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Abstract15

Increased emphasis on circuit level activity in the brain makes it necessary to have16

methods to visualize and evaluate large scale ensemble activity, beyond that revealed17

by raster-histograms or pairwise correlations. We present a method to evaluate the rel-18

ative similarity of neural spiking patterns by combining spike train distance metrics19

with dimensionality reduction. Spike train distance metrics provide an estimate of sim-20

ilarity between activity patterns at multiple temporal resolutions. Vectors of pair-wise21

distances are used to represent the intrinsic relationships between multiple activity pat-22

terns at the level of single units or neuronal ensembles. Dimensionality reduction is23

then used to project the data into concise representations suitable for clustering analysis24

as well as exploratory visualization. Algorithm performance and robustness are eval-25



uated using multielectrode ensemble activity data recorded in behaving primates. We26

demonstrate how Spike train SIMilarity Space (SSIMS) analysis captures the relation-27

ship between goal directions for an 8-directional reaching task and successfully segre-28

gates grasp types in a 3D grasping task in the absence of kinematic information. The29

algorithm enables exploration of virtually any type of neural spiking (time series) data,30

providing similarity-based clustering of neural activity states with minimal assumptions31

about potential information encoding models.32

1 Introduction33

Examining network function at larger and larger scales is now recognized as an impor-34

tant next step to understand key principles of brain network function and will require35

new methods to visualize and perform statistical comparisons between activity patterns36

observed over large sets of neurons (Alivisatos et al., 2013). Neurons often display37

complex response properties reflecting multiple behavioral and cognitive parameters38

(Sanes and Donoghue, 2000; Churchland et al., 2010; Rigotti et al., 2013). Character-39

izing these complex spiking patterns and describing how information from individual40

neurons is combined at the level of local ensembles and far-reaching networks is an41

ongoing challenge in neuroscience.42

Many experiments involve recording ensemble activity (often in multiple areas) un-43

der various behavioral or cognitive conditions. Data analysis typically involves compar-44

ing binned firing rates across conditions using standard statistical tests, or fitting neu-45

ronal responses using models such as cosines or Gaussian distributions (Georgopoulos46

et al., 1982; Dushanova and Donoghue, 2010; Fluet et al., 2010; Li and DiCarlo, 2010;47

Pearce and Moran, 2012; Arimura et al., 2013). These methods often involve averag-48

ing across repetitions of a particular behavior, or otherwise summarizing neural activ-49

ity patterns to a level where the ensemble properties are reduced to the equivalent of50

joint perievent histograms. This approach is prone to averaging out changes in a neu-51
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ral activity across trials. Furthermore, this level of data analysis and display becomes52

impractical as larger ensembles of neurons are recorded simultaneously. Methods to53

efficiently capture and display both spatial and temporal activity patterns in time series54

data are essential to both visualize and compare large-scale activity patterns and their55

relationship to behavior or activity in other brain areas.56

At their core, most neural data analysis methods are interested in an assessment57

of similarity. For instance: when an experimental condition is changed, are neuronal58

spiking patterns similar or different, and what is the relative magnitude of the change?59

We have formulated a novel technique that provides a quantitative measure of similarity60

between neuronal firing patterns expressed on individual trials by either single neurons61

or ensembles. Our approach involves the combination of two key components: spike62

train distance metrics and dimensionality reduction.63

Spike train metrics, as developed by Victor and Purpura, provide a measure of sim-64

ilarity between pairs of spike trains by calculating the most direct way to transform one65

spike train it another by inserting, deleting, or moving spikes such that both patterns66

coincide (Victor and Purpura, 1996, 1997; Victor, 2005). Adding up a cost assigned to67

each of these operations provides quantitative measure of the similarity between activity68

patterns. The use of spike train metrics makes it possible to analyze long time periods69

(on the order of seconds) while preserving structure inherent in millisecond scale spike70

timing. Changing the cost assigned to temporal shifts offers the opportunity to examine71

neural activity at multiple temporal resolutions.72

Dimensionality reduction is often accomplished by model fitting, such as by fit-73

ting tuning functions. When the model relating neural observations with the behav-74

ior/stimulus is unknown, model-free methods such as principal component analysis can75

be used to gain insight into the relationship. Here we employ t-Distributed Stochastic76

Neighbor Embedding (t-SNE) (van der Maaten and Hinton, 2008) to project the high-77

dimensional space defined by pair-wise spike train distances into a low-dimensional78

representation which not only facilitates visualization, but also improves pattern dis-79
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crimination. This method is well suited to this type of analysis because it is based on80

pair-wise similarity estimates and explicitly seeks to preserve the structure within local81

neighborhoods (in this case, clusters of individual trials with similar activity patterns).82

The proposed algorithm transforms neural data to produce a low dimensional ‘Spike83

train SIMilarity Space’ (SSIMS) that represents the relationships between activity pat-84

terns generated on individual trials. In the SSIMS projection, similar neural activity85

patterns cluster together, while increasingly different activity patterns are projected fur-86

ther apart. The degree of similarity between activity patterns of interest can be clearly87

visualized and quantified. Furthermore, SSIMS projections can be used to evaluate the88

similarity between training data and new samples, providing a direct basis for pattern89

classification (decoding). The goal of this report is to describe the method, illustrate its90

implementation, and examine the strengths and limitations of the approach.91

We tested and validated the SSIMS algorithm using the activity of multiple single92

neurons recorded simultaneously in primate primary motor and premotor cortex, suc-93

cessfully separating neural activity patterns reflecting the behaviors performed in both94

a planar center-out reaching task and a 3D reaching and grasping task. The method95

provides a useful framework for data analysis and visualization well suited to the study96

of large neuronal ensembles engaged in complex behaviors.97

2 Description of the SSIMS algorithm98

The goal of the SSIMS algorithm is to numerically quantify the similarity between99

multiple neural activity patterns. We define the ‘state’ of a given ensemble of neurons100

over a specific time period as the precise timing of each spike fired by each neuron; for101

example, if the patterns of activity for all neurons during two different time periods can102

be perfectly aligned, the corresponding ensemble states are considered to be identical.103

The algorithm consists of two parts. First, pair-wise similarity estimates between104

spike trains are obtained using the distance metric proposed by Victor and Purpura,105
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which uses a cost function to quantify the addition, deletion or temporal shifting of106

spikes necessary to transform one spike train into another (Victor and Purpura, 1996).107

