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(57) ABSTRACT
A method for providing a three-dimensional body model 
which may be applied for an animation, based on a moving 
body, wherein the method comprises providing a parametric 
three-dimensional body model, which allows shape and pose 
variations; applying a standard set of body markers; opti
mizing the set of body markers by generating an additional 
set of body markers and applying the same for providing 3D 
coordinate marker signals for capturing shape and pose of 
the body and dynamics of soft tissue; and automatically 
providing an animation by processing the 3D coordinate 
marker signals in order to provide a personalized three- 
dimensional body model, based on estimated shape and an 
estimated pose of the body by means of predicted marker 
locations.
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METHOD FOR PROVIDING A THREE 
DIMENSIONAL BODY MODEL

This application is a continuation application of U.S. 
patent application Ser. No. 14/602,701, which claims prior
ity to U.S. 61/930,711 and U.S. 62/066,674, which are 
incorporated by reference in their entirety.

The present invention relates to a method for providing a 
three-dimensional body model and an apparatus for provid
ing a three-dimensional body model by Motion and Shape 
capture MoSh.

BACKGROUND OF THE INVENTION

There is an extensive literature on (and commercial 
solutions for) estimating skeleton proxies from marker sets. 
Since MoSh does not use a skeleton, these methods are not 
reviewed here. Instead, it is focused on several key themes 
in the literature that more directly relate to the work: fitting 
models to sparse markers, dense marker sets, and surface 
capture.

From Markers to Models: To get body shape from sparse 
markers, one needs a model of body shape to constrain the 
problem. There have been several previous approaches.

ALLEN, B, CURLESS, B, AND POPOVIC, Z. 2003. 
The space of human body shapes: Reconstruction and 
parameterization from range scans. ACM Trans. Graph. 
(Proc. SIGGRAPH) 22, 3, 587-594, learn a model of body 
shape variation in a fixed pose from 3D training scans.

ANGUELOV, D, SRINIVASAN, P, KOLLER, D, 
THRUN, S, RODGERS, J, AND DAVIS, J. 2005. SCAPE: 
Shape Completion and Animation of People. ACM Trans. 
Graph. (Proc. SIGGRAPH 24, 3, 408-416 go further to learn 
a model that captures both body shape and non-rigid pose 
deformation.

Allen et al. show that one can approximately recover an 
unknown 3D human shape from a sparse set of 74 land
marks. They do this only for a fixed pose since their model 
does not represent pose variation. Importantly the landmarks 
are perfect and known; that is, they have the 3D points on 
the mesh they want to recover and do not need to estimate 
their location on the mesh. Unlike MoSh this does not 
address the problem of estimating body shape and pose from 
mocap markers alone.

Anguelov et al. [2005] show how to animate a SCAPE 
model from motion capture markers. Their method requires 
a 3D scan of the subject with the markers on their body. This 
scan is used for two purposes. First it is used to estimate the 
3D shape model of the person; this shape is then held fixed. 
Second the scanned markers are used to establish correspon
dence between the scan and the mocap markers. These 
limitations mean that the approach cannot work on archival 
mocap data and that a user needs both a 3D body scanner and 
a mocap system.

It is important to note that Anguelov et al. did not solve 
the problem addressed by MoSh. They fit a SCAPE model 
to a 3D body scan (what they call shape completion) and 
with known marker locations, animate the model from 
mocap markers. It is gone go beyond their work to estimate 
the body shape from only the sparse mocap markers without 
the use of any scan and without knowing their precise 
location on the body. This is done by simultaneously solving 
for the marker locations, the shape of the body and the pose 
using a single objective function and optimization method. 
Unlike [Anguelov et al. 2005], MoSh is fully automatic and 
applicable to archival data.
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2
It is gone also beyond previous work to define new marker 

sets and evaluate the effect of these on reconstruction 
accuracy. This provides a guide for practitioners to choose 
appropriate marker sets.

Dynamics of Soft Tissue: Unlike MoSh, the above work 
does not address the capture of soft tissue motion. Interest
ingly, much of the attention paid to soft-tissue motion in the 
mocap community (particularly within biomechanics) actu
ally focuses on minimizing the effects of soft tissue dynam
ics, as disclosed in LEARDINI, A, CHIARI, L, CROCE, U. 
D., AND CAPPOZZO, A. 2005. Human movement analysis 
using stereophotogrammetry:

Part 3. soft tissue artifact assessment and compensation. 
Gait & Posture 21, 2, 212-225. Soft tissue motion means the 
markers move relative to the bones and this reduces the 
accuracy of the estimated skeletal models. For animation, it 
is argued that such soft tissue motions are actually critical to 
making a character look alive.

Dense Marker Sets: To capture soft-tissue motion, previ
ous work has used large, dense, marker sets. PARK, S. I., 
AND HODGINS, J. K. 2006. Capturing and animating skin 
deformation in human motion. ACM Trans. Graph. (Proc. 
SIGGRAPH) 25, 3 (July), 881-889, use 350 markers to 
recover skin deformation; in the process, they deform a 
subject-specific model to the markers and estimate missing 
marker locations. In PARK, S. I, AND HODGINS, J. K. 
2008. Data-driven modeling of skin and muscle deforma
tion. ACM Trans. Graph. (Proc. SIGGRAPH) 27, 3 
(August), 96:1-96:6, they use a large (400-450) marker set 
for =10, 000 frames of activity to create a subject-specific 
model; this model can then be used to recover pose for the 
same subject in later sessions with a sparse marker set. In 
these works, the authors visualize soft-tissue deformations 
on characters resembling the mocap actor. Here soft-tissue 
deformations are transferred to more stylized characters.

HONG, Q. Y, PARK, S. I, AND HODGINS, J. K. 2010. 
A data-driven segmentation for the shoulder complex. Com
puter Graphics Forum 29, 2, 537-544, use 200 markers on 
the shoulder complex and a data driven approach to infer a 
model of shoulder articulation. While dense markers can 
capture rich shape and deformation information, they are not 
practical for many applications. Placing the markers is time 
consuming and a latge number of markers may limit move
ment. With these large sets, additional challenges emerge in 
dealing with inevitable occlusions and marker identification.

