag, init 1) (0.84, 0.93) 4.75
Kalman (non-uni lag, init 2) (0.84, 0.93) 4.77

Table 2: Pinball Task: Reconstruction results for the recursive Kalman filter with

varied time lags: the upper portion shows uniform lags for all cells while the bottom

portion shows non-uniform lags. In the case of uniform time lags, we found that ��
�	

provided the best description of the relationship between firing pattern and hand move-

ment. Optimizing the individual lag for each cell, however, produced relatively more

accurate decoding in terms of mean-squared error.

longer due to the fact that the kinematic model had more parameters (six rather than

four as discussed below) and there were more neurons recorded for this task (42 versus

25).

3.3 Optimal Lag

Pinball Task. It is convenient to choose time lags corresponding to multiples of the

bin size, although one could always re-bin the data and compute a finer discretization

of the time lag. We used uniform time lags of 0, 70, 140, 210, 280 �	 for the training

and testing of the Kalman filter (see Table 2). From Table 2 (similar to Table 1 in (Wu

et al., 2003)) we see that the optimal uniform lag was approximately two time bins

(or 140�). Note that at each time step, the firing rate was the number of spikes over

26

the previous �
�	 bin, therefore binning the spikes introduces a lag even at what we

are calling 0 lag in the binned data. The same lag property also exists in the Pursuit

Tracking task (with bin size �
�).

In general, we observed that individual neurons do not all have the same optimal lag

though, in practice, the range of possible lags is bounded (
 � � � � or
�	 � lag �
��
�). To simplify our data analysis, we assume that the optimal lag for all cells is

less than 4 time bins (��
�) and exploit the greedy algorithm described in Table 1 to

approximate the optimal lag for each neuron.

The algorithm requires an initial guess of the lag for each cell. We experimented

with multiple random initial conditions and found that the greedy search algorithm

produced lags that were almost the same in all cases. The results for two experiments

are shown in Fig. 5 (A). These two suboptimal time-lag solutions gave similar decoding

results (see Table 2).

These results suggest that a non-uniform time lag is superior to a uniform one for

modeling the relationships between firing patterns and hand movement. In the interest

of simplicity however, and for the remainder of the paper, except where noted, we

choose a fixed uniform time lag of ��
�	 with which we evaluate all other aspects of

the Kalman model.

Pursuit Tracking Task. For the Pursuit Tracking task, the decoding accuracy for

different uniform lag times is shown in Table 4 (column labeled “pos, vel, accel”); the

accuracy is reported in terms of the average �!� and �� over 52 test trials. We

observed that ��
�	 was approximately the optimal uniform lag, which is consistent

27

with the ��
�	 lag found for the Pinball task. (Recall that data for the Pursuit Tracking

task was binned into �
�	 time bins in contrast to the �
�	 bins in the Pinball task.)

Here we found less variation in decoding results with respect to time lag. Conse-

quently the optimal non-uniform lag (see Fig. 5 (B)) showed no improvement over the

best uniform lag. We hypothesize that this is due to the much slower hand motions

present in this task; the hand is moving slowly enough that the difference in kinematic

state between various lags is less important. For the remainder of the paper, except

where noted, we choose a fixed uniform time lag of ��
�	 for the Pursuit Tracking

task.

3.4 Kinematic Model

We assumed above (by default) that position, velocity, and acceleration of the hand

were related to neural firing rates. Other kinematic models with more or fewer terms

could be employed. To understand the relationship between the order of the kinematic

model and neural activity, we tested a variety of models including position alone (zeroth

order), position and velocity (first order), position, velocity, and acceleration (second

order), and so on up to fifth order. Note that velocity and acceleration correspond to first

and second derivatives of position respectively. The next three higher-order derivatives

are referred to as jerk, snap, and crackle.

Pinball Task. We trained and evaluated each of these models. To avoid overfitting,

we learned each Kalman model using the training data set, then evaluated the decoding

accuracy in test data set. The decoding results in Table 3 show that adding higher-order

28

terms increases the decoding accuracy but with diminishing returns. As the number

of terms in the model increases, so does the need for training data and the risk of

overfitting.

The optimal choice of kinematic model is an example of a model-selection problem.

The Bayesian Information Criterion (BIC) (Rissanen, 1989) provides one approach

to deal with the general case. Assume the hand kinematics X� � �x�� x�� � � � � x� ��

and the firing rates Z� � �z�� z�� � � � � z� �� are known for the � time instants in the

training set. Let

� � ���������� ��X� �Z��� and $ �
of parameters

�
�����

then from information theory # is the number of bits to describe the data and $ is the

number of bits to describe the model. BIC searches for minimal number of bits to

describe the model and the data: i.e. the kinematic model which has the smallest #�$.

Table 3 shows that (position, velocity, acceleration, jerk) was the optimal kinematic

model. In practice we have found a second-order model to be sufficient and to provide

a good trade-off between accuracy and model complexity; this model is used in the

experiments below (except where noted).

Pursuit Tracking Task. Table 4 shows the decoding accuracy for different kinematic

models as well as different lags. For this data set we found that velocity is crucial while

the acceleration and higher-order terms result in overfitting of the model and a reduc-

tion of accuracy. One hypothesis for the difference between the Pursuit Tracking and

Pinball tasks with respect to the optimal kinematic model has to do with the particular

type of motion present. In the Pursuit Tracking task, the range of accelerations was

29

of orders �� ��� �� �!� (���) # � $
0 (0.72, 0.87) 7.72 -80834
1 (0.82, 0.91) 6.31 -84049
2 (0.82, 0.93) 5.87 -84411
3 (0.82, 0.93) 5.72 -84458
4 (0.82, 0.93) 5.61 -84307
5 (0.82, 0.93) 5.60 -84081

Table 3: Pinball Task: Decoding and BIC results with respect to the order of the

kinematic model. Order 0 corresponds to a system state containing just hand position.

Order 1 combines position with the first derivative of position (i.e. velocity). Order 2

uses position, velocity, and acceleration. Order 3 adds the third derivative (jerk) while

orders 4 and 5 add the additional derivatives (snap and crackle respectively). Experi-

ments showed that the higher order system models result in more accurate decoding but

with diminishing returns. The bold-face entries are optimal in terms of a BIC as well

as for practical purposes.

much smaller than in the Pinball task. In particular, the magnitude of the acceleration

was much smaller relative to the magnitude of the velocities (see Fig. 1). We observed

increased firing rates as velocity and acceleration increased. The slow motions in the

Pursuit Tracking task and the resulting low firing rates suggest that the effects of ac-

celeration cannot be distinguished from noise. In all experiments below involving the

Pursuit Tracking task, except where noted, we used a kinematic model containing only

position and velocity.