This process results in a high-dimensional space representing pair-wise similarities be-108

tween the sampled ensemble firing patterns (for example, a series of trials in a be-109

havioral task). In order to facilitate statistical analysis and data visualization, the sec-110

ond part of the algorithm refines the high-dimensional space defined in terms of these111

pair-wise distances using the t-SNE dimensionality reduction technique developed by112

van der Maaten and Hinton (2008). Within SSIMS projections, distances between113

points denote the degree of similarity between the ensemble firing patterns (putative114

network ‘states’) they represent; clustering of points that correlate with experimental115

labels (such as behavioral conditions) allows an unbiased assessment of the relation-116

ship between neural states within the context of the experimental variables.117

2.1 Measuring the similarity between two spike trains118

Victor and Purpura introduced cost-based metrics designed to evaluate the similarity119

between spike trains (Victor and Purpura, 1996). A given spike train, A, can be trans-120

formed into second spike train, B, using three basic operations: the addition of a spike,121

the deletion of a spike, or the shifting of a spike in time. Each of these operations is122

assigned a ‘cost’; the distance between the two spike trains is defined as the (minimum)123

summed cost of the operations needed to transform one into the other. The cost of spike124

insertion or deletion is set to 1, while the cost of shifting a spike in time is set to be125

proportional to the length of time the spike is to be shifted. This last value is defined126

using a parameter q, with the cost of shifting a spike being q∆t. Note that displacing a127

spike by a time interval 1/q has a cost equivalent to deleting it. In this way, the value128

of q is related to the temporal precision of the presumed spike code, in the sense that129

it determines how far a spike can be moved in time while still considering it to be the130

‘same’ spike (that is, without having to resort to removing it). Setting q = 0 makes the131
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timing of a spike irrelevant, reducing all shifting costs to zero. In this case the distance132

function is effectively reduced to a difference in spike counts. In this way, this method133

can be used to probe possible values for the temporal resolution of neural data, from134

millisecond timing to pure rate codes.135

2.2 Creating a similarity space based on pair-wise distances136

Let us consider a set of n neurons, whose activities are simultaneously recorded over137

a set of m trials (with each neuron generating a spike train during each trial). Let138

Dspike(A,B) denote the spike train distance metric as defined by Victor and Purpura139

(1996): the minimum cost of transforming spike train A into spike train B. Let Si,j140

represent the spike train recorded from neuron j during the i-th trial. Let the pairwise141

similarity vector for spike train Si,j be defined as:142

dpw(Si,j) = (Dspike(Si,j, S1,j), Dspike(Si,j, S2,j), . . . , Dspike(Si,j, Sm,j))143

Thus, each spike train from a single neuron can be mapped to a m-dimensional space144

by representing it as a vector of pair-wise distances to the other spike trains fired by the145

same neuron. An ensemble pair-wise similarity vector for trial i is formed by concate-146

nating the dpw vectors of the n neurons:147

Densemble
i = (dpw(Si,1), . . . ,dpw(Si,n))T148

Thus, the neural activity for each individual trial is represented by a 1 × mn di-149

mensional vector which includes m similarity measurements for each neuron. When150

the vectors for each of the m trials are combined into a matrix for an ensemble of n151

neurons, the result is an m × mn matrix we refer to as Densemble which constitutes a152

relational embedding of the entire data set. Note that in this formulation the informa-153

tion obtained from a given neuron is represented in a separate subset of dimensions of154
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the matrix Densemble (instead of summing cost metrics across neurons to obtain a sin-155

gle measure of ensemble similarity). The next part of the algorithm seeks to project156

Densemble into a lower dimensional space.157

2.3 Dimensionality reduction with t-SNE158

As we will show later, it is possible to create low dimensional representations based on159

neural ensemble pairwise similarity data that increase the accuracy of pattern classifi-160

cation, preserving nearest-neighbor relationships without information loss. The SSIMS161

method uses the t-SNE algorithm, which is particularly well suited to our approach162

because it explicitly models the local neighborhood around each point using pair-wise163

similarity measures (van der Maaten and Hinton, 2008). The general intuition for the164

algorithm is as follows: given a particular data point in a high dimensional space, one165

is interested in picking another point that is similar; that is, another point that is in166

the same ‘local neighborhood’. However, instead of deterministically picking a single167

closest point, one selects the local neighbor in a stochastic manner, according to a prob-168

ability (making the probability of selecting points that are close together high, and those169

that are very far apart low). The set of resulting conditional probabilities (given pointA,170

what is the likelihood that point B is a local neighbor?) effectively represents similarity171

between data points. The local neighborhoods around each point are modeled as t-172

distributions. Rather than using a fixed value for the width of the distribution (σ) across173

the entire space, the algorithm uses multiple values of σ determined by the data density174

in the local neighborhood around each point. The span of each of these local neigh-175

borhoods is determined by the ‘perplexity’ parameter setting of the algorithm, which176

determines effective number of points to include. Note that if a given dataset contains177

a dense cluster and a sparse cluster, the size of the local neighborhoods in the sparse178

cluster will be larger than those in the dense cluster. This dynamic adaptation of local179

neighborhood size serves to mitigate the ‘crowding problem’, which arises when at-180
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tempting to separate clusters with different densities using a single fixed neighborhood181

size (which potentially leads to over-sampling the dense cluster or under-sampling the182

sparse one). Probability distributions describing local neighborhoods are modeled us-183

ing pair-wise distances, which can be evaluated regardless of the dimensionality of the184

space. It is therefore possible to compare the similarity of the local neighborhoods for185

high and low dimensional versions of a given dataset. By minimizing the difference186

between the two sets of conditional probabilities, the local neighborhood structure is187

preserved in the low-dimensional mapping.188

In order to reduce computational complexity, we perform a preliminary round of di-189

mensionality reduction using principal component analysis (PCA) to project the Densamble
190

matrix into a 100-dimensional space. The t-SNE algorithm then refines the resulting lin-191

ear transform by minimizing the Kullback-Leibler divergence between local neighbor-192

hood probability functions for this starting point and progressively lower dimensional193

spaces via gradient descent. Using the terminology from the previous section, the fi-194

nal output of the t-SNE algorithm is a mn × d matrix (the t-SNE transform), which195

projects the m ×mn Densemble matrix into the desired d dimensional space (where n is196

the number of neurons and m is the number of spike trains).197

2.4 Software, Hardware, and processing time198

Calculations were performed using MatLab on a Mac workstation with a 2.93 GHz199

quad-core Intel Xeon processor and 12 GB of RAM. Using this hardware, producing200

a two-dimensional representation of neural activity for ~100 trials based on the firing201

patterns of ~100 neurons over one second took, on average, five seconds (including202

the processing time required to calculate all pair-wise distances between spike trains203

starting from a list of spike timestamps for each neuron). The source code used for204

data analysis will be made freely available for non-commercial use at the Donoghue205

lab website. The algorithm could be modified for near real-time discrete classification206
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in the following manner: First, a training dataset with exemplars in each desired cate-207

gory would be collected. After calculating all pair-wise distances the t-SNE transform208

would be calculated as described above (taking only a few seconds after data has been209

collected). The resulting SSIMS space would provide a relational reference frame to210

interpret new incoming data. Note that once the t-SNE transform is calculated, pro-211

jecting new data samples into the resulting SSIMS representation would only take a212

fraction of the time since the gradient descent part of t-SNE is no longer required. It213

would still be necessary to calculate pair wise distances for new data samples, but this214

would involve only m operations per neuron in order to project a new trial into the215

original SSIMS representation (as opposed to the n ×m2 operations needed to gener-216

ate the initial embedding). Furthermore, pair-wise distance calculation is well suited217

to parallel computing and could be further optimized using multi-threading or special-218

ized hardware. Parallel streams could also be used to independently update the t-SNE219

transform incorporating new data, providing updated SSIMS embeddings on demand.220