Recent work captures skin deformations using a dense set 
of markers or patterns painted on the body, like BOGO, E, 
ROMERO, J, LOPER, M, AND BLACK, M. J. 2014. 
FAUST: Dataset and evaluation for 3D mesh registration. In 
Proceedings IEEE Conf, on Computer Vision and Pattern 
Recognition (CVPR) or NEUMANN, T, VARANASI, K., 
HASLER, N, WACKER, M, MAGNOR, M, AND 
THEOBALT, C. 2013. Capture and statistical modeling of 
arm-muscle deformations. Computer Graphics Forum 32, 2 
(May), 285-294. The work is similar to Park and Hodgins 
but uses computer vision methods rather than standard 
mocap markers.

The present invention differs in that it conforms to stan
dard mocap practice and is backwards-compatible with 
existing sparse marker sets. The goal of MoSh is to get more 
out of sparse markers.

Surface Capture: At the other extreme from sparse mark
ers are methods that capture full 3D meshes at every time
instant, like DE AGUIAR, E, STOLL, C, THEOBALT, C.,
AHMED, N., SEIDEL, H.-P, AND THRUN, S. 2008.
Performance capture from sparse multi-view video. ACM
Trans. Graph. (Proc. SIGGRAPH) 27, 3 (August), 98:1-98:
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10 or STARK, J, AND HILTON, A. 2007. Surface capture 
for performance-based animation. IEEE Computer Graphics 
and Applications 27, 3, 21-31; this can be conceived of as a 
very dense marker set. Still other methods use a scan of the 
person and then deform it throughout a sequence, like DE 
AGUIAR, E, THEOBALT, C, STOLL, C, AND SEIDEL, 
H.-P. 2007. Marker-less deformable mesh tracking for 
human shape and motion capture. In Proceedings IEEE 
Conf, on Computer Vision and Pattern Recognition (CVPR), 
1-8 or LIU, Y, GALL, J, STOLL, C, DAI, Q, SEIDEL, 
H.-P, AND THEOBALT, C. 2013. Markerless motion cap
ture of multiple characters using multiview image segmen
tation. IEEE Transactions on Pattern Analysis and Machine 
Intelligence 35, 11, 2720-2735.

Existing methods for surface capture rely on multi-camera 
computer vision algorithms that are computationally expen
sive compared with commercial marker-based systems. 
These methods are most applicable to capturing complex 
surfaces like clothing or breathing that are difficult to 
parametrize, like TSOLI, A., MAHMOOD, N, AND 
BLACK, M. J. 2014. Breathing life into shape: Capturing, 
modeling and animating 3D human breathing. ACM Trans. 
Graph, (Proc. SIGGRAPH) 33, 4 (July), 52:1-52:11. In the 
case of body shape, it is found that, together with a para
metric body model, a small marker set is already very 
powerful.

DE AGUIAR, E, ZAYER, R, THEOBALT, C, SEIDEL, 
Η. P, AND MAGNOR, M. 2007. A simple framework for 
natural animation of digitized models. In Computer Graph
ics and Image Processing, 2007. SIBGRAPI 2007. XX 
Brazilian Symposium on, 3-10, in a related approach use an 
intermediate template that is animated in a traditional way 
from mocap markers. They then transfer the template motion 
to a more complex mesh. Like MoSh this method is moti
vated by standard practice but it still indirects through a 
crude proxy, rather than solving directly for shape and pose 
from markers.

Attribute Capture: The idea that markers contain infor
mation about body shape is not new. LIVNE, M, SIGAL, 
L, TROJE, N, AND FLEET, D. 2012. Human attributes 
from 3D pose tracking. Computer Vision and Image Under
standing 116, 5, 648-660, use motion capture data to extract 
socially meaningful attributes, such as gender, age, mental 
state and personality traits by applying 3D pose tracking to 
human motion. This work shows that a sparse marker set 
contains rich information about people and their bodies. 
MoSh takes a different approach by using the sparse marker 
data to extract faithful 3D body shape. Like Livne et al, it 
is shown that gender can be estimated from markers. Beyond 
this, it is suspected that the full 3D body model can be used 
to extract additional attributes.

Motion Magnification. There has been recent work on 
magnifying small motions in video sequences, like WANG, 
H, XU, N, RASKAR, R, AND AHUJA, N. 2007. Video
shop: Anew framework for spatio-temporal video editing in 
gradient domain. Graph. Models 69, 1, 57-70; WU, H.-Y, 
RUBINSTEIN, M, SHIH, E, GUTTAG, J, DURAND, F, 
AND FREEMAN, W. T. 2012. Eulerian video magnification 
for revealing subtle changes in the world. ACM Trans. 
Graph. (Proc. SIGGRAPH) 31, 4 (July), 65:1-65:8; or 
WADHWA, N, RUBINSTEIN, M, DURAND, F, AND 
FREEMAN, W. T. 2013. Phase-based video motion process
ing. ACM Trans. Graph, (Proc. SIGGRAPH) 32, 4 (July), 
80:1-80:10; but less work on magnifying 3D motions.

In part this may be because capturing 3D surface motions
is difficult. Other work exaggerates mocap skeletal motions
using mocap data, like KWON, J.-Y, AND LEE, I.-K. 2007.
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4
Rubber-like exaggeration for character animation. In Pro
ceedings of the 15th Pacific Conference on Computer 
Graphics and Applications, IEEE Computer Society, Wash
ington, D.C, USA, PG ’07, 18-26.

NEUMANN, T, VARANASI, K, WENGER, S, 
WACKER, M, MAGNOR, M, AND THEOBALT, C. 2013. 
Sparse localized deformation components. ACM Trans. 
Graph. 32, 6 (November), 179:1-179:10 develop methods 
for spatially localized modeling of deformations and show 
that these deformations can be edited and exaggerated.

JAIN, A, THORMAHLEN, T, SEIDEL, H.-P, AND 
THEOBALT, C. 2010. MovieReshape: Tracking and reshap
ing of humans in videos. ACM Transactions on Graphics 
(Proc. SIGGRAPH) 29, 6 (December), 148:1-148:10 edit 
body shape to exaggerate it but do not model or amplify 
non-rigid soft-tissue dynamics. While the exaggeration of 
facial motion has received some attention, this is the first 
work to use only sparse marker sets to extract full-body soft 
tissue motion for exaggeration.