30

Lag position position, velocity pos, vel, accel
�� ��� �� �!� (���) �� ��� �� �!� (���) �� ��� �� �!� (���)

0�	 (0.43,0.39) 7.64 (0.79,0.68) 6.16 (0.78,0.65) 6.22
50�	 (0.46,0.40) 7.56 (0.79,0.68) 6.08 (0.78,0.66) 6.17
100�	 (0.49,0.40) 7.46 (0.79,0.68) 6.08 (0.79,0.65) 6.17
150�	 (0.51,0.41) 7.38 (0.79,0.68) 5.99 (0.79,0.64) 6.15
200�	 (0.53,0.41) 7.34 (0.79,0.67) 5.96 (0.78,0.64) 6.18
250�	 (0.54,0.40) 7.33 (0.78,0.67) 6.02 (0.78,0.64) 6.16
non-uni (0,53,0.41) 7.14 (0.79,0.68) 6.00 (0.79,0.65) 6.19

Table 4: Pursuit Tracking Task: Reconstruction results for the recursive Kalman

filter with varying time lag and different kinematic models. A uniform time lag of

approximately ��
�	 was roughly optimal as was a kinematic model containing just

position and velocity (see bold-face entry). Here there was no improvement when using

a non-uniform lag.

3.5 Conditional Dependence of the Firing Rates

In the Methods section, we suggested that the firing rates of the neurons in MI are

not independent conditioned on the hand kinematics and emphasized the importance of

learning a full covariance matrix �. Conditional independence would imply that the

likelihood could be written in terms of the probability of the firing rates, �	��, of the

individual neurons, � � � � � � �:

��z��x�� �
��
	��

���	���x�� �
��
	��

�

�%&	

������

�
��	�� ��	x���
&�	 �

where &�	 is the observation variance for cell � and �	 is the ��
 row of �. This model

corresponds to having a diagonal covariance matrix � with the &	 along the diagonal.

Learning the parameters of the Kalman model proceeds as before but with the restric-

tion that� is diagonal.

31

Pinball task Pursuit Tracking task
Method �� ��� �� �!� (���) �� ��� �� �!� (���)
full covariance (0.82, 0.93) 5.87 (0.79, 0.68) 5.99
diagonal covariance (0.82, 0.93) 6.91 (0.79, 0.67) 6.35

Table 5: Decoding accuracy for full and diagonal matrix for both Pinball and Pursuit

Tracking tasks.

Table 5 shows the decoding results obtained under this conditional independence

assumption. We found that the full covariance matrix provides a better probabilistic

model of the neural data, and results in more accurate decoding. The importance of

conditional dependence of the firing rates can be demonstrated using a �-test (Larsen

and Marx, 2001). For each pair of cells, we obtained the �-value under the null hypothe-

sis that the firing rates for this pair were conditionally independent. We found that, over

all the pairs, 51% (Pinball) and 40% (Pursuit Tracking) of �-values were less than 0.05,

therefore the null hypotheses of the independence of the corresponding pairs should be

rejected. This alternative analysis also suggests the importance of representing a full

covariance matrix�.

Note that estimating the full covariance matrix may be problematic for large popula-

tions of neurons. As the size of� increases, more training data is needed to avoid over-

fitting. To cope with this problem one can use Principal Component Analysis (PCA)

to reduce the dimensionality of the observation data. In the reduced-dimensional PCA

space, the directions are decorrelated but, since the firing rates are not Gaussian, PCA

does not make the directions conditionally independent. Consequently, it is still ad-

vantageous to fit a full covariance matrix; the advantage is that it can be fit to lower-

dimensional data.

32

3.6 Number of Neurons

We explored the effect of varying the population size on decoding accuracy and, not

surprisingly, found that larger populations result in more accurate decoding. For any

� � �� � � � � �, (� � �� in Pinball; � � �� in Pursuit Tracking), we randomly selected

subsets of � neurons from our population. We then fit the Kalman model to the training

data, and reconstructed the test data. The random subsets were chosen 100 times and

the decoding results were averaged (Fig. 6 (A)). We found that for both datasets the

�!� and �� improved with increasing population size. Current recording technology

is now able to produce 100 or more simultaneous recordings. The results here suggest

that these larger populations may lead to decreases in �!� which, in turn, should

make neural prosthetic control more accurate.

3.7 Amount of Training Data

We also explored the effect of the quantity of training data on decoding accuracy: larger

amounts of training data resulted in more accurate decoding. Using the same test data,

we selected different amounts of partial training data to learn the Kalman model. The

decoding results are shown in Fig. 6 (B). We found that, in the Pinball task, approx-

imately 2.5 minutes of training data was sufficient; while in the Pursuit Tracking task

we used approximately 10 minutes of training data, although more data improved the

results slightly.

Modeling Summary. A Bayesian framework such as the Kalman filter requires us to

define a likelihood model and a prior model. The prior model here is given by the linear

33

Gaussian system model and we do not explore various generalizations of that model.

Rather, the experiments above pertain to the likelihood and how it is formulated. While

the standard Kalman framework constrains us to a linear Gaussian model, there are still

many modeling choices necessary to match this framework to motor cortical activity.

Based on the above experiments, a number of general observations can be made.

We observed that a full covariance matrix is critical for decoding accuracy. Time

lags of roughly ��
ms improved results and, while there was some benefit to non-

uniform lag times, there was much to be gained from a simple uniform lag. The order

of the kinematic model was dependent on the application motion but for general, un-

constrained, and continuous motions it appeared that higher-order models (up to 4th

order) were beneficial. Not surprisingly we also found that accuracy increases with the

number of cells used. The Appendix also contains an analysis of the effect of vary-

ing the bin size. We found that larger time bins improved decoding accuracy but the

optimal size depended on the task, with fast motions requiring smaller bins than slow

motions.

In summary, the best decoding performance for the two tasks were obtained as

follows:

Pinball, �� � �
����
��	�, �!� � ����:

��
�	 time bin, non-uniform lag, �nd order model (pos, vel, accel).

Pursuit Tracking , �� � �
����
��
�, �!� � ����:

	

�	 time bin, ��
�	 uniform lag or non-uniform lag, �st order model

(pos, vel).

34

3.8 Comparison with Previous Decoding Methods

A variety of other methods have been proposed for performing motor cortical decoding.

Below we compare the Kalman filter to the most popular methods, and then suggest

further extensions of the Bayesian decoding framework.

3.8.1 Population-Vector Method

The population-vector approach (Georgopoulos et al., 1982; Georgopoulos et al., 1986)

treats MI cells as having a “preferred” movement direction and models the hand move-

ment direction as a weighted vector average of these preferred directions where the

weight is proportional to the firing rate of the cell. The population-vector algorithm can

be expressed in the following equation (Moran and Schwartz, 1999b):

'(� �

��
	��

�	�� � ��	
����� � ��	

�
)*	

����� � ��	
� (11)

where '(� is the population vector at time �� � �
�� � � �� � � � �� , �	�� is the firing

rate of cell � at time ��, ��	 and ����� are the average and maximum firing rates of

cell � over all time steps, and)*	 is the 2D unit-length vector pointing in the preferred

direction of cell �, � � �� � � � � �� This formulation models only movement direction

and not hand position and hence represents only a subset of the kinematic information

modeled by the Kalman filter. To recover hand position one integrates the direction

estimates over time and then normalizes the result to obtain an estimate of hand position

(Schwartz, 1993).