Overall, the limiting factor on processing time would be the duration of the time win-221

dow to be analyzed, which would depend on the precise nature of the spiking patterns222

being classified. The results presented in the following sections suggest that an 8-way223

classification with >95% accuracy could be accomplished in under one second.224

3 SSIMS algorithm validation using primate cortical en-225

semble activity226

Performance of the algorithm was evaluated using cortical ensemble activity recorded227

in rhesus macaques (Macaca mulatta) using 96 channel chronically implanted micro-228

electrode arrays. Details of the implantation procedure are described in Suner et al.229

(2005) and Barrese et al. (2013). All procedures were approved by the Brown Univer-230

sity Institutional Animal Care and Use Committee. Two datasets were used to illustrate231
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the implementation of the method and its properties. The first consisted of neural data232

recorded in primary motor cortex (MI) from a monkey performing a planar center-out233

reaching task. The second dataset consisted of neural data recorded in ventral premotor234

cortex (PMv) from a monkey performing a naturalistic reaching and grasping task that235

involved intercepting and holding moving objects in a 3D workspace.236

3.1 Electrophysiological Recording237

During each recording session, signals from up to 96 electrodes were amplified (gain238

5000), bandpass filtered between 0.3 kHz and 7.5 kHz, and recorded digitally at 30 kHz239

per channel using a Cerebus acquisition system (Blackrock Microsystems, Salt Lake240

City, UT). Waveforms were defined in 1.6 ms data windows starting 0.33 ms before the241

voltage crossed a threshold of at least −4.5 times the channel root mean square variance.242

These waveforms were then sorted using a density clustering algorithm (Vargas-Irwin243

and Donoghue, 2007), the results of which were reviewed using Offline Sorter (Plexon,244

Dallas TX) to eliminate any putative units with multiunit signals (defined by interspike245

intervals (ISI) <1 ms) or signal to noise ratios (SNR) less than 1.5.246

3.2 Center-out (COUT) task247

One monkey was operantly trained to move a cursor that matched the monkey’s hand248

location to targets projected onto a horizontal reflective surface in front of the monkey.249

The monkey sat in a primate chair with the right arm placed on individualized, cush-250

ioned arm troughs secured to links of a two-joint exoskeletal robotic arm (KINARM251

system; BKIN technologies, Kingston ON, Canada; Scott, 1999) underneath an image252

projection surface that reflected a computer monitor display. The shoulder joint was253

abducted 85° so that shoulder and elbow movements were made in an approximately254

horizontal plane. The shoulder and elbow joint angles were digitized at 500 Hz by the255

motor encoders at the joints of the robotic arm. The x and y positions of the hand were256
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computed using the standard forward kinematic equations and sampled at 200 Hz. For257

more details on the experimental setup using the KINARM exoskeleton, refer to Rao258

and Donoghue (2014). Neural data was simultaneously recorded from a chronically259

implanted microelectrode array in the upper limb area of primary motor cortex. To ini-260

tiate a trial, the monkey was trained to acquire a target in the center of the workspace.261

A visual cue was used to signal movement direction during an instructed delay (with262

duration 1 – 1.6 s) to one of eight radially distributed targets on a screen. At the end of263

the instructed delay period, the central target was extinguished, instructing the monkey264

to reach towards the previously cued target. Movement onset was defined as the time265

when the cursor left the central target. The trajectories for each of the eight movement266

directions are shown in Figure 1.267

3.3 Center-out task: Single neuron properties268

We first validated the algorithm by generating SSIMS projections for individual neurons269

over a time window of one second starting 100 ms before movement onset (using q =270

10, such that 1/q = 100 ms, SSIMS dimensionality = 2 and t-SNE perplexity = 30).271

Figure 2 shows two samples of single-neuron SSIMS projections, as well as traditional272

raster plots. While the raster plots clearly convey the changes in the mean firing rate273

averaged across trials, it is difficult to discriminate the variability in the firing patterns274

for each movement direction.275

The SSIMS plot represents the spike train for each trial as a single point. This rep-276

resentation shows that the firing patterns for the neuron in Figure 2A are more tightly277

clustered for the 315° direction (representing a greater degree of similarity). Further-278

more, the figure reveals that the firing patterns are most similar between 315° and 270°279

reaches. It is also possible to identify individual 0° trials where this neuron fires in280

a manner very similar to 315° trials. Note that, in this case, the direction presenting281

the most tightly clustered firing pattern is not the direction of with the highest firing282

11



−200 −150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150

 x position (mm)

 y
 p

os
iti

on
 (m

m
)

Figure 1: Center out task kinematics. The trajectories show the position of the tip of

the index finger as the monkey performs a center-out motion to 8 peripheral targets

(labeled from 0 to 315°). The trajectories shown were taken from a 1-second time

window starting 100 ms before movement onset (corresponding to the main time period

used for neural data analysis).
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Figure 2: Single neuron SSIMS in the Center-out task. A. The outer plots show tradi-

tional raster-histograms (50 ms bins) for each of the 8 movement directions (radially

arranged to represent their relative position on the workspace as shown in Fig. 1). The

central plot shows the SSIMS representation for the same data. Each trial shown in the

raster plots corresponds to a single point in the SSIMS representation. Color coding

is used to match SSIMS points with the corresponding movement directions. A KNN

classifier operating on the SSIMS representation of this single unit was capable of cor-

rectly predicting the direction of 41% of the trials (see main text for details). B. Similar

comparison with a second neuron.
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rate (0°), which would be labeled as the ‘preferred direction’ if firing rates were pa-283

rameterized with a standard cosine fit. Also note that the most tightly clustered pattern284

does not correspond to the direction with lowest firing rate, as might be expected if a285

Poisson noise model is assumed. The neuron shown in Figure 2B is also difficult to de-286

scribe in terms of standard models, since the timing of the peak in firing rate appears to287

change as a function of direction. The preferred direction for this neuron would there-288

fore change as a function of time if it were evaluated using short time windows. The289