In summary, MoSh occupies a unique position—it esti
mates 3D body shape and deformation using existing mocap 
marker sets. MoSh produces animated bodies directly from 
mocap markers with a realism that would be time consuming 
to achieve with standard rigging and skeleton-based meth
ods.

SUMMARY OF THE INVENTION

It is an object of the present invention to estimate body 
shape and pose together using marker data by exploiting a 
parametric model of the human body.

According to a first aspect this object is solved by a 
method for providing a three-dimensional body model 
which may be applied for an animation, based on a moving 
body, wherein the method comprises providing a parametric 
three-dimensional body model, which allows shape and pose 
variations; applying a set of body markers; optimizing the 
set of body markers by generating an additional set of body 
markers and applying the same for providing 3D coordinate 
marker signals for capturing shape and pose of the body and 
dynamics of soft tissue; and automatically providing an 
animation by processing the 3D coordinate marker signals in 
order to provide a personalized three-dimensional body 
model, based on estimated shape and an estimated pose of 
the body by means of predicted marker locations. The set of 
body markers can be a standard set of body markers. The set 
of body markers can be applied to the three-dimensional 
body model.

In a preferred embodiment of the method the three- 
dimensional body model is trained by means of a set of scans 
in a plurality of shapes and poses in order to represent shape 
and pose-dependent deformations. The training can be 
executed separately for men and women.

In a further preferred embodiment of the method the 
marker set is sparse.

In a further preferred embodiment of the method a hand
ful of markers are arranged on any body part.

In a further preferred embodiment of the method the 
number of body markers is below or equal to 47 or 67.

In a further preferred embodiment of the method the pose
of the body is assumed to vary smoothly over time.

In a further preferred embodiment of the method the body
shape of the subject does not change over time.

In a further preferred embodiment of the method the body
shape of the subject changes over time.
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In a further preferred embodiment of the method the 
changing body shape is constrained to be close to a fixed 
body shape representing a person’s identity.

In a further preferred embodiment of the method the 
method is applied for providing an animation of a character 
without converting motion capture data to a rigged model of 
the character.

In a further preferred embodiment of the method the 
three-dimensional body model is directly used for an ani
mation of a character.

In a further preferred embodiment of the method the 
three-dimensional body model is used as reference for 
retargeting the data to other animated characters.

In a further preferred embodiment of the method the 
three-dimensional body model considers dynamics of com
plex surface deformation, in particular of soft tissue, like fat 
and muscle.

In a further preferred embodiment of the method the 
dynamics of complex surface deformation is transferred to a 
further three-dimensional body model.

In a further preferred embodiment of the method the 
dynamics of complex surface deformation is exaggerated or 
attenuated, when transferring it to the further three-dimen
sional body model.

In a further preferred embodiment of the method the 
method may be executed on archival motion capture 
sequences.

In a further preferred embodiment of the method the 
additional set of body markers is positioned on soft tissue.

In a further preferred embodiment of the method the 
additional set of body markers is selected from a generated 
superset of additional maker sets.

In a further preferred embodiment of the method the 
additional set of body markers is selected to optimize a given 
objective function.

In a further preferred embodiment of the method a greedy 
search method is used for selecting the additional set of body 
markers.

In a further preferred embodiment of the method the 
method is used in a motion capture system.

In a further preferred embodiment of the method the body 
is a human or animal body.

According to a second aspect this object is solved by an 
apparatus for providing a three-dimensional body model 
which may be applied for an animation, based on a moving 
body, comprising a model storage which is adapted for 
providing a parametric three-dimensional body model, 
which allows shape and pose variations; a position detector 
which is adapted for applying a set of body markers; an 
optimizer, which is adapted for optimizing the set of body 
markers by generating an additional set of body markers and 
applying the same for providing 3D coordinate marker 
signals for capturing shape and pose of the body and 
dynamics of soft tissue; and a processor for automatically 
processing the 3D coordinate marker signals in order to 
provide a personalized three-dimensional body model, based 
on estimated shape and an estimated pose of the body by 
means of predicted marker locations. The set of body 
markers can be a standard set of body markers. The set of 
body markers can be applied to the three-dimensional body 
model.

According to a second aspect this object is solved by a
non-transitory computer readable medium containing com
puter-readable instructions stored therein for causing a com
puter processor to perform the steps of the method according
to the first aspect.

5

10

15

20

25

30

35

40

45

50

55

60

65

6
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a block diagram of a method for providing 
a three-dimensional body model;

FIG. 2 shows a schematic view of an apparatus for 
providing a three-dimensional body model;

FIG. 3 shows estimated example body shapes and poses;
FIG. 4 shows optimizing shape and markers;
FIG. 5 shows registrations to 3D scans and reconstruc

tions from markers;
FIG. 6 shows per-vertex distance residuals;
FIG. 7 shows extracted shapes and reference images;
FIG. 8 shows CMU mocap and example meshes;
FIG. 9 shows a frame from the jumping-jack sequence;
FIG. 10 shows shape from mocap;
FIG. 11 shows optimizing shape and markers;
FIG. 12 shows marker transformations;
FIG. 13 shows marker sets;
FIG. 14 shows marker selection residuals;
FIG. 15 shows effects of marker number on reconstruction 

error;
FIG. 16 shows shape reconstruction;
FIG. 17 shows shape from markers;
FIG. 18 shows CMU bodies;
FIG. 19 shows CMU mocap;
FIG. 20 shows motion of soft tissue; and
FIG. 21 shows retargeting soft-tissue motions.

DESCRIPTION OF THE INVENTION

FIG. 1 shows a block diagram of a method for providing 
a three-dimensional body model, which may be applied for 
an animation, based on a moving body. Motion and Shape 
are captured from sparse markers, a method denoted as 
MoSh (Motion and Shape capture).