The population-vector method has been used in the decoding of various hand move-

ment tasks, including center-out reaching (Moran and Schwartz, 1999b), sinusoid trac-

35

ing (Schwartz, 1993), spiral tracing (Moran and Schwartz, 1999a) and figure-eight trac-

ing (Schwartz and Moran, 1999). Recently, this approach has been applied to real-time

neural control of 3D cursor (center-out) movement (Taylor et al., 2002).

In both the Pinball and Pursuit Tracking tasks, we learned the parameters of the

population-vector model from training data; the preferred directions are shown in Fig.

7. We then estimated the hand position in test data using the population-vector method;

the decoding results are shown in Table 6. We found that the population vector method

does not accurately reconstruct the hand trajectory for these complex motions (particu-

larly the more natural motions of the Pinball task).

The lack of accuracy may be due to at least two reasons. First, the approach as-

sumes that the population uniformly samples the range of movement directions, yet

for the small sample sizes available with current multi-electrode recording technology

this may be difficult to satisfy (Gribble and Scott, 2002). For the data sets we con-

sidered, the movement directions were not uniformly distributed (Fig. 7). One of the

key advantages of the full covariance matrix in the Kalman filter is that it accounts for

the non-uniform distribution of encoding properties across the population. If two cells

encode the same information, the errors in the likelihood term are correlated and the

covariance matrix appropriately accounts for their conditional dependence; the linear

filter method below does something similar. This weighting of the data is critical for

sound inference. Another issue with the population-vector approach is that the integra-

tion of direction estimates to compute position information results in the compounding

of errors over time.

Thus, the population-vector method may be appropriate for simple stylized motions

36

or motions of short duration, yet to model general, continuous, and complex motions, a

more powerful model (richer kinematics and a probabilistic formulation) is preferable.

3.8.2 Linear-Filter Method

Linear filters reconstruct hand position as a linear combination of the firing rates over

some fixed time period (Carmena et al., 2003; Serruya et al., 2002; Warland et al., 1997;

Wessberg et al., 2000); that is,

�� � ��
��
	��

��
���

�	�����	��� (12)

where �� is the �-position (or, equivalently, the �-position) at time �� � �
�� � �

�� � � � �� , � is a constant offset, �	���� is the firing rate of neuron � at time ����, and

�	�� are the filter coefficients. The coefficients can be learned from training data using

simple least-squares regression. The method has been used for off-line decoding of MI

activity (Paninski et al., 2004) and for real-time neural control (Carmena et al., 2003;

Serruya et al., 2002; Wessberg et al., 2000).

The parameter � specifies the number of time bins used to estimate the hand po-

sition. Empirically, � is chosen so that the total data used is between 500�	 and 2	.

In (Serruya et al., 2003), the authors stated that � � 	
 is the optimal choice because

“shorter filters did not perform as well and that longer filters did not provide much ad-

ditional information”. A larger � results in a large computational cost in estimating

the filters (by inverting a large matrix), which becomes prohibitive when the number of

cells is large. It also requires more training data to avoid overfitting. Consequently, we

took � � 	
 to be the maximum number of time bins.

37

Pinball task
Method �� ��� �� �!� (���)
population vector (0.26, 0.21) 75.0
linear filter �� � ��� (0.79, 0.93) 6.48
Kalman
� � ��
�	, non-uniform lag (0.84, 0.93) 4.55

Pursuit Tracking task
Method �� ��� �� �!� (���)
population vector (0.57, 0.43) 13.2
linear filter �� � 	
� (0.73, 0.67) 4.74
Kalman
� � 	

�	, ��
�	 uniform lag (0.81, 0.70) 4.66

Table 6: Decoding results with different methods for both the Pinball and the Pursuit

Tracking tasks.

To make the linear filter effective and compare it to the Kalman filter, we se-

lected the � that gave the best decoding results, where we allowed � to range over

��� �� � � � � 	
� time bins. For the Pinball task, � � �� (approximately �	��) gave the

best decoding accuracy, while in Pursuit Tracking task, � � 	
 (approximately ���	��)

was optimal (although there is little difference in the results for � � ��).

A �	�� worth (pinball) and ���	�� worth (pursuit tracking) of firing-rate information

before hand kinematics is also used in the method described in (Serruya et al., 2002;

Serruya et al., 2003). Note that since the linear filter uses data over a long time window

it does not benefit from the use of time-lagged data. Note also that it does not explic-

itly reconstruct velocity or acceleration. One could compute velocity with the linear

filter (Carmena et al., 2003) but to estimate position one would need a way to combine

linear-filter estimates for position and velocity; the Kalman filter automatically does

this within an optimal Bayesian framework.

The linear-filter reconstruction of position for the Pinball data is shown in Fig. 8.

38

The results are visually similar to the Kalman results (Compare Fig. 4), yet Table

6 shows that the Kalman filter gives a more accurate reconstruction (higher �� and

lower �!�). Figure 9 shows the linear-filter reconstruction for the same four trials as

in the Pursuit Tracking task shown in Fig. 3 (B).

The linear filter is a discrete Wiener filter (Gelb, 1974) in the sense that, at each

time instant, the hand position is a linear function of the firing rates of all the cells over

the past � bins; the Appendix explores this relationship formally.

The linear-filter approach lacks an explicit generative model of neural activity and

hence provides little insight into neural coding (apart from suggesting a linear relation-

ship between hand position and firing rate). Both the linear filter and population vector

lack an explicit prior model for how the system state evolves. This results in noisy

estimates of the state and necessitates the use of large time windows for the linear fil-

ter. In practice, post hoc smoothing is often used to reduce the noise in the linear filter

estimates yet this introduces undesirable lags in the reconstruction. The Kalman filter

uses much less data at each time instant than the linear filter, but has an explicit tem-

poral model that incorporates prior estimates in a recursive fashion. In particular, the

probabilistic model (first order Markov) underlying the Kalman filter means that only

a single bin of data is used at each time instant and these bins should never overlap in

time.

3.8.3 Artificial Neural Networks

Artificial neural networks (ANNs) have also been used for neural decoding (Ghazanfar

et al., 2000; Sanchez et al., 2003) and real-time prediction of hand trajectories from

39

neural ensembles in MI (Wessberg et al., 2000). ANNs can perform many types of

statistical learning yet they do not provide explicit generative or probabilistic models

that are open to inspection. The models can, however, be analyzed to varying degrees to

try to tease out what they encode (Sanchez et al., 2003). Wide variability in the specific

implementation and training of these methods makes it impractical to quantitatively

compare our results with previous ANN implementations.