SSIMS algorithm is able to display spiking patterns over a time frame encompassing290

the entire movement. The resulting plot clearly shows that the greatest difference in291

spiking patterns exists between 225°, 270°, and 315° reaches compared to 0° and 45°,292

with the remaining directions roughly in the middle. This layout reflects the relation-293

ships between the neural activity patterns observed across reach directions that would294

be difficult to capture using standard tuning functions.295

We tested for significant direction-related clustering at the level of single neurons296

by comparing the distribution of SSIMS distances within and between directions using297

a Kruskal-Wallis test. Neurons were identified as being directionally selective when the298

median SSIMS distance was smaller between trials in the same direction compared to299

trials in different directions. A 10D SSIMS projection was used for this operation, to300

encompass high dimensional features not visible in 2D projections. Eighty-three out of301

103 recorded neurons (~81%) were determined to be directionally selective using this302

method (Kruskall-Wallis p < 0.001). For comparison, a Kruskall-Wallis test performed303

directly on the firing rates for the same time period only produced p values < 0.001 for304

70% of the neurons.305

The magnitude of directional selectivity for individual neurons was evaluated us-306

ing a nearest neighbor (NN) classifier implemented using leave-one-out cross valida-307

tion. Each trial was classified based on the direction of the nearest neighbor in the 10D308

SSIMS projection. The percent of correctly classified trials was used as a measure of309

directional information for a given neuron. The distribution of average single-neuron310
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classification results is shown in Figure 3A. These values were used to rank the neurons311

from most to least informative.312

Ensemble decoding was performed using two different strategies: neurons were313

added to the decoding ensemble from most to least informative (providing an approxi-314

mate upper bound for classification) or in the reverse order (to generate an approximate315

lower bound). Classification accuracy (using a KNN classifier with k = 1, implemented316

with leave-one-out cross validation) is shown as a function of ensemble size for both317

curves in Figure 3B. Figure 3C–F displays the relationship between ensemble activity318

in each of the 8 movement directions as neurons are progressively added. Although319

classification was performed in a 10-dimensional space, the SSIMS algorithm was used320

to project the data down to two dimensions for ease of visualization (classification using321

2 or 3D SSIMS produced similar results on average, but with greater variability). Note322

that when the entire ensemble is used, the shape of the clusters matches the directions of323

movement, generating a circular pattern where clusters are arranged from 0 to 315 de-324

grees. This structure emerges solely from the relationship between the firing patterns,325

since clustering is performed without any information about the movement direction326

associated with each trial. Color coding is added after the fact for visualization; this327

information about the task is not utilized by the SSIMS algorithm.328

3.4 Free Reach-to-Grasp (FRG) task329

In the Free Reach-to-Grasp (FRG) task, monkeys were required to intercept and hold330

objects swinging at the end of a string (Figure 4A). After successfully holding an object331

for one second, they received a juice reward and were required to release the object to332

initiate a new trial. The objects were presented at different positions and speeds. Three333

different objects were used (one at a time) in order to elicit different grasping strate-334

gies. The first object was a vertical plate 10 cm high by 7 cm wide by 0.3 cm thick.335

The second object was a vertical 18 cm long cylinder with a 2.5 cm diameter. The third336
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Figure 3: Center out task: From single neurons to ensembles. A. Single neuron per-

formance in 8-direction classification (10D SSIMS, NN classification using data from

individual neurons separately). Classification accuracy using the combined data from

all neurons is highlighted with a red star for comparison. Green triangles denote the

95% confidence interval of the chance distribution (calculated over 10,000 random

shuffles of the trial labels). B. Classification performance as a function of ensemble

size (10D SSIMS). Neurons were ranked according to single-unit NN results and added

to the decoding ensemble from best to worst (black) or worst to best (red). The median

value between these two extremes is shown in blue, representing the expected trend

for randomly chosen neurons. C–F. SSIMS projections for various ensemble sizes (2D

SSIMS). Color coding denotes reach direction using the same conventions as figure 2

(directions are also highlighted in panel F).
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Figure 4: Free Reach-to-Grasp task kinematics. A. Diagram of the target objects (not

to scale). Each one was presented at the end of a string moving through points in the

workspace. B–D. Hand kinematics measured using optical motion capture spanning

one second centered on object contact. Color coding matches object color in panel A

(blue = vertical plate, red = cylinder, green = disk). Grip aperture was measured as

the distance between markers placed on the distal-most joints of the index and thumb.

Wrist u/r dev = ulnar/radial deviation; f/e = flexion/extension.
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object was a horizontal disk 7.5 cm in diameter and 0.3 cm thick. The monkey’s move-337

ments were measured using an optical motion capture system (Vicon Motion Systems338

Ltd. UK) to track reflective markers attached to the skin as described in Vargas-Irwin339

et al. (2010). For this dataset we measured grip aperture (the distance between mark-340

ers placed on the distal interphalangeal joint of the index finger and thumb) as well as341

wrist flexion/extension and ulnar/radial deviation subsampled at 24 Hz (Figure 4B–D).342

Object contact was detected using capacitative switches built into the objects.343

3.5 Free Reach-to-Grasp task: Single neuron properties344

Spike trains, one second in duration, were recorded from PMv and centered on each345

successful object contact event (where the grip was maintained for at least one second).346

Neural activity and kinematics were collected for a total of 90 trials (30 with each347

object). SSIMS projections for classification were derived from the neural data using348

q = 10, such that 1/q = 100 ms, SSIMS dimensionality = 10 and t-SNE perplexity349

= 30.350

Single unit properties were tested using the same strategy employed in the center-out351

task. We tested for significant grasping-related clustering by comparing the distribution352

of SSIMS distances within and between categories using a Kruskal-Wallis test. Neu-353

rons were identified as being object selective when the median SSIMS distance was354

smaller between trials with the same object compared to trials with different objects.355

Forty-seven out of 126 recorded neurons (~37%) were determined to be selective us-356

ing this method (Kruskall-Wallis p < 0.001). For comparison, a Kruskall-Wallis test357

performed directly on the firing rates for the same time period only produced p values358

< 0.001 for 19% of the neurons. As with the center-out data, the magnitude of direc-359

tional selectivity for individual neurons was evaluated using a nearest neighbor (NN)360

classifier implemented using leave-one-out cross validation. Single-unit classification361

results are summarized in Figure 5A. These values were used to rank the neurons from362
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most to least informative. Classification accuracy (using a NN classifier) is shown as a363

function of ensemble size in Figure 5B (for neurons added from best to worst, or in the364

inverse order).365

Figure 5C–F displays the relationship between ensemble activity patterns associated366

with the three objects as neurons are progressively added to the ensemble (for ease of367

visualization 2D SSIMS projections are shown). The target object clearly emerges as368

the dominant feature in the SSIMS projections; this can bee seen in the post-hoc color369

coding. Note that this result does not imply that other kinds of information – such as370

hand position – are not represented in the neural data. With greater numbers of neurons371

cluster separation and classification performance gradually increase. A NN classifier372