The method comprises the step S101 of providing a 
parametric three-dimensional body model, which allows 
shape and pose variations; the step S102 of applying a 
standard set of body markers; the step S103 of optimizing 
the set of body markers by generating an additional set of 
body markers and applying the same for providing 3D 
coordinate marker signals for capturing shape and pose of 
the body and dynamics of soft tissue; and the step S104 of 
automatically providing an animation by processing the 3D 
coordinate marker signals in order to provide a personalized 
three-dimensional body model, based on estimated shape 
and an estimated pose of the body by means of predicted 
marker locations.

FIG. 2 shows a schematic view of an apparatus 100 for 
providing a three-dimensional body model which may be 
applied for an animation, based on a moving body. The 
apparatus 100 comprises a model storage 103 which is 
adapted for providing a parametric three-dimensional body 
model, which allows shape and pose variations; a position 
detector 105 which is adapted for applying a standard set of 
body markers; an optimizer 107, which is adapted for 
optimizing the set of body markers by generating an addi
tional set of body markers and applying the same for 
providing 3D coordinate marker signals for capturing shape 
and pose of the body and dynamics of soft tissue; and a 
processor 109 for automatically processing the 3D coordi
nate marker signals in order to provide a personalized 
three-dimensional body model, based on estimated shape 
and an estimated pose of the body by means of predicted 
marker locations. The method and the features can be 
implemented by means of a computer having a storage and 
processor.
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Motion Shape Capture from Sparse Markers I
FIG. 3 shows Carnegie Mellon University CMU subjects. 

Example body shapes 111 and poses 113 of a body 115 are 
estimated from the CMU motion capture dataset using the 
standard 42 Vicon markers. MoSh automatically takes 
mocap marker data and produces animations with a level of 
lifelike realism that is difficult to achieve with standard 
skeleton-based mocap methods.

While marker-based motion capture (mocap) is widely 
used to animate human characters in films and games, it is 
also widely criticized as producing lifeless and unnatural 
motions. This is the result of “indirecting” through a skel
eton that acts as a proxy for the human movement. In 
standard mocap, visible 3D markers on the body surface are 
used to infer the unobserved skeleton. This skeleton is then 
used to animate a 3D model and what is rendered is the 
visible body surface. Subtle information about motion of the 
body 115 is lost in the process of going from the non-rigid 
body surface to the rigid, articulated, skeleton representa
tion. MoSh replaces the skeleton with a 3D parametric body 
model. Given a standard marker set, MoSh simultaneously 
estimates the marker locations on the proxy body, estimates 
the body shape 111, and recovers the pose 113. By allowing 
body shape 111 to vary over time, MoSh is also able to 
capture the non-rigid motion of soft tissue. This process is 
fully automatic and results in nuanced and lifelike anima
tions. Since no body scanner or other hardware is required, 
MoSh can be applied to archival mocap data like that in FIG. 
5.

The basic version of MoSh has five core components. 1) 
MoSh uses a parametric 3D body model that realistically 
represents a wide range of natural body shapes 111, poses 
113, pose-dependent deformations, and other non-rigid 
shape deformations. For this a learned statistical body model 
based on SCAPE is used. 2) Marker placement on the body 
115 is done inexactly by hand, and varies from session to 
session; exact marker placement is not assumed. Conse
quently, a key contribution of MoSh is that it solves for 
marker locations relative to the 3D body. 3) MoSh also 
simultaneously solves for the 3D body shape 111 of the 
person that best explains the observed 3D mocap marker 
data. 4) Steps 2 and 3 above require that also simultaneously 
it is solved for 3D body pose 113. Components 2-3 are all 
embodied in a single objective function and this is optimized 
for a subset of the mocap sequence. 5) In a second stage, 
MoSh uses the computed body shape 111 and marker 
locations on the body 115, to estimate body pose 113 
throughout a mocap session.

This basic method produces realistic animations but the 
assumption of a single body shape 111 across the session 
does not account for the dynamics of soft tissue; for 
example, the jiggling of fat during jumping. Currently there 
are no practical technologies for easily capturing these 
soft-tissue motions and most mocap methods treat them as 
noise that corrupts the skeletal motion. A novel solution is 
developed that solves for a changing body shape 111 across 
the sequence by penalizing deviations from the shape 111 
estimated without dynamics. The result is surprisingly real
istic soft-tissue motion from traditional marker sets or new 
sets containing just a few more markers on areas of soft 
tissue. A range of marker sets is evaluated and it is found that 
the standard 42-marker set often used for motion capture 
(e.g. in the CMU dataset) works surprisingly well for 
recovering both shape 111 and pose 113. It is shown that 
larger marker sets produce more realism but with diminish
ing returns. The output of MoSh is a 3D body model that 
best fits the marker data and the accuracy of this estimated 
body shape 111 is evaluated. On the CMU dataset, a range 
of body shapes 111 is found that visually resemble reference 
video. For quantitative evaluation, four subjects with widely 
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8
different body shapes 111 and performed MoSh with differ
ent numbers of makers are scanned. MoSh can be used 
directly for animation or as a reference for animators. It is 
also shown that the body shape 111 can be changed to 
retarget the mocap sequence to new bodies.

This allows a professional dancer, for example, to perform 
an action and then another actor with a different body shape 
111 can be realistically animated without the labor-intensive 
process of transferring skeletal motion to a rigged model. As 
described in the next section, MoSh goes significantly 
beyond previous work. The main contribution of MoSh is 
that it provides a fully automated method for “mining” 
lifelike body shape 111 and pose information from sparse 
marker sets. This makes MoSh appropriate for processing 
archival mocap and also makes it completely compatible 
with existing marker-based mocap technology. MoSh is seen 
as complimenting rather than replacing existing methods. 
Because MoSh can use standard marker sets, nothing is lost 
relative to existing approaches. Rather, the realism and ease 
of use extends the usefulness of existing mocap systems and 
datasets and breathes new life into motion capture.

The work requires a good low-dimensional model of the 
human body to reduce ambiguities; here a BlendSCAPE 
body model is used, which is similar to the SCAPE model. 
The BlendSCAPE model is described in HIRSHBERG, D., 
LOPER, M., RACHLIN, E., AND BLACK, M. 2012. 
Coregistration: Simultaneous alignment and modeling of 
articulated 3d shape. In Computer Vision ECCV 2012, A. 
Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and C. Schmid, 
Eds., vol. 7577 of Lecture Notes in Computer Science. 
Springer Berlin Heidelberg, 242-255. The SCAPE model is 
described in ANGUELOV, D., SRINIVASAN, P, KOLLER, 
D., THRUN, S., RODGERS, J., AND DAVIS, J. 2005. 
SCAPE: Shape Completion and Animation of People. ACM 
Transactions on Graphics 24, 3, 408-416.