4 Discussion

Our focus in this paper has been on the development of a decoding algorithm appro-

priate for neural prosthetic applications. The Kalman filter is computationally efficient

(real-time), requires little training data, and provides more accurate off-line decoding

than previous methods such as population vectors or linear filtering. While the linear

Gaussian model of neural coding is an approximation, it provides a reasonable trade-off

between computational efficiency and accuracy. Its successful use in decoding may be

thought of as resulting from its achieving a good bias/variance trade-off (Geman et al.,

1992); equivalently, it provides a reasonable solution to the model-selection problem,

given the complexity of the task and the size of the training data sets at hand. More

powerful non-linear, and non-Gaussian, likelihood models can be constructed (Brock-

well et al., 2004; Gao et al., 2002; Gao et al., 2003) and used for Bayesian decoding;

the decoding task, however, becomes more difficult. For example, the likelihood can be

formulated using Generalized Linear Models (Gao et al., 2003), Generalized Additive

Models (Gao et al., 2003), mixture models (Wu et al., 2004a) and fully non-parametric

models (Gao et al., 2002).

40

In (Gao et al., 2002) we introduced particle filtering to solve the general Bayesian

decoding task in MI with non-linear, non-Gaussian, likelihoods (see also (Brockwell

et al., 2004; Shoham, 2001)). The particle filtering method is more general than the

Kalman filter proposed here. With sufficient computational resources, linear Gaussian

decoding using a particle filter approaches the accuracy of the Kalman filter. Addition-

ally, more complex likelihood models can give higher accuracy than the linear-Gaussian

model (Gao et al., 2003). Current implementations of particle filtering however do not

run in real-time and, hence, are not yet appropriate for neural prosthetic applications.

The method proposed here assumes that firing rates can be approximated by a linear

model and that action potentials from multiple cells recorded by a single electrode can

be cleanly separated (sorted). In practice however, automated spike sorting methods

may incorrectly classify multiple waveforms as being produced by the same cell. This

can reduce decoding accuracy since it violates the model assumptions. An extension

of the Kalman filter reformulates the likelihood as a probabilistic mixture of linear

Gaussian models (Wu et al., 2004a) in order to cope, to some extent, with errors of

this type. An efficient algorithm known as the Switching Kalman filter (Murphy, 1998)

can be used for decoding with this mixture model. Wood et al. (Wood et al., 2004)

suggest this sorting may not be a signficant problem for neural prosthesis applications

and that good decoding accuracy can be obtained using a Kalman filter with unsorted,

multi-unit, data.

Our formulation also assumes that motor cortex codes movement in terms of firing

rates. In the Bayesian formulation this assumption too can be relaxed and a point

process model, taking into account spike timing, can be used for decoding (Brown

41

et al., 1998; Eden et al., 2004). The resulting decoding algorithm is more complex

however than the simple Kalman filter presented here.

Here we focused on the likelihood (measurement model) as derived from studies

of neural coding. To evaluate different choices for the likelihood we used a simple

linear Gaussian temporal prior (system model). More complex, non-linear, models or

higher-order Markov assumptions might lead to more accurate models of arm motion

and more accurate decoding results.

The linear filter and Kalman filter both produce reasonable decodings of neural

activity. Depending on the specifics of the model, the Kalman filter can be viewed as

a linear filter (Weiner filter) in which all measurements back to the initial time step

are taken into account yet the contribution of measurements decays exponentially with

time. The Kalman filter however provides a number of benefits. It is easier to train

(less computationally intensive) and, more importantly, formulates the problem as one

of Bayesian inference. Since assumptions about the data and the noise are explicitly

spelled out, the Kalman model provides more insight into the encoding model that is

used. Moreover, by making the assumptions explicit, it suggests avenues for improving

both modeling and decoding, by relaxing some of these assumptions.

We have studied off-line decoding accuracy rather than on-line control. It is reason-

able to expect that algorithms that provide better off-line decoding will provide better

on-line accuracy as well. One might also posit that better control algorithms may make

the training of paralyzed human subjects easier. Results of on-line control studies, how-

ever, suggest that even algorithms such as the population-vector method, with its poor

off-line accuracy, can be used to control devices (Taylor et al., 2002). It may be the case

42

that the brain adapts to a particular control algorithm and that improving the algorithm

produces little gain in accuracy. Such a hypothesis remains to be tested.

Research on decoding for neural control has focused on cells in motor cortex. The

rationale underlying this choice is that it will be easier for subjects to learn to control

physical devices when this area of cortex is used, since it already represents informa-

tion about motion. Even in paralyzed subjects imagined arm motions produce activity

in MI, suggesting its appropriateness for human neural prostheses (Kennedy and Bakay,

1998). Other brain areas, however, may provide useful control signals for motor pros-

thetic applications. The applicability of the Kalman filter outside MI remains to be

tested.

The results reported here involved only two animals and each animal was trained

on, and performed, a slightly different task. More studies will be required to generalize

these results to a broader range of tasks and conditions.

4.1 Conclusions

We have described a discrete linear Kalman filter that is appropriate for the neural con-

trol of 2D cursor motion. We showed that the model could be easily learned using a few

minutes of training data, and provided real-time estimates of hand position given the

firing rates of a population of cells in primary motor cortex. The estimated trajectories

were more accurate than those produced by the population-vector and linear-filtering

methods most commonly used in the literature. Analysis of the method was performed

using two datasets involving complex, continuous, hand motions. Neural recordings

from two different monkeys were obtained from chronically implanted microelectrode

43

arrays. The experiments suggested that a linear Gaussian model provided an approx-

imate model relating the firing rates with continuous hand movement. Moreover, the

model enabled the use of the Kalman filter to perform real-time recursive Bayesian

decoding.

The Kalman filter proposed here provides a rigorous probabilistic approach with

a well understood theory. By making the assumptions explicit and by providing an

estimate of uncertainty, the Kalman filter offers significant advantages over previous

methods. Unlike previous methods, this model estimates a full kinematic state vector

(position, velocity and higher-order terms). It also provides an estimate of the uncer-

tainty in the result in terms of an error-covariance matrix. Various experiments explored

the use of this decoding model to choose the kinematic variables that gave the best en-

coding/decoding performance.

In contrast to the relatively constrained Pursuit Tracking task, we showed that, for

the more natural 2D motions of the Pinball task, incorporating acceleration and higher-

order terms into the model improved the accuracy of the decoding. The experiments

suggest a number of general conclusions, which remain to be verified in more subjects

and in on-line experiments: 1. A time lag of ��
� ��
�	 between firing activity and

hand kinematics improves decoding results. 2. As the number of neurons in the pop-

ulation increases, one observes a corresponding increase in decoding accuracy. While

even small populations produce reasonable results, the ability, in the not too distant fu-

ture, to record from much larger populations is likely to increase accuracy even further.