(implemented with leave-one-out cross validation) applied to the full ensemble SSIMS373

projections correctly identified the target object in ~96% of the trials, exceeding re-374

sults obtained using a similar classifier applied directly on all kinematic measurements375

shown in Figure 4 spanning the same time duration (89% correct). Measuring addi-376

tional kinematics and or dynamics could potentially narrow the gap between neural and377

kinematic classification. However, our results demonstrate that the SSIMS algorithm378

is capable of capturing grasp-related activity patterns with fidelity on par with detailed379

kinematic measurements. The method can successfully discriminate activity patterns380

in complex tasks involving many interacting degrees of freedom, and is therefore a po-381

tentially useful tool for the analysis of high-dimensional motor, sensory, or cognitive382

neural responses.383

3.6 Comparison with other methods384

The SSIMS algorithm combines spike train similarity metrics with t-SNE in order to385

generate low-dimensional representations of neural spiking data. It is possible to gen-386

erate similar outputs by combining different pre-processing and dimensionality reduc-387

tion techniques. In order to examine the contributions different approaches, we tested388
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Figure 5: FRG task: from single neurons to ensembles. A. Single neuron performance in

3-object classification (10D SSIMS, NN classification using data from individual neu-

rons separately). Classification accuracy using the combined data from all neurons is

highlighted with a red star for comparison. Green triangles denote the 95% confidence

interval of the chance distribution (calculated over 10,000 random shuffles of the trial

labels). B. Classification performance as a function of ensemble size (10D SSIMS).

Neurons were ranked according to single-unit NN results and added to the decoding

ensemble from best to worst (black) or worst to best (red). The median value between

these two extremes is shown in blue, representing the expected trend for randomly cho-

sen neurons C–F. SSIMS projections for various ensemble sizes (2D SSIMS).Color

denotes the object being grasped (blue = vertical plate, red = cylinder, green = disk).
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two pre-processing methods with three dimensionality reduction algorithms. The pre-389

processing methods analyzed were spike train similarity metrics (SIM) and binned spike390

counts (SC), while the dimensionality reduction algorithms were t-SNE, multidimen-391

sional scaling (MDS), and principal component analysis (PCA). Each combination was392

evaluated using a NN classifier (as described in previous sections) for both the COUT393

and FRG task data. Each pre-processing method was evaluated at two temporal accu-394

racy settings (100msec bins, equivalent to 1/q = 100msec, and 10msec bins, equivalent395

to 1/q = 10msec). In all comparisons one second of neural data was used. Each di-396

mensionality reduction algorithm was used to generate a 10D space (well-suited for397

classification) as well as a 2D space (for ease of visualization). Additionally, we ran398

the NN classifier on data without the benefit of dimensionality reduction as a baseline399

comparison. Results are summarized in Table 1.400

Across all of the comparisons evaluated, methods using spike counts produced, on401

average, 67% correct classification (s.dev = 20), while methods based on spike train402

similarity averaged 80%. Methods including PCA averaged 65% (s.dev = 24), while403

the average for MDS was 74% (s.dev = 20), and the average for t-SNE was 83% (s.dev404

= 17). For any given task, dimensionality, and temporal accuracy, the combination of405

techniques used in the SSIMS algorithm (SIM + t-SNE) produced the highest accuracy406

observed, with the exception of COUT, 2D, and 100msec, where it was 1% below t-SNE407

+ spike counts.408

Overall, similarity metrics tended to outperform spike counts and produce represen-409

tations which were more stable across different dimensionality settings. The largest dif-410

ferences between dimensionality reduction algorithms were observed in the 2D spaces,411

where t-SNE was clearly superior. For 10D spaces the performance of different al-412

gorithms was relatively similar (especially when using spike train similarity as a pre-413

processing step). This pattern suggests that even for cases where discrete classification414

accuracy for MDS and t-SNE is roughly equivalent, t-SNE consistently produces more415

informative 2D plots for visualization purposes. Samples of 2D plots produced using416
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different methods are shown in Figs. 6 and 7. Note that PCA fails to capture the circular417

arrangement of targets in the COUT task (Fig. 6 ). This pattern is revealed by MDS, but418

the clusters tend to be more diffuse than those obtained using t-SNE. The differences419

are more pronounced for the FRG task, where only the full SSIMS algorithm shows a420

clear recognizable pattern in 2D (Fig. 7).421

3.7 Effects of Parameter Setting on SSIMS algorithm performance422

We tested the performance of the SSIMS algorithm under a range of parameter settings423

spanning a range of spike train durations, temporal offsets, dimensionality, temporal424

resolution (q values), and perplexity. Algorithm performance was evaluated based on425

classification accuracy of either reaching direction in the COUT task or target object for426

grasping in the FRG task. In both cases, a nearest neighbor classifier with leave-one-out427

cross validation was applied as previously described.428

For both of the tasks examined, accurate pattern classification (greater than 85%429

correct) was observed for a wide range of time windows (Figure 8). For the COUT task,430

the most informative time period for direction classification was around the time of start431

of movement. In the FRG task, the most informative period for grip classification was432

roughly 500 ms before contact with the object, coinciding with the transport phase that433

includes hand pre-shaping. The duration of the time window analyzed had a relatively434

small effect on performance. During the most informative time periods, time windows435

of as short as 200 ms were sufficient for accurate classification. Extending the time436

window by an order of magnitude (up to 2 s) did not adversely affect performance.437

These results show that the SSIMS method is suitable for exploring neural data at a438

broad range of time scales.439

We also examined the effect of SSIMS dimensionality and temporal accuracy (q440

value) on classification performance. For this part of the analysis, we selected fixed 1-441

second time windows coinciding with highly informative periods in each task: starting442
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Table 1: Pairing neural data pre-processing and dimensionality reduction strategies