But any differentiable mesh-producing model could be 
used, as long as (1) it allows shape and pose variation, and 
(2) is differentiable with respect to its parameters. The 
BlendSCAPE model produces a triangulated mesh, and is 
parameterized by a global translation center γ, a vector of 
pose parameters 0, and a vector of shape parameters β. The 
surface of the body is described as S(y,0,P), with the 
coordinates of vertex k notated St (γ,θ,β).

The pose parameters 0 consist of 19 angle-axis vectors, 
whereby length indicates the amount of rotation. Body shape 
111 is approximated in by a linear combination of shape 
basis vectors; γ is a vector of these linear coefficients. This 
shape basis is learned from deformations of training body 
shapes 111 using principal component analysis. In what 
follows, body shape 111 is represented using between 80 and 
200 principal components depending on whether or not soft 
tissue motions are computed. A multi-resolution version of 
the model is trained such that the parameters of the model 
are consistent across scale. For efficiency a low-resolution 
model with 5389 vertices is used to optimize the marker 
locations, shape 111, and pose 113. For display a version 
with 43102 vertices is rendered. The body shape model is 
trained from 3803 CAESAR scans of people in an upright 
pose 113 (approximately 2103 women and 1700 men from 
the US and EU datasets). The posedependent component of 
the model is learned from 1832 scans of 78 people (41 
women and 37 men) in a wide range of poses 113. The scans 
are aligned. Since the model is trained from an extensive set 
of scans, it is able to realistically capture a wide range shapes 
and poses 113. Separate models for men and women are 
trained. For MoSh, it is assumed that the gender is known 
but one could extract this automatically by fitting both 
models and selecting the one with lowest error.

FIG. 4 shows optimizing shape 111 and markers 117-1.
Left an initial guess of markers 117-1 on the template shape
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111 in the canonical pose 113 is shown as dark balls. Right 
shape and marker locations of markers 117-2 after optimi
zation during Stage 1 are shown. Optimized marker loca
tions of markers 117-2 are shown as light balls. Note that 
they have moved. The inset shows the notation used in the 
text for the optimized marker 117-2.

Mocap markers 117 extend from the body 115 to varying 
degrees and are placed on the body 115 manually. Precise 
placement can be difficult, particularly on heavy subjects 
where fat makes it difficult to palpate honey locations. The 
result is that it cannot be expected to know the exact marker 
locations in advance.

In defining a marker set the only manual part of MoSh 
occurs if a user wants to use a new marker set. In this case 
they need to identify a template vertex for each marker 117, 
and a distance from the surface for each marker 117. Both 
can be approximate. This only needs to be done once and 
then it is used for any subject captured with that marker set. 
For example, this is done once for the 42-marker Vicon set 
and used this for all mocap sequences in the CMU database.

To parameterize marker locations with respect to the body 
115, a latent frame of reference is introduced which contains 
markers 117 and the body model in a neutral pose, γ0, θ0, as 
in FIG. 4 (left). The purpose of this latent frame is to 
establish the relationship between the body surface and the 
markers in a pose-independent, translation independent, and 
non-redundant fashion. Markers position in the latent space 
is optimized simultaneously with all other independent 
variables, e.g. shape 111 and pose 113. Marker locations in 
the latent frame are denoted as mfylR ’. where i denotes the 
landmark index. The collection of these state variables is 
denoted as M. Transformed marker locations in observed 
frames are denoted as m^eR3, where t indicates frame in 
the mocap sequence.

To transform an estimated maker m, from the latent frame 
to m,. t, in captured frame t, a relationship between each m,. 
to nearby geometry in the latent frame is estimated, and then 
that relationship is applies in captured frames. Each m,. can 
be considered with respect to its nearest vertex in the latent 
frame, whose index is

k: = arg min|| m: - (γ0, θ0, β) ||2 . (1)
k

More specifically, m,. can be represented in a local basis 
formed from its nearest vertex, the edges leaving that vertex 
and the normal at the vertex.

To make this concrete, the function is defined:

y. θ, β, Λ, w) = (2)

5βγ,θ,β) + ω0^(γ,θ,β))+ w„(S„(7, θ, β) - Sk(7, θ, β))
neN(k)

where g(·) is a function that returns the normal of the 
surface, N(k) indicates neighbors of the vertex k, and the w, 
are scalar weights that are collected into a vector w.

Then it is solved for the w, that minimizes

tv, = argmiri||i7(/o, 6*o,  β, k-„ w,·) = /4,| + |y||
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With these weights, m, is defined as a combination of 

vertices and the normal on the model. Let ςίγ.Ο.βj ςίγ,.Ο,. 
|>.k,.w,j. With this the marker location in a captured frame 
can be computed as

’ήί.ζΚ'ί,,θ,,β)· (4)

Notably, the transformation from latent to observed 
frames is continuously re-estimated over the course of 
optimization. The values of k and w, define the marker 117 
on the body 115 in the reference frame and they change 
during the optimization to reposition the markers, shown in 
FIG. 4 right. Note also that these parameters do not vary 
with t; they are fixed for the entire sequence. Having defined 
the transformation of markers 117 from latent to observed 
frames, now functions are introduced that help regularize 
markers 117 to the mesh. In the optimization method that 
follows it is important that the m, are not free to move 
anywhere. They are constrained by the initial markers 
defined above (FIG. 4 left).

First, let r(x,S) denote a function that returns the signed 
distance of x to surface S. Each marker 117 requires the 
user-specification of an expected distance d, from the marker 
center to the skin surface. This is the a priori distance that the 
marker 117 is expected to be from the surface. Second, 
functions are introduced to relate markers 117 to user- 
indicated vertices on the mesh. Notationally, it is said a user 
creates a mapping h(i) from marker indices to vertex indices 
on the template. Further the position of these vertices is 
denoted as

v,(P)=-s-/.(i>(Vo,eo,P), (5)

meaning that v, (β) is the position of the model vertex in the 
latent frame corresponding to marker m,. These are used to 
initialize m,., and also as a weak prior, as will be seen below.