3. A few minutes of training data is sufficient for learning the linear Gaussian model.

The amount of data required may depend on the task. 4. With the Gaussian model, a

44

full covariance matrix usefully captures the conditional dependence between the firing

rates of different neurons. Decoding accuracy is improved by using a full covariance

matrix as compared to a diagonal matrix. 5. Firing rates in larger bin sizes, which

are better approximated by a Gaussian model, improve the decoding accuracy up to a

task-specific limit.

Currently, we are working to evaluate the performance of the Kalman filter for the

closed-loop neural control of cursor motion in tasks such as described here. Our recent

work demonstrates the feasibility of Kalman filter in the on-line neural control exper-

iment (Wu et al., 2004b). More experiments with more animals, however, are needed

to confirm those observations. Our future work will focus on the application of auto-

mated spike sorting methods that provide an estimate of uncertainty in the rate signal.

This uncertainty can be naturally incorporated into the Kalman model by allowing an

adaptive measurement covariance matrix ��. Additionally, one may explore alterna-

tive measurement noise models, non-linear system models, and non-linear decoding

methods.

Appendix

A. Learning the Linear Gaussian Model

Training the Kalman model requires that we learn the matrices ������� from ex-

ample data. We seek the coefficient matrices and covariance matrices that maximize

45

the joint probability ��X� �Z��; that is,

argmax���������X� �Z�� � argmax���������X����Z� �X��

� �argmax�����X��� argmax�����Z� �X����

Using the linear Gaussian properties of ��X�� and ��Z� �X��, the above maxmiza-

tion has closed-form solutions:

� �

�
��
���

x�x����

��
��
���

x���x����

�
��

�

� �
�

� � �

�
��
���

x�x�� ��
��
���

x���x��

�
�

� �

�
��
���

z�x�
�

��
��
���

x�x�
�

�
��

�

� �
�

�

�
��
���

z�z�� ��
��
���

x�z�
�

�
�

B. Decoding (the Kalman-filter algorithm)

The assumptions of linear Gaussian models for the system and measurement equations

allows us to exploit the Kalman filter algorithm for recursive Bayesian inference. The

theory is well developed (Kalman, 1960) and the algorithm is summarized here. The

algorithm comprises two steps:

I. Time update equations: At each time ��, we use the system model to take the a

priori state estimate, �x���, from the previous time ����, and predict it forward to time

46

��:

�x�� � ��x���� (13)

Recall that the uncertainty in the system model is expressed in the covariance matrix

� and this uncertainty must be incorporated into our a priori estimate of the posterior

covariance:

��� � ������
� ��� (14)

where ��� is the a priori error covariance matrix at time ��.

II. Measurement update equations: Using the prediction �x�� and firing rate z�, we

update the state estimate using the measurement and compute the posterior error co-

variance matrix:

�x� � �x�� ����z� ���x�� �� (15)

�� � ���������� � (16)

where�� represents the state error covariance after taking into account the neural data,

and�� is the Kalman gain matrix, given by:

�� � �
�
��

� ������
� ������ (17)

This�� produces a state estimate that minimizes the mean-squared error of the recon-

struction (see (Gelb, 1974) for details).

47

C. Comparison of the Kalman Filter and the Wiener Filter

Simple linear filtering methods that directly reconstruct the system state from a history

of firing rates are commonly used for decoding. These methods compute the state as a

linear combination of previous firing rates. In particular, the Wiener filter is an optimal

linear filter that uses all previous firing data. The simplified Kalman filter developed

here can be viewed as an efficient, recursive, version of the Wiener filter in which the

modeling assumptions (�������) are made explicit.

We can obtain several basic properties of Kalman filter by studying its relationship

with the Wiener filter. From equations (13) and (15), we have that

�x� � �x�� ����z� ���x�� �

� ��������x�� ���z�

� ���������x��� ���z��

Note that equations (14), (16) and (17) are independent of the new measurements of

firing rates. If ������� are constant over time, the propagation of ��� ������ by

equation (14), (16), (17) converges to steady-state solutions (Kalman and Bucy, 1961).

Let � � ��������, and � � �� � ����. For � large enough (i.e. � + �
 in

practice),

�x� � ��x��� ��z�

� ���x��� ���z��� ��z�

� � � �

� �����x� �
����
���

���z����

48

where�� is the ,th power of matrix� (i.e. �� �� ��).

The above equation shows that in the Kalman framework, the estimate at time step

� is a linear function of the firing rates at all time instants from time �� to the present.

This corresponds to the Wiener filter (Gelb, 1974) but the advantage of the Kalman

implementation is that it computes the state estimate recursively, resulting in an efficient

algorithm.

Note also that the coefficients of all firing rates decay exponentially with respect

to the current time step. This shows three basic properties of the Kalman filter: (1) it

estimates the state at each time step using all the previous and present measurements

(firing rates); (2) the weights of the firing rates decay exponentially; those far from the

present time have a weak effect on the state estimate; (3) for � ++ �, the state estimate

is approximately independent of the initial state. This last point means that the choice

of the initial state is relatively unimportant.

D. Effect of Bin Size on Decoding Accuracy

We studied the effect of varying the bin size on decoding accuracy and found that

accuracy was improved by increasing the bin size beyond the 70�	 and 50�	 bins

used in the analysis above. Table 7 and Fig. 10 (A) summarize the results. For the

Pinball task, we varied the bin size,
�, by multiples of �
�	 from 0 to 700�	. For the

Pursuit Tracking task we considered bins ranging from 0 to 700�	 in 50�	 increments.

In all cases we used non-overlapping time bins, as the use of overlapping bins results

in a severe violation of the assumption of conditional independence underlying by the

Kalman framework (Equation (7)): with overlapping bins, data is “reused”, and the

49

Pinball task Pursuit Tracking task
Method �� ��� �� �!� (���) Method �� ��� �� �!� (���)

� � �
�	 (0.82, 0.93) 5.87
� � �
�	 (0.79, 0.68) 5.99

� � ��
�	 (0.83, 0.93) 5.29
� � �

�	 (0.80, 0.68) 5.63

� � ��
�	 (0.81, 0.92) 5.45
� � ��
�	 (0.81, 0.68) 5.27

� � ��
�	 (0.82, 0.93) 5.16
� � �

�	 (0.81, 0.69) 5.03

� � 	�
�	 (0.78, 0.92) 5.95
� � ��
�	 (0.81, 0.69) 4.89

� � ��
�	 (0.78, 0.92) 5.81
� � 	

�	 (0.81, 0.70) 4.66

� � ��
�	 (0.75, 0.89) 7.25
� � �

�	 (0.79, 0.70) 4.59

� � �

�	 (0.79, 0.71) 4.64

Table 7: Decoding results for varying bin sizes. The other model parameters are as

described above, namely: Pinball task: uniform lag = ��
�	, kinematic model = (pos,

vel, accel); Pursuit Tracking task: uniform lag = ��
�	, kinematic model = (pos, vel).

resulting estimates are no longer statistically valid.