Classification results obtained using a NN classifier on data processed using differ-

ent combinations of algorithms. Column headings denote the dimensionality reduction

algorithm: principal component analysis (PCA), multidimensional scaling (MDS), t-

distributed stochastic neighbor embedding (t-SNE), or ’RAW’ when no dimensional-

ity reduction was performed. Each column heading also lists the data pre-processing

method: spike counts (COUNTS), or spike train similarity metrics (SIM). The highest

classification values for each task, dimensionality, and temporal accuracy setting (rows)

are highlighted. A. Results for temporal accuracy of 100msec (1/q = 100msec for SIM,

bin size = 100msec. for COUNTS) B. Results for temporal accuracy of 10msec. In 7

out of 8 combinations of dataset, temporal accuracy setting, and dimensionality (table

rows) the SSIMS algorithm (t-SNE + SIM) outperformed or matched the classification

accuracy obtained using any of the other methods evaluated.
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SSIMS (96 / 97% correct) SC + tSNE (96 / 98% correct)

SIM + MDS (95 / 86% correct) SC + MDS (95 / 89% correct)

SIM + PCA (95 / 57% correct) SC + PCA (96 / 60% correct)

A
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F

Figure 6: Neural data visualization: COUT task. Top row shows results using tSNE for

the dimensionality reduction step (A,B), middle row represents MDS (C,D) and bottom

row PCA (E,F). Left column shows results for methods using spike train similarity as

a pre-processing step (A,C,E), right column shows results for methods based on spike

counts (B,D,F).
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SSIMS (96 / 87% correct) SC + tSNE (83 / 70% correct)

SIM + MDS (91 / 58% correct) SC + MDS (73 / 42% correct)

SIM + PCA (91 / 29% correct) SC + PCA (76 / 40% correct)

A

C

E

B

D

F

Figure 7: Neural data visualization: FRG task. Top row shows results using tSNE for

the dimensionality reduction step (A,B), middle row represents MDS (C,D) and bottom

row PCA (E,F). Left column shows results for methods using spike train similarity as

a pre-processing step (A,C,E), right column shows results for methods based on spike

counts (B,D,F).
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Figure 8: Effect of spike train duration and temporal offset on SSIMS. A. Effects of

temporal offset and spike train duration on COUT direction classification. The abscissa

is the start time for the window used to generate the SSIMS projection (centered around

start of movement; negative values are before the onset of movement). The ordinate

varies the length of the time window. These results were obtained holding q = 10

(corresponding to a temporal precision of 0.1 s), perplexity = 30, and SSIMS dimen-

sionality = 10. B. Effects of temporal offset and spike train duration on FRG grip

classification (same conventions as A).
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Figure 9: Effect of dimensionality and q on SSIMS. A. Effect of q and dimensionality

on direction classification in the COUT task. In the ‘FULL’ dimensionality condition

classification was performed directly on the pairwise distance matrices without apply-

ing t-SNE. Infinite temporal resolution corresponds to setting q = 0 (pure rate code).

The following parameters were held constant: window start time = −0.1 s, spike train

duration = 1 s. The marginal distribution averaging percent correctly classified trials

across dimensions is shown above each plot. B. Effect of q and dimensionality on grip

classification in the FRG task. Same conventions as A. Window start time = −0.5 s,

spike train duration = 1 s.

100 ms before movement onset for COUT and 500 ms before object contact for FRG.443

While holding spike train duration and temporal offset constant, we examined classi-444

fication performance as a function of dimensionality and q (Figure 9). For both of the445

tasks, dimensionality reduction did not have an adverse effect on classification, suggest-446

ing that the low dimensional spaces successfully characterize the patterns present in the447

original high dimensional pair-wise similarity matrix. In the COUT task, 2 dimensions448
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were sufficient for accurate decoding, while in the FRG task performance was more449

stable with 3 or more dimensions. We explicitly tested clustering without the benefit of450

dimensionality reduction (labeled as ‘FULL’ dimensionality in Figure 9); for both tasks451

a modest but consistent increase in classification was observed when dimensionality452

reduction was applied (more pronounced for the FRG task). Adjusting the temporal453

resolution of the algorithm (q value) produced different effects in the two tasks exam-454

ined. Recall that q determines the cost of shifting, such that a shift of more than 1/q455

has a cost equivalent to removing a spike and inserting a new one. This cutoff deter-456

mines when the algorithm treats spikes as temporally shifted versions of each other,457

rather than unrelated events. Changing the value of q had a relatively small effect on458

classification accuracy for the COUT task. However, there was a gradual trend towards459

better classification for temporal accuracy values of 250 ms. The FRG task displayed460

a clearer effect of temporal resolution, with a consistent increase in classification accu-461

racy for 1/q values around 100 ms. Overall, incorporating spike timing provided better462

performance than assuming a pure rate code (setting q = 0). This finding demonstrated463

the advantage of incorporating spike timing information rather than only spike counts.464

We also tested the effect of varying the perplexity setting in t-SNE (which deter-465

mines the effective number of neighbors for each point). Algorithm performance did466

not vary for perplexity values between 1 and 50 (data not shown).467

4 Algorithm validation using synthetic data468

In the two data sets analyzed, classification accuracy showed systematic variation as a469

function of the q settings in the SSIMS algorithm. However, the true degree of tem-470

poral accuracy for the behaviors examined is not known. In order to test whether the471

SSIMS algorithm is sensitive to the temporal resolution of spiking patterns, we con-472

ducted additional tests using synthetic spike trains with predetermined degrees of tem-473

poral precision. Artificial data was generated based on eight one-second spike trains474
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Synthetic spike trains (± 1 ms jitter)

Synthetic spike trains (± 10 ms jitter)

Synthetic spike trains (± 100 ms jitter)

A

B

C

Figure 10: Synthetic spike trains. Eight different spike trains recorded in primary motor

cortex served as templates for synthetic data generation. For each synthetic dataset each

spike train was jittered and randomly subsampled removing between 0 and 20% of the

spikes. Samples of spike trains jittered by ±1, 10, and 100 ms are shown in A, B, and

C, respectively.

recorded from a sample neuron recorded in the COUT data set (one spike train for each475

movement direction). In order to simulate a stochastic response, synthetic spike trains476

were generated by applying a random jitter to each recorded spike train (drawn from a477

uniform distribution) and then removing a percentage of the spikes (chosen randomly478

between 0 and 20%). The magnitude of the introduced jitter was used as a model for479

the temporal accuracy of the neural code. Fifty-one synthetic datasets were generated480

with jitter values ranging from 1 to 500 ms. Each dataset included 20 samples for each481

of the eight directions. Sample spike trains with varying levels of jitter are shown in482