The goal is to estimate a faithful personalized body 115 
from sparse marker locations m,. ,El3, where t and i denote 
time step and landmark index respectively, which explains 
observed marker evidence. The pose 113 of the body, 0,e(~) 
and the position, γ,ΕΓ vary with time. For now, it is assumed 
that body shape 111, is fixed for an individual and represents 
the shape 111 with the first 80 principal components; these 
account for approximately 75% of the variance present in 
the training scans of men and women.

It is wished to estimate the markers 117, pose 113 and 
shape 111 of the body 115 such that the transformed markers 
117 match the observed markers 117. This is as a MAP 
estimation problem considered, with the joint probability 
factored into likelihood and prior:

ρ(Μί,Γ,θ,β)=ρ(ΜΜ,Γ,θ,β)ρ(Μ,Γ,θ,β) (6)

where M represents the set of observed markers, m; in the 
sequence. Frames and landmarks are modeled as statistically 
independent:

p(M I Μ, Γ, Θ, β) X ΠΠ yt, 9t, β).

The likelihood p(mz/lmz,7r,0r,p) is constructed according 
to the following Gaussian distribution, and simply asserts 
that observed markers 117 should be near simulated markers 
117:

(™ϊ,ί>ση)· (8)

The prior can further be factored into a landmark prior and
two body model priors:

where the norm, HwJI, of w is minimized to constrain the
solution.
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p(m, β, θ,, γ,) x p(m | /3)^(/3)^ p(ft)]~~[ ρ(γ<)

The landmark prior is used to keep markers to a pre
scribed distance from the surface, and to weakly bias mark
ers towards hand-chosen vertices.

FIG. 5 in first row shows registrations to 3D scans and in 
second row reconstructions from 73 markers 117.

FIG. 6 shows per-vertex distance residuals as a function 
of the number of markers used. Error bars indicate 5th and 
95th percentile. Where r(x,S) denotes signed distance from 
point x to surface S,

p(mt | S, Vj) = p(mt | S)p(nii | v() (10)

IMm; .5)-4 II2 (11)
p(fhj | .S’) oc e σ^~

ΙΚ-»,·ΙΙ2

p(rhi | Vj) oc e σν
(12)

The pose and shape priors are modeled as Gaussian, with 
their statistics μ(..μν.Σ(,.Σ0 computed naively from the pose 
and shape training data used to train the BlendSCAPE 
model:

θ~Λ''(μθ,Σθ) (13)

β~Λ·'(μρ,Σρ). (14)

The prior over translation γζ is considered uniform, and 
does not contribute meaningfully to the objective.

The objective is to maximize a product of Gaussian 
probabilities. The sum of the log probabilities is equivalently 
minimized, which in the case of IID Gaussians means 
minimizing a sum of squares. The objective is minimized 
with Powell’s dogleg method, using Gauss-Newton Hessian 
approximation.

The gradients of the objective are computed with algo
rithmic dilferentiation, which applies the chain rule to the 
forward process in order to compute gradients. Only the 
dilferentiation of the body model β^γ,θ,β) and the signed 
mesh distance r(x,S) were done by hand, to improve runtime 
performance.

Optimization is done in two stages:
Stage 1. The first stage estimates the marker locations m, 

body shape β, pose θζ, and body position γζ for a subset of 
the frames. It cannot added an unlimited number of frames 
into this stage, because each additional stage adds a pose 
vector of size Ivl to the latent variables being optimized and 
Iml residuals to the output space. In experiments with 
dilferent numbers of randomly chosen frames little improve
ment with more than 16 frames is seen. Consequently 16 
random frames for Stage 1 are used.

Stage 2. Now the marker locations and body shape 111 are 
kept fixed and it is optimized only for Θ. Each 0, t is 
computed independently. It is not enforced temporal conti
nuity but initialization at the optimization at frame t with the 
solution at t-1 if it is available. Then a short optimization is 
run for each time step. Because the shape and marker 
locations are fixed, the objective function is not coupled 
across frames as in Stage 1, making optimization more 
efficient.

The basic version of MoSh estimates a single body shape
111 for each mocap sequence in Stage 1. One way of
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evaluating the success is to use markers 117 to estimate 
shape parameters β, and then fit the body model with that 
shape 111 fixed to a previously existing registration obtained 
with the use of a 3D scanner. Vertex distance residuals can 
then be used to evaluate shape distance.

To quantitatively evaluate the recovered shape 111, 4 
subjects (2 women and 2 men) are scanned using a high- 
quality 3D body scanner (3dMD LLC, Atlanta, Ga.) and the 
body model is fitted to their scans. A Vicon mocap system 
(Vicon Motion Systems Ltd, Oxford, UK) is used to capture 
them with a custom 73-marker set.

Given the dataset of four subjects, aligned the body 
template to scans of each subject in a neutral pose, as shown 
in FIG. 3 top. MoSh is used to estimate body shape 111 from 
the standard 42-marker set used in the CMU database. Using 
42 markers, vertex distance residuals (Euclidean distances 
between matching vertices) are found averaging 1.31 cm. 
Using 73 markers, the error decreased to 1.14 cm error. 
Results for the 73 marker reconstructions are shown in FIG. 
5 bottom.

The CAESAR dataset consists of a laige number of body 
shapes 111 that are brought into correspondence with the 
template mesh. These are used to evaluate the effect of the 
number of markers on reconstruction accuracy. Since no 
mocap marker data for CAESAR subjects are present, 
markers on the aligned meshes are simulated (one mesh per 
subject), body shape 111 from the markers 117 are estimate, 
and the surface error between the original meshes and the 
reconstructions is measured.

Residuals are obtained as shown in FIG. 6. Diminishing 
returns are apparent beyond 70 markers 117. Also notably, 
the values are consistent with the range that is obtained from 
the local subjects (between 1-1.5 cm mean vertex distance 
residuals). Note that this shows that small marker sets, e.g. 
42 are reasonable for static body shapes 111. In the next 
section it is explored what happens with dynamic shapes 
exhibiting soft-tissue motion.

FIG. 7 shows CMU bodies, extracted shapes (top) and 
reference images (bottom) for several CMU subjects. 
Shapes are computed with MoSh using the 42 Vicon markers 
only. A visual inspection of shape recovery from CMU can 
be seen in FIG. 7, where video frames are shown below 
reconstructions from Vicon markers. To be clear, MoSh does 
not use this video frame; it is shown here only for a visual 
evaluation of rough shape. Since there the CMU dataset has 
no anthropometric data, a quantitative evaluation is not 
possible. Run-time for shape reconstruction is half an hour.

FIG. 8 shows CMU mocap and example meshes extracted 
from the CMU mocap dataset for three subjects. Given body 
shapes 111 and marker locations estimated in Stage 1, the 
objective function over the pose parameters for a sequence 
is minimized. FIG. 8 shows some representative frames for 
some representative sequences in the CMU dataset. The 
nuance is difficult to illustrate in a static image but this is 
apparent in the animations. Run-time for pose estimation is 
2 seconds per frame.

The body model was learned to represent both shape and 
pose dependent deformations from registrations of static 
subjects. But many other subtle body shape deformations 
were not explicitly learned by the model, including muscle 
contraction, breathing, gravity, external forces, and dynam
ics. Currently the dynamics of soft tissue cannot be recov
ered by either 3D scanning systems or sparse motion capture 
methods.

While the body shape training set does not contain
examples of soft tissue dynamics, breathing, or other soft
tissue deformations, it does capture many shape variations
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across the population. Someone breathing in might look just 
a bit fatter. Someone jumping might look like their chest is 
in a different place. These differences in body shape 111 can 
be represented within the shape space.

Earlier it was assumed the body shape 111 is fixed through 
the sequence. Now to capture these more subtle changes it 
is allowed for the shape 111 to vary across the sequence. To 
do so it is allowed β to vary over time, introducing β,: also 
aD is reduced, because now it can be explicitly accounted for 
marker variation that could not be accounted for without 
variation in β.

The shape changes due to soft-tissue dynamics may be 
subtle and consequently the linear shape space is extended 
to now use 200 principal components. It is found that 
empirically this captures a nice range of detail. For the new 
120 components, deviations of the coefficients from zero are 
penalized.

Additionally, to capture soft-tissue motions it is found that 
a larger marker set is useful. Because the standard marker 
sets are designed for estimating a skeleton, the markers are 
mostly placed on rigid body structures. This is another 
reason why exiting mocap methods lack nuance. To capture 
dynamics, just the opposite is wanted; the markers have to 
be on the soft tissue.

Note that dynamics of soft tissue are not modeled. Only 
the effects of such motions are fitted that are apparent in the 
marker data. Actually using the MoSh to learn a model of 
soft-tissue dynamics is an interesting direction for future 
work. To evaluate soft-tissue motion recovery with MoSh a 
normal-weight man doing is captured jumping jacks and a 
normal-weight woman salsa dancing. In both cases the 
73-marker set is used.

FIG. 9 shows a motion of soft tissue and a frame from the 
jumping-jack sequence. Left: frames from a sequence of 
someone jumping (shown here for reference—video was not 
synchronized with mocap). Middle: body shape 111 con
structed with basic MoSh (body shape 111 fixed throughout 
the sequence). Right: allowing body shape 111 to change 
over time captures soft tissue deformations. Lighter balls 
correspond to the mocap markers 117-3. Darker balls cor
respond to the predicted marker locations 117-4. Note that in 
the right image, the predicted markers much more closely 
match the observed markers but that the body shape 111 does 
not become unnaturally distorted to fit them.

On the left a frame from the original video for reference 
is seen. Note the markers on the chest—these move up and 
down non-rigidly during the motion. The middle frames 
show reconstructions with basic MoSh, i.e. fixed body shape 
111, and the right shows reconstructions using the dynamic 
version. Allowing shape 111 to vary across frames can 
improve marker position reconstruction and produces real
istic deformations.

MoSh is completely compatible with existing industry
standard mocap systems. It can be used alone or in conjunc
tion with traditional skeletal mocap since no information is 
lost and MoSh can use exactly the same markers as current 
systems. The extended MoSh marker sets can be used 
depending on the required accuracy and the time available 
for the capture session. If a user is particularly interested in 
capturing specific shape features (for example breathing), 
the can design new marker sets and evaluate which marker 
sets produce the lowest reconstruction error. The hope is that 
MoSh breathes new life into old mocap datasets and pro
vides an easily adopted tool that extends the value of 
existing investments in marker-based mocap. 

Unlike many methods for extracting skeletons from mak
ers 117, no smoothing of the data is done. This helps
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preserve nuance but can sometimes result in high-frequency 
noise, particularly with small marker sets. One could easily 
add an optional post processing stage to filter/smooth the 
estimated pose 113. The estimated body pose 113 could also 
be used to create a virtual marker sequence that could 
replace the original. This would provide a principled way of 
fixing occlusions or introducing body-shape-related smooth
ness.

The transfer of soft tissue dynamics to vastly different 
body shapes 111 needs more study. A full solution will need 
to adapt the shape deformation to new body shapes 111; 
bodies with more fat should jiggle more. This will likely 
require training data that does not exist today.

Here it is focused on body shape 111 and pose 113, 
ignoring hands and feet. It should be clear that the extension 
to feet and hands is straightforward.

Contact with ground could be enforced by placing con
straints on foot placement. Interpentration could also be 
solved for and penalized during optimization. These same 
techniques could be applied to estimating the motion of 
cloth from markers or to multiple interacting people. MoSh 
could be used for virtual film production, allowing a director 
to see more realistically what an animated character will 
look like in a scene.

While maker-based motion capture (mocap) is widely 
used, it is also widely criticized as producing lifeless ani
mations. It is argued that nuance lies in the motion of the 
body surface and this is captured by sparse marker sets; 
traditional skeletal animation throws away this detail. A new 
approach called MoSh (Motion and Shape capture) is dem
onstrated, that automatically extracts this detail from marker 
data. MoSh estimates body shape 111 and pose 113 together 
using marker data by exploiting a parametric model of the 
human body. A key advance beyond previous work is that 
MoSh solves for the marker locations relative to the body 
115 and estimates body shape 111 directly from the markers 
without the use of 3D scans.