For each test condition (bin size), the Kalman model was trained and hand kine-

matics were calculated every
��	. Table 7 shows that larger bins resulted in better

decoding accuracy, up to a limit. One reason for this may be that, as the bin size grows,

the variation in the firing rate is better approximated by the Gaussian model used in the

Kalman filter.

In the case of the slow motions of the Pursuit Tracking task, larger bin sizes were

appropriate. For the fast motions of the Pinball task, bin sizes beyond approximately

��
�	 resulted in a loss of accuracy. This suggests that, while larger bin sizes can

increase accuracy, the ultimate size is limited and is related to the speed of motion.

Additionally, increased bin size had a negative effect on the detail of the recov-

ered trajectories (Fig. 10 (B)). As bin size increases, the frequency of state estimates

decreases, resulting in a coarser approximation to the underlying trajectory. In gen-

50

eral, larger bin sizes (up to some limits) produce more accurate results but at the cost

of introducing a delay in estimating the system state. The constraints of a particular

application will determine the appropriate bin size.

Note that if a uniform lag of, for example, ��
�	 time bins is used, we can ex-

ploit measurement data binned into ��
�	 time bins without introducing any delay (or

output lag) in the estimate of the system state relative to the natural hand motion. For

real-time prosthesis applications, this system delay should be less than 200�	 which

suggests that overall bin size minus the uniform lag time should be less than 200�	.

For the Pinball task, with a ��
�	 lag, this would mean a maximum bin size of ap-

proximately 280�	. For the Pursuit Tracking task, with a ��
�	 lag, a maximum bin

size of 250-300�	 would be appropriate. While this increases accuracy, it comes at the

cost of a more “jerky” reconstruction.

References

Brockwell, A. E., Rojas, A. L., and Kass, R. E. (2004). Recursive bayesian decoding

of motor cortical signals by particle filtering. Journal of Neurophysiology, 91, 1899–

1907.

Brown, E., Frank, L., Tang, D., Quirk, M., and Wilson, M. (1998). A statistical

paradigm for neural spike train decoding applied to position prediction from ensem-

ble firing patterns of rat hippocampal place cells. Journal of Neuroscience, 18, 7411–

7425.

Carmena, J. M., Lebedev, M. A., Crist, R. E., O’Doherty, J. E., Santucci, D. M., Dim-

51

itrov, D. F., Patil, P. G., Henriquez, C. S., and Nicolelis, M. A. L. (2003). Learning

to control a brain-machine interface for reaching and grasping by primates. PLoS,

Biology, 1, 001–016.

Cisek, P., and Kalaska, J. F. (2002). Simultaneous encoding of multiple potential reach

directions in dorsal premotor cortex. Journal of Neurophysiology, 87, 1149–1154.

Donoghue, J. P., Sanes, J. N., Hatsopoulos, N. G., and Gaal, G. (1998). Neural dis-

charge and local field potential oscillations in primate motor cortex during voluntary

movements. Journal of Neurophysiology, 79, 159–173.

Eden, U., Frank, L., Barbieri, R., Solo, V., and Brown, E. (2004). Dynamic analysis of

neural encoding by point process adaptive filtering. Neural Computation, 16, 971–

988.

Fetz, E., Toyama, K., and Smith, W. (1991). Synaptic interaction between cortical

neurons. In A. Peters and E. Jones (Eds.), Cerebral cortex, vol. 9, 1–47. New York:

Plenum.

Flament, D., and Hore, J. (1988). Relations of motor cortex neural discharge to kine-

matics of passive and active elbow movements in the monkey. Journal of Neurophys-

iology, 60, 1268–1284.

Gao, Y., Black, M. J., Bienenstock, E., Shoham, S., and Donoghue, J. P. (2002). Prob-

abilistic inference of hand motion from neural activity in motor cortex. Advances

in Neural Information Processing Systems 14 (pp. 213–220). Cambridge, MA: MIT

Press.

52

Gao, Y., Black, M. J., Bienenstock, E., Wu, W., and Donoghue, J. P. (2003). A quan-

titative comparison of linear and non-linear models of motor cortical activity for the

encoding and decoding of arm motions. 1st International IEEE/EMBS Conference

on Neural Engineering (pp. 189–192). Capri, Italy.

Gelb, A. (1974). Applied optimal estimation. MIT Press.

Geman, S., Bienenstock, E., and Doursat, R. (1992). Neural networks and the

bias/variance dilemma. Neural Computation, 4, 1–58.

Georgopoulos, A., Kalaska, J., Caminiti, R., and Massey, J. (1982). On the relations be-

tween the direction of two-dimensional arm movements and cell discharge in primate

motor cortex. Journal of Neuroscience, 8, 1527–1537.

Georgopoulos, A., Schwartz, A., and Kettner, R. (1986). Neural population coding of

movement direction. Science, 233, 1416–1419.

Ghazanfar, A., Stambaugh, C., and Nicolelis, M. (2000). Encoding of tactile stimulus

location by somatosensory thalamocortical ensembles. Journal of Neuroscience, 20,

3761–3775.

Gribble, P. L., and Scott, S. H. (2002). Method for assessing directional characteristics

of non-uniformly sampled neural activity. Journal of Neuroscience Methods, 113,

187–197.

Hatsopoulos, N., Ojakangas, C., Paninski, L., and Donoghue, J. (1998). Information

about movement direction obtained from synchronous activity of motor cortical neu-

rons. Proceedings of the National Academy of Sciences (pp. 15706—15711).

53

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.

Trans. ASME, Journal of Basic Engineering, 82, 35–45.

Kalman, R. E., and Bucy, R. (1961). New results in linear filtering and prediction.

Trans. ASME, Journal of Basic Engineering, 83, 95–108.

Kennedy, P. R., and Bakay, R. A. (1998). Restoration of neural output from a paralyzed

patient by a direct brain connection. NeuroReport, 9, 1707–1711.

Kettner, R., Schwartz, A., and Georgopoulos, A. (1988). Primary motor cortex and

free arm movements to visual targets in three-dimensional space. iii. positional gra-

dients and population coding of movement direction from various movement origins.

Journal of Neuroscience, 8, 2938–2947.

Larsen, R. J., and Marx, M. L. (2001). An introduction to mathematical statistics and

its applications. Prentice Hall. Third edition.

Maynard, E., Hatsopoulos, N. G., Ojakangas, C. L., Acuna, B. D., Sanes, J. N., Nor-

mann, R. A., and Donoghue, J. P. (1999). Neuronal interactions improve cortical

population coding of movement directions. Journal of Neuroscience, 19, 8083–8093.

Maynard, E., Nordhausen, C., and Normann, R. (1997). The Utah intracortical elec-

trode array: A recording structure for potential brain-computer interfaces. Electroen-

cephalography and Clinical Neurophysiology, 102, 228–239.

Moran, D., and Schwartz, A. (1999a). Motor cortical activity during drawing move-

ments: Population representation during spiral tracing. Journal of Neurophysiology,

82, 2693–2704.