(Figure 10).483

Each synthetic dataset (representing neural codes with varying degrees of temporal484
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consistency) was evaluated in separate runs of the SSIMS algorithm using values of the485

q parameter ranging from 0 to 1000, resulting in values of 1/q ranging from 1000 (ef-486

fectively infinite) to 1 ms. For all tests performed, the algorithm yielded above chance487

classification (with a minimum of 40%, significantly above the expected chance value488

of 12.5% for eight categories). For jitter values of up to 100 ms, the peak in classifi-489

cation as a function of 1/q closely matched the true temporal accuracy (jitter) of the490

synthetic data (Figure 11A). This observation shows that the SSIMS algorithm can be491

used to detect precise temporal patterns in spiking data and estimate their precision. As492

temporal codes progressively deteriorate (at higher jitter values), classification accuracy493

becomes less sensitive to the q parameter setting (Figure 11B). These findings suggest494

that optimization of q is not critical for rate-based codes, but can become an important495

factor in the discrimination of activity patterns where information is contained in the496

timing of individual spikes.497

5 Discussion498

Although neuronal spiking patterns contain large amounts of information, parameteriz-499

ing the outputs of individual neurons is challenging, since their activity often reflects500

complex interactions of multiple (often unknown) variables and noise, leading to trial-501

by-trial variation that is difficult to characterize. Furthermore, the response properties of502

individual neurons are not stationary, but instead are subject to rapid context-dependent503

changes (Donoghue et al., 1990; Sanes et al., 1992; Hepp-Reymond et al., 1999; Moore504

et al., 1999; Li et al., 2001; Tolias et al., 2005; Stokes et al., 2013). Limiting data anal-505

ysis to sub-populations of neurons that can be described using relatively simple models506

may severely distort conclusions drawn from an experiment and disregard important re-507

lationships that emerge at large scales. With technological advancements allowing for508

the simultaneous recording of ensembles approaching thousands of neurons, address-509

ing these challenges is becoming increasingly important (Grewe et al., 2010; Ahrens510
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Figure 11: Estimating the temporal accuracy of neural codes. A. Classification accuracy

(using a nearest neighbor classifier implemented using leave-one-out cross validation)

is plotted as a function of the jitter used to generate the synthetic data (y-axis) and the

q value setting for the SSIMS algorithm (x-axis). Classification results shown are the

average value obtained across 20 iterations of synthetic data generation. For each syn-

thetic dataset (row) the jitter value is highlighted by a circle. Similarly, the value of 1/q

yielding the highest NN classification is highlighted with a ‘+’ sign. B. 3D projection

of the data presented in panel A. This view highlights the large effects of q parameter

settings on classification of spiking patterns with high temporal accuracy (small jitter).

The same variation in q has a much less pronounced effect on low accuracy temporal

codes (with hundreds of milliseconds of jitter).
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et al., 2012, 2013). The SSIMS algorithm allows the direct comparison of neuronal511

firing patterns with minimal assumptions regarding the specific nature of neural encod-512

ing of the underlying behavioral task or stimulus presentation. Using a similarity-based513

methodology circumvents the problems of over and under-parameterization: in effect,514

the templates used to evaluate spiking activity are supplied by the neuronal data. This515

relational approach is solely based on the intrinsic properties of neural activity, and516

does not require a direct mapping between neuronal firing patterns and extrinsic vari-517

ables (measured in the external world). As highlighted in a recent review by Lehky et518

al., intrinsic, unlabeled, relational, approaches to neural data analysis provide robust,519

physiologically plausible encoding models (Lehky et al., 2013). Our results demon-520

strate the flexibility of intrinsic coding implemented in the SSIMS framework. We521

were able to apply an almost identical analysis (differing only in the number of cate-522

gories to discriminate) for neural activity elicited in very different behavioral contexts523

without having to adjust any parameters relating firing patterns to extrinsic variables.524

Avoiding the need for ‘extrinsic labeling’ is one of the main features that makes this525

kind of model appealing from a biological standpoint (Lehky et al., 2013).526

Our results also demonstrate how accurate movement decoding (of either reach di-527

rection and grip type) can be achieved by applying relatively simple algorithms (such as528

nearest neighbor classifiers) to SSIMS representations. The algorithm can successfully529

discriminate between ensemble spiking patterns associated with a planar 8-directional530

reaching task, accurately reflecting the relationships between reach directions (Fig-531

ure 3). SSIMS projections can also be used to separate three different grasping strate-532

gies used in the Free Reach-to-Grasp task, despite the higher number of degrees of533

freedom engaged (Figure 5). In both tasks, stable cluster separation was achieved over534

a broad range of physiologically relevant parameter settings (Figures 8, 9). Classifica-535

tion accuracy was consistently improved by the application of dimensionality reduction536

as well as the inclusion of spike timing information (Figure 9). This finding highlights537

the advantages of the two core techniques that form the basis of the SSIMS algorithm.538
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Evaluating neural data under various parameter settings can potentially reveal features539

related to the inherent dimensionality as well as spike timing precision. In the COUT540

task, optimal pattern classification was observed with temporal accuracy settings of ap-541

proximately 250 ms; whereas in the FRG task, classification peaked for 1/q values of542

approximately 100 ms. Although these observations suggest a greater degree of tempo-543

ral accuracy for spiking during grasping than reaching behaviors, it must be stressed that544

the values represent only 2 datasets collected from different animals. Further research545

involving the comparison of multiple subjects engaged in both tasks would be required546

to explore this hypothesis. Although pursuing this inquiry is outside the scope of the547

current manuscript, this finding shows how the application of the SSIMS method can be548

used to fuel data-driven hypothesis generation. The SSIMS algorithm provides outputs549

that can be conveniently visualized and quantitatively evaluated. Visual examination of550

the ensemble SSIMS plots makes it easy to fine-tune algorithm performance: for exam-551

ple, given the overlap between the categories in Figure 3F, we could reasonably expect552

100% correct classification for a 4-directional decoder. Of course, this prediction as-553

sumes that the properties of the data being recorded are stable over time, an ongoing554

challenge for on-line neural control (Barrese et al., 2013). SSIMS visualization may555

also prove useful in this respect, providing and intuitive display of the trial by trial vari-556

ation of single-unit or ensemble neural activity patterns which would make it easier to557

detect and address variations in decoder performance. This kind of application may be558

a valuable tool for the challenge of developing reliable neuromotor prosthetics.559

Relationship to existing neural dimensionality reduction algorithms560

Evaluating the information content of neuronal ensembles using machine-learning meth-561

ods for classification and decoding is a widely used strategy. This approach often in-562

cludes an implicit element of dimensionality reduction: for example, estimating the 2D563

position of the arm using a Kalman filter (Wu et al., 2006) is a dimensionality reduction564

33



operation guided by kinematic parameters. Other algorithms such as population vector565

decoding (Georgopoulos et al., 1986) can also be viewed as a kinematic-dependent su-566

pervised form of dimensionality reduction (since preferred directions must be assigned567

beforehand). Methods like these require parametrization of neural data with respect568

to an externally measured covariate. By contrast, relational, intrinsic decoding meth-569

ods such as SSIMS perform dimensionality reduction in an unsupervised way, with no570

reference to continuous kinematic variables (Lehky et al., 2013).571

Non-supervised dimensionality reduction techniques based on principal component572

analysis (PCA) have also been successfully used to produce concise representations of573

neural ensemble activity without a priori knowledge of external variables (Churchland574

et al., 2007, 2010, 2012; Mante et al., 2013). This approach has revealed structured575

transitions from movement preparation to execution not evident using traditional analy-576

sis methods focusing on single-unit changes in firing rate. Several studies have applied577

relational encoding methods using multidimensional scaling (MDS) to examine corti-578

cal ensemble activity in the primate visual system (Young and Yamane, 1992; Rolls579

and Tovee, 1995; Op de Beeck et al., 2001; Kayaert et al., 2005; Kiani et al., 2007;580

Lehky and Sereno, 2007). Murata and colleagues have also employed similar methods581

to examine grasp-related encoding in area AIP (Murata et al., 2000). These studies582

have successfully generated low-dimensional spaces representing relational coding of583

different objects and grip strategies.584

One key difference between the SSIMS algorithm and other methods is the combi-585

nation of dimensionality reduction with spike train similarity metrics. Instead of repre-586

senting neuronal activity in terms of firing rates (either binned, or smoothed using a ker-587

nel function) the SSIMS algorithm applies dimensionality reduction to sets of pair-wise588

distances between spike trains, allowing for retention of millisecond-level spike timing589

information. Although it is still necessary to specify a time window, the precise timing590

of each spike is taken into account; it is therefore possible to examine relatively large591

time windows without sacrificing temporal resolution. Previous work on spike train592
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metrics revealed no net benefits from the application of dimensionality reduction, aside593

from convenient visualization (Victor and Purpura, 1997). Our method differs from pre-594

vious applications in terms of how information from individual neurons is combined.595

Instead of collapsing ensemble similarity measures by shifting spikes between neurons,596

our approach keeps information from each neuron segregated until the dimensionality597

reduction step. Our choice of dimensionality reduction algorithm (t-SNE, as described598

in van der Maaten and Hinton, 2008) also differs from traditional approaches by using599

dynamic density estimation to minimize the differences between local neighborhoods600

in the high and low dimensional spaces.601

We directly compared the SSIMS algorithm to methods using MDS or PCA imple-602

mented on data represented in terms of spike counts as well as spike train similarity603

metrics. Our results show an increase in the accuracy of pattern recognition associated604

with both components of the SSIMS algorithm (Figs. 6 and 7, Table 1). The combi-605

nation of spike train similarity with t-SNE allow the SSIMS algorithm to effectively606

use dimensionality reduction to enhance pattern recognition, improving performance607

compared to the alternative methods tested.608

Limitations and future work609

The main application for the SSIMS method is the comparison of discrete experimental610

conditions with the goal of clustering similar activity patterns. SSIMS coordinates are611

determined by the relative similarity of the activity patterns analyzed. It is therefore not612

possible to directly map SSIMS projections generated from different ensembles into the613

same space (for example, from different subjects, or different brain areas). However,614

normalized clustering statistics (for example the ratio between within and between-615

cluster distances) could be used to compare SSIMS representations from different en-616

sembles. Decoding results (such as the nearest-neighbor classifier demonstrated here)617

can also be used to quantify and compare the separation between activity patterns from618
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different sources.619

Although the SSIMS method provides useful visualization and quantification of the620

main trends present in the data, it should not be regarded as a comprehensive repre-621

sentation of all the information contained in a given set of neural activity patterns. For622

example, time-varying continuous variables may fail to produce clear clusters unless623

there are underlying repeating motifs centered around the time epochs of interest. Fur-624

thermore, while low dimensional representations may reveal the principal organizing625

patterns for a dataset, more subtle trends may not be evident without taking into ac-626

count higher dimensional spaces. Note that while this may hinder visualization, the627

statistical techniques described for cluster evaluation can be used to determine the opti-628

mal dimensionality to discriminate patterns in a given task.629

For the current implementation of the algorithm, it is necessary to align spike trains630

using an external reference event, which inevitably introduces temporal jitter related631

to the sensor and detection system used. Metrics based on inter-spike intervals could632

help mitigate possible misalignments (Victor and Purpura, 1996). Future versions of633

the algorithm may also refine spike train alignment using other biological signals, such634

as local field potentials (for example, in addition to comparing the timing of spikes, it635

may be useful to compare their phase alignment with respect to ongoing oscillations636

at specific frequencies). The current metric also lacks an explicit model of potential637

interactions between different neurons. Incorporating similarity between pairs or neu-638

rons, or measures of synchrony between them could potentially expand the sensitivity639

of the algorithm. Tracking the evolution of SSIMS cluster statistics using sliding time640

windows, will also be also possible to see how particular activity patterns converge or641

diverge over time, providing insight into ensemble dynamics.642

The t-SNE algorithm is well suited for the separation and classification of neural643

activity patterns based on pair-wise similarity metrics because of the emphasis it places644

on comparisons among neighboring points. However, the dynamic density estimation645

used to define local neighborhoods can potentially have a normalization effect on the646
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variance of individual clusters. Therefore, if the goal of the analysis is to estimate647

the inherent variability of neural responses in different conditions, it may be better to648

perform the comparison using other dimensionality reduction methods (or foregoing649

dimensionality reduction altogether).650

Note that to demonstrate the application of SSIMS for classification we used a sim-651

ple NN method. NN, however, is not a part of the main SSIMS algorithm. Of course,652

more sophisticated classifiers could be applied to the SSIMS output, likely providing653

further improvements in decoding accuracy.654

Conclusion655

Understanding the relationship between patterns of activity emerging in large scale neu-656

ral recordings is a key step in understanding principles of biological information pro-657

cessing. The SSIMS algorithm provides a widely applicable framework for neural data658

analysis allowing both straightforward visualization of of an arbitrary number of simul-659

taneously recorded spike trains and a way to perform precise statistical comparisons660

between activity patterns. By combining spike train metrics that capture precise spike661

timing and a dimensionality reduction technique based on pair-wise similarity, we have662

demonstrated that SSIMS is an effective analytical tool in two dramatically different663

non-human primate experimental paradigms.664

The techniques described can be employed beyond the motor domain, providing a665

way to quantify the relationship between perceptual or cognitive states where kinemat-666

ics do not provide an intuitive topography. Additionally applying unsupervised cluster-667

ing algorithms (such as k-means) to SSIMS data could reveal clusters of similar neural668

activity patterns without any a priori knowledge of the behavioral context. Using these669

tools, it may be possible to automatically identify recurring network states as well as the670

transitions between them, providing an intuitive framework to represent the high level671

flow of neural computation.672
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