It is gone further and showed that soft tissue motions can 
be captured directly from the sparse marker data by allowing 
body shape 111 to vary over time. MoSh is illustrated by 
automatically recovering body shape 111, pose 113, and 
dynamics from archival mocap data. It is also shown the 
effect of different marker sets on pose and shape accuracy. 
It is found that we body shape 111 from sparse markers can 
be accurately estimated, effectively turning the mocap sys
tem into a body scanner. Without user input, MoSh produces 
lifelike animations that have much more subtlety and real
ism than those produced by existing methods. 
Motion Shape Capture from Sparse Markers II

FIG. 10 shows shape 111 from mocap. MoSh computes 
body shape 111 and pose 113 from standard mocap marker 
sets. Body shapes 111 and poses 113 are recovered with 67 
markers 117 and compares the body shapes 111 with 3D 
scans. While fine details are missing, MoSh enables users of 
standard mocap to obtain reasonable 3D body shapes 111 
from markers 117 alone. Bodies 115 in darker color are 
estimated from 67 mocap markers 117, while scans in lighter 
color are captured with a high-resolution 3D body scanner. 
Split-color bodies 115 compare the shape 111 estimated 
from sparse markers 117 with scans. MoSh needs only 
sparse mocap marker data to create animations (darker 
posed bodies) with a level of realism that is difficult to 
achieve with standard skeleton-based mocap methods.

While marker-based motion capture (mocap) is widely
used to animate human characters in films and games, it is
also widely criticized as producing lifeless and unnatural
motions. It is argued that this is the result of “indirecting”
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through a skeleton that acts as a proxy for the human 
movement. In standard mocap, visible 3D markers 117 on 
the body surface are used to infer the unobserved skeleton. 
This skeleton is then used to animate a 3D model and what 
is rendered is the visible body surface. While typical pro
tocols place markers 117 on parts of the body 115 that move 
as rigidly as possible, soft-tissue motion always affects 
surface marker motion. Since non-rigid motions of surface 
markers 117 are treated as noise, subtle information about 
body motion is lost in the process of going from the 
non-rigid body surface to the rigid, articulated, skeleton 
representation. It is argued that these non-rigid marker 
motions are not noise, but rather correspond to subtle surface 
motions that are important for realistic animation.

MoSh replaces the skeleton with 3D parametric body 
model. Given a standard marker set, MoSh simultaneously 
estimates the marker locations on a proxy 3D body model, 
estimates the body shape 111, and recovers the articulated 
body pose 113. By allowing body shape 111 to vary over 
time, MoSh is able to capture the non-rigid motion of soft 
tissue. Previous work on the mocap of such motions relies 
on large marker sets [Park and Hodgins 2006; Park and 
Hodgins 2008]. In contrast, it is shown that significant soft 
tissue motion is present in small marker sets and that 
capturing it results in more nuanced and lifelike animations. 
MoSh also recovers qualitatively and metrically accurate 
body shapes 111 from small numbers of markers.

The basic version of MoSh has five core components, f) 
MoSh uses a parametric 3D body model that realistically 
represents a wide range of natural body shapes 111, poses 
113, and pose-dependent deformations. For this a learned 
statistical body model based on SCAPE is used, as disclosed 
by [Anguelov et al. 2005]. 2) Marker placement on the 
human body 115 varies across subjects and sessions, con
sequently it is not assumed that the exact marker placement 
is known. Instead, a key contribution of MoSh is that it 
solves for the observed marker locations relative to the 3D 
body model. 3) MoSh also simultaneously solves for the 3D 
body shape 111 of the person that best explains the observed 
3D mocap marker data. 4) Steps 2 and 3 above require that 
it is also simultaneously solved for 3D body pose 113. 
Components 2-4 are all embodied in a single objective 
function and this is optimized for a subset of the mocap 
sequence. 5) In a second stage, MoSh uses the computed 
body shape 113 and marker locations on the body 115, to 
estimate body pose 113 throughout a mocap session.

This basic method produces appealing animations but the 
assumption of a single body shape 111 across the session 
does not account for the dynamics of soft tissue; for 
example, the jiggling of fat during jumping. Currently there 
are no practical technologies for easily capturing these 
soft-tissue motions. Previous methods have used large 
marker sets, as disclosed in [Park and Hodgins 2006] but 
these are time consuming to apply, difficult to label, and 
suffer from occlusion. These methods also do not apply to 
archival data. Video-based surface capture methods offer the 
potential for even greater realism, as disclosed in [de Aguiar 
et al. 2008; Stark and Hilton 2007], but are not yet mature 
and are not widely adopted. To capture soft-tissue deforma
tion, it is allowed for the body shape 111 to change over time 
to better fit the marker motions. The solution uses a low
dimensional shape model to make it practical and penalizes 
deviations from the fixed body shape 111 estimated without 
soft-tissue deformation. It is made an assumption that these 
deformations can be approximated within the space of static 
human body shape variations; that is, the soft tissue defor
mations of an individual effectively by is modeled changing 
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their identity. Given a sufficiently rich space of body shape 
variation, this works surprisingly well.

While body shape 111 and pose 113 can be estimated from 
standard marker sets and archival mocap sequences, it is 
gone further to design additional marker sets with greater or 
fewer markers. Using a principled objective function, and a 
training set of 3D body meshes, the effect of different marker 
sets on the accuracy of body shape 111 and pose 113 capture 
are evaluated. While the standard 47-marker set that is often 
used for motion capture (e.g. in the CMU dataset) works 
surprisingly well for recovering both shape 111 and pose 
113, it is found that an expanded set, with 20 additional 
markers, captures more soft tissue motion.

The method is validated with nearly 800 mocap 
sequences. Since no body scanner or other hardware is 
required, MoSh can be applied to archival mocap data. To 
demonstrate this gender, shape, and motion of 39 subjects in 
the CMU mocap dataset using 47 markers are reconstructed. 
The resulting animations are nuanced and lifelike and the 
body shapes 111 qualitatively match reference video. For 
quantitative evaluation, twenty subjