MAX PLANCK INSTITUTE FOR INTELLIGENT SYSTEMS

Technical Report No. 5

 $7~{\rm August}~2012$

LIE BODIES: A MANIFOLD REPRESENTATION OF 3D HUMAN SHAPE

SUPPLEMENTAL MATERIAL

Oren Freifeld and Michael J. Black

Abstract. This technical report is complementary to [1] and contains proofs, formulas and additional plots. It is identical to the supplemental material submitted to European Conference on Computer Vision (ECCV 2012) on March 2012.

References

 Freifeld, O., Black, M.J.: Lie Bodies: A Manifold Representation of 3D Human Shape. European Conference on Computer Vision (2012) Lie Bodies: A Manifold Representation of 3D Human Shape

Supplemental Material

Oren Freifeld

Division of Applied Mathematics, Brown University

Michael J. Black

Max Planck Institute for Intelligent Systems

Contents

1	Proofs	(including fo	ormulas)	1	

2 Additional Plots for Prediction of Measurements

1 Proofs (including formulas)

Proof. (Proposition 1) $I_2 \in G_A$. To prove closure under composition, let $A, B \in G_A$. Note that $AB[1,0]^T = A[1,0]^T = [1,0]^T$ and det $AB = \det A \det B > 0$. Thus, $AB \in G_A$. To prove closure under inversion, let $A \in G_A$. First, note that $\det A^{-1} = 1/\det A > 0$. Second, $A^{-1} = \begin{pmatrix} 1 & -U/V \\ 0 & 1/V \end{pmatrix}$ and thus $A^{-1} \in G_A$. \Box

Proof. (Proposition 2) Let $X = [p_1^{(X)}, p_2^{(X)}]$ and $Y = [p_1^{(Y)}, p_2^{(Y)}]$. Set $S = ||p_1^{(Y)}||/||p_1^{(X)}||$. Without loss of generality we can assume S = 1. Let $p_2^{(X)} = (x_2^{(X)}, y_2^{(X)})$ and $p_2^{(Y)} = (x_2^{(Y)}, y_2^{(Y)})$. Now solve for the unknowns U and V (there exists a unique solution: the y's are positive):

$$\begin{pmatrix} 1 & U \\ 0 & V \end{pmatrix} \begin{pmatrix} x_2^{(X)} \\ y_2^{(X)} \end{pmatrix} = \begin{pmatrix} x_2^{(Y)} \\ y_2^{(Y)} \end{pmatrix} \Rightarrow V = y_2^{(Y)} / y_2^{(X)}, U = (x_2^{(Y)} - x_2^{(X)}) / (y_2^{(X)}) .$$
(1)

 $\mathbf{2}$

Proof. (the fact after Definition 6) Let $X = [p_1, p_2]$. First, use any standard technique to find $R_1 \in SO(3)$ such that $R_1p_1 = ||p_1|| [1, 0, 0]^T$. Let $[x, y, z]^T$ denote the entries of R_1p_2 . Solve for the unknowns c and s in

$$\begin{pmatrix} c & -s \\ s & c \end{pmatrix} \begin{pmatrix} y \\ z \end{pmatrix} = \begin{pmatrix} +\sqrt{y^2 + z^2} \\ 0 \end{pmatrix}$$
(2)

and set $R_X = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c & -s \\ 0 & s & c \end{pmatrix} R_1$ (note that $c^2 + s^2 = 1$).

Proof. (Proposition 3) Recall that

$$\exp(A) = \sum_{n=0}^{\infty} \frac{1}{n!} A^n .$$
(3)

First, assume v = 0. So $A^2 = AA$ is the zero matrix and thus so is A^k for every $k \ge 2$. By Eq. (3),

$$\exp(A) = \exp\left(\begin{pmatrix} 0 & u \\ 0 & 0 \end{pmatrix}\right) = I + \begin{pmatrix} 0 & u \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} \triangleq \begin{pmatrix} 1 & U \\ 0 & V \end{pmatrix} \in G_A .$$
(4)

If $v \neq 0$, induction shows that

$$A^{n} = \begin{pmatrix} 0 & u \\ 0 & v \end{pmatrix}^{n} = \begin{pmatrix} 0 & uv^{n-1} \\ 0 & v^{n} \end{pmatrix} .$$
 (5)

Substituting this into Eq. (3),

$$\exp(A) = \exp\left(\begin{pmatrix} 0 & u \\ 0 & v \end{pmatrix}\right) = \begin{pmatrix} 1 & \frac{u}{v} \left(e^{v} - 1\right) \\ 0 & e^{v} \end{pmatrix} \triangleq \begin{pmatrix} 1 & U \\ 0 & V \end{pmatrix} \in G_A .$$
(6)

The two cases taken together imply a bijection $(u, v) \mapsto (U, V)$, $\mathbb{R}^2 \to \mathbb{R} \times \mathbb{R}^+$, and thus exp : $\mathfrak{g}_A \to : G_A$ is bijective too. Finally, For computing the log, set $v = \log(V)$. If V = 1, set u = U. Otherwise, set u = Uv/(V - 1).

2 Additional Plots for Prediction of Measurements

Figure 1: **Measurement prediction.** Linear prediction of body measurements from shape coefficients; RMS error as a function of the number of coefficients