54

Moran, D., and Schwartz, A. (1999b). Motor cortical representation of speed and di-

rection during reaching. Journal of Neurophysiology, 82, 2676–2692.

Murphy, K. P. (1998). Switching Kalman filter (Technical Report 98-10). Compaq

Cambridge Research Laboratory.

Paninski, L., Fellows, M., Hatsopoulos, N., and Donoghue, J. P. (2004). Spatiotem-

poral tuning of motor cortical neurons for hand position and velocity. Journal of

Neurophysiology, 91, 515–532.

Rissanen, J. (1989). Stochastic complexity in statistical inquiry. World Scientific.

Sanchez, J., Erdogmus, D., Principe, J., Wessberg, J., and Nicolelis, M. (2002). Com-

parison between nonlinear mappings and linear state estimation to model the relation

from motor cortical neuronal firing to hand movements. Proceedings of SAB Work-

shop on Motor Control in Humans and Robots: On the Interplay of Real Brains and

Artificial Devices (pp. 59–65). Edinburgh, Scotland.

Sanchez, J., Erdogmus, D., Rao, Y., Principe, J., Nicolelis, M., and Wessberg, J. (2003).

Learning the contributions of motor, premotor, and posterior parietal cortices for hand

trajectory reconstruction in a brain machine interface. Proceedings of the 1st inter-

national IEEE EMBS Conference on Neural Engineering.

Schwartz, A. (1993). Motor cortical activity during drawing movements: Population

representation during sinusoid tracing. Journal of Neurophysiology, 70, 28–36.

Schwartz, A., and Moran, D. (1999). Motor cortical activity during drawing move-

55

ments: Population representation during lemniscate tracing. Journal of Neurophysi-

ology, 82, 2705–2718.

Schwartz, A., Taylor, D., and Helms Tillery, S. (2001). Extraction algorithms for corti-

cal control of arm prosthetics. Current Opinion in Neurobiology, 11, 701–707.

Serruya, M., Hatsopoulos, N., Fellows, M., Paninski, L., and Donoghue, J. (2003). Ro-

bustness of neuroprosthetic decoding algorithms. Biological Cybernetics, 88, 219–

228.

Serruya, M. D., Hatsopoulos, N. G., Paninski, L., Fellows, M. R., and Donoghue, J. P.

(2002). Brain-machine interface: Instant neural control of a movement signal. Na-

ture, 416, 141–142.

Shoham, S. (2001). Advances towards an implantable motor cortical interface. Doc-

toral dissertation, University of Utah.

Taylor, D., Helms Tillery, S., and Schwartz, A. (2002). Direct cortical control of 3D

neuroprosthetic devices. Science, 296, 1829–1832.

Twum-Danso, N., and Brockett, R. (2001). Trajectory estimation from place cell data.

Neural Networks, 14, 835–844.

Warland, D., Reinagel, P., and Meister, M. (1997). Decoding visual information from

a population of retinal ganglion cells. Journal of Neurophysiology, 78, 2336–2350.

Welch, G., and Bishop, G. (2001). An introduction to the Kalman filter (Technical

Report 95–041). University of North Carolina at Chapel Hill.

56

Wessberg, J., Stambaugh, C., Kralik, J., Beck, P., L. M., Chapin, J., Kim, J., Biggs, S.,

Srinivasan, M., and Nicolelis, M. (2000). Real-time prediction of hand trajectory by

ensembles of cortical neurons in primates. Nature, 408, 361–365.

Wood, F., Fellows, M., Donoghue, J. P., and Black, M. J. (2004). Automatic spike

sorting for neural decoding. Proc. the 26th Annual Internaltional Conference of the

IEEE EMBS (pp. 4009–4012). San Francisco, CA.

Wu, W., Black, M. J., Gao, Y., Bienenstock, E., Serruya, M., and Donoghue, J. P.

(2002). Inferring hand motion from multi-cell recordings in motor cortex using a

Kalman filter. SAB’02-Workshop on Motor Control in Humans and Robots: On the

Interplay of Real Brains and Artificial Devices (pp. 66–73).

Wu, W., Black, M. J., Gao, Y., Bienenstock, E., Serruya, M., Shaikhouni, A., and

Donoghue, J. P. (2003). Neural decoding of cursor motion using a Kalman filter.

Advances in Neural Information Processing Systems 15 (pp. 133–140). MIT Press.

Wu, W., Black, M. J., Mumford, D., Gao, Y., Bienenstock, E., and Donoghue, J. P.

(2004a). Modeling and decoding motor cortical activity using a switching Kalman

filter. IEEE Transactions on Biomedical Engineering, 51, 933–942.

Wu, W., Shaikhouni, A., Donoghue, J. P., and Black, M. J. (2004b). Closed-loop neural

control of cursor motion using a Kalman filter. Proc. IEEE Engineering in Medicine

and Biology Society (pp. 4126–4129). San Francisco, CA.

Zhang, K., Ginzburg, I., McNaughton, B., and Sejnowski, T. (1998). Interpreting neu-

57

ronal population activity by reconstruction: Unified framework with application to

hippocampal place cells. Journal of Neurophysiology, 79, 1017–1044.

58

x

y

0 0.1 0.2
0

0.1

0.2

vx

v y

- 0.1 0 0.1
- 0.1

0

0.1

ax

a y

- 1 0 1
- 1

- 0.5

0

0.5

1

 position (m) velocity(m/s) acceleration(m/s)

x

y

0 0.1 0.2
0

0.1

0.2

vx

v y

- 0.5 0 0.5
- 0.5

0

0.5

ax
a y

- 10 0 10
- 10

- 5

0

5

10

2

Figure 1: Normalized, log 2D-histograms of kinematics for both the Pursuit Track-

ing task (first row) and the Pinball task (second row). These plots show the log prior

probability of the position, velocity and acceleration of the hand.

59

0. 2

0. 4

0. 6
linear fit

0

0. 5

1

1. 5
position (cell 6)

 0. 2

0. 6

1

1. 4

position (cell 19)

1. 4

1. 6

1. 8

2

linear fit

0

0. 5

1

1. 5
velocity (cell 3)

0

1

2
velocity (cell 16)

- 0. 2

0. 2

0. 6

1

linear fit

 0

0. 5

1

1. 5

linear fit

0

1

2

3
position (cell 24)

0. 5

1. 5

2. 5

position (cell 26)

1. 8

2. 2

2. 6

3
linear fit

1. 4

1. 6

1. 8

2

linear fit

0

1

2

velocity (cell 2)

0

1

2

velocity (cell 31)

0. 5

1

1. 5

2

linear fit

1

1. 5

2

2. 5

linear fit

y-
po

si
tio

n

y-
ve

lo
ci

ty

y-
po

si
tio

n

y-
ve

lo
ci

ty

x-position x-velocity

Figure 2: Empirical tuning functions and their linear approximation. The top two rows

show data and models from the Pursuit Tracking task while the bottom two rows il-

lustrate the Pinball data. For each task, the first row shows empirical firing rates and

the second row shows the linear fit to this data. The empirical plots show the mean

firing rate as a function of position (left two columns) or velocity (right two columns).

The darkest blue areas correspond to kinematics that were never observed. The color

coding (blue through red) represents the mean firing rate observed for a discrete re-

gion in the parameter space. The linear fit to this data is computed during the training

of the Kalman-filter model. The linear fit is seen to provide a crude but reasonable

approximation to the raw data.

60

6 10 14 18
0

4

8

12

y-
po

si
tio

n
(c

m
)

x-position (cm)
6 10 14 18 22

0

4

8

12

16

y-
po

si
tio

n
(c

m
)

x-position (cm)
6 10 14 18

2

6

10

14

y-
po

si
tio

n
(c

m
)

x-position (cm)

8 10 12 14 16 18
10

12

14

16

18

20

22
trial # : 15

y-
po

si
tio

n
(c

m
)

x-position (cm)
8 10 12 14 16 18

8

10

12

14

16

18

20
trial # : 89

y-
po

si
tio

n
(c

m
)

x-position (cm)

12 14 16 18
12

14

16

18

20
trial # : 99

x-position (cm)

y-
po

si
tio

n
(c

m
)

10 12 14 16 18
10

12

14

16

18

20

22
trial # : 164

y-
po

si
tio

n
(c

m
)

x-position (cm)

A

B

Figure 3: (A) Pinball Task: Reconstructed trajectories (portions of 1min test data –

each plot shows 50 time instants (3.5)): true target trajectory (dashed) and recon-

struction using the Kalman filter (solid). (B) Pursuit Tracking Task: Reconstruction

of hand position on a few test trials: true hand trajectory (dashed) and reconstruction

using the Kalman filter (solid).

61

5 10 15 20

10

15

20
x-position

5 10 15 20
0

5

10

15
y-position

5 10 15 20
- 2
- 1
0
1
2

x-velocity

5 10 15 20

- 2

0

2

y-velocity

5 10 15 20

- 1

0

1

x-acceleration

 time (sec)
5 10 15 20

- 2
- 1
0
1
2

y-acceleration

 time (sec)

Figure 4: Pinball Task: Reconstruction of each component of the system state variable:

true target motion (dashed) and reconstruction using the Kalman filter (solid). 20	 from

a 1min test sequence are shown. (From (Wu et al., 2003).)

62

5 10 15 20 25 30 35 40
0

2

4

5 10 15 20 25 30 35 40
0

2

4

5 10 15 20 25
0

2

4

la
g

st
ep

la
g

st
ep

A

B

Figure 5: (A) Pinball Experiment: Optimization of individual lag times within a bound

of
�	 � lag � ��
�	. The vertical axis shows the lag in terms of the number of

time bins. Each Unit on the horizontal axis corresponds to one of the 42 cells. The left

plot shows two random initial lags: 1. dashed line with circles; 2. solid line with stars.

The right plot shows final estimated lags from the two initial conditions. Note that

for most cells these two solutions are the same. This suggests that the greedy search

approach, with random initial starting lags, provides reasonably stable results. (B)

Pursuit Tracking Experiment: Optimization of individual lag times using the greedy

algorithm. The range of possible lag steps is bounded
 � � � �, or
�	 � lag

� ��
�	.

63

1 5 10 15 20 25 30 35 40

10

15

20

M
S

E
 (c

m
)

1 5 10 15 20 25 30 35 40
0

0. 5

1

number of neurons

1 5 10 15 20 25
6

7

8

1 5 10 15 20 25
0

0. 5

1

number of neurons

C
C

2
C

C

M
S

E
 (c

m
)2

1. 5 2 2. 5 3 3. 5

6

7

8

1. 5 2 2. 5 3 3. 5
0

0. 5

1

length of training data (min)

4 6 8 10 12 14 16
6

7

8

4 6 8 10 12 14 16
0

0. 5

1

length of training data (min)

C
C

M
S

E
 (c

m
)2

C
C

M
S

E
 (c

m
)2

A

B

Figure 6: (A) Decoding accuracy with respect to number of neurons: The upper plot is

the average of the �!� over 100 random subsets; the lower plot is the corresponding

correlation coefficient for � (circle) and � (square). The left plot is for the Pinball task

and the right one is for the Pursuit Tracking task. Note that, even with a single neuron,

the value of the �� can be deceptively high while the �!� is large as expected. (B)

Decoding accuracy with respect to amount of training data in both Pinball and Pursuit

Tracking tasks: The illustrations of the four plots correspond to those in (A). The basic

trend is that the larger the training data set, the higher the decoding accuracy, but the

improvement appears to diminish as the amount of training data increases.

64

- 1 - 0.5 0 0.5 1
- 1

- 0.5

0

0.5

1

- 1 - 0.5 0 0.5 1
- 1

- 0.5

0

0.5

1

Figure 7: Preferred directions of all cells in Pinball (left) and Pursuit Tracking (right)

tasks: the distributions of directions are not uniform over �
� �%].

65

5 10 15 20

10

15

20
x-position

time (sec)
5 10 15 20

0

5

10

y-position

time (sec)

Figure 8: Pinball Task: Reconstruction of position using the linear filter: true target

trajectory (dashed) and reconstruction using the linear filter (solid). (From (Wu et al.,

2003).)

66

8 10 12 14 16 18
10

12

14

16

18

20

22
trial # : 15

8 10 12 14 16 18
8

10

12

14

16

18

20
trial # : 89

12 14 16 18
12

14

16

18

20
trial # : 99

10 12 14 16 18
10

12

14

16

18

20

22
trial # : 164

y-
po

si
tio

n
(c

m
)

x-position (cm) x-position (cm)

x-position (cm) x-position (cm)

y-
po

si
tio

n
(c

m
)

y-
po

si
tio

n
(c

m
)

y-
po

si
tio

n
(c

m
)

Figure 9: Pursuit Tracking Task: Reconstruction using the linear filter: true hand

trajectory (dashed) and reconstruction using the linear filter (solid).

67

100 200 300 400 500 600 700

6

8

10

100 200 300 400 500 600 700
4. 5

5

5. 5

6

M
S

E
 (c

m
)2

M
S

E
 (c

m
)2

bin size (ms) bin size (ms)

5 10 15
0

2

4

6

8

10

12

11 12 13 14 15 16

11

12

13

14

15

y-
po

si
tio

n
(c

m
)

y-
po

si
tio

n
(c

m
)

x-position (cm) x-position (cm)

A

B

Figure 10: (A) Decoding accuracy (�!�) as a function of bin size for the Pinball task

(left) and the Pursuit Tracking task (right). (B) Example reconstruction with varying

bin size. (left) Pinball task: 70ms (solid), 280ms (tightly dashed) and 490ms (loosely

dashed). (right) Pursuit Tracking task: 50ms (solid), 300ms (tightly dashed) and 500ms

(loosely dashed).

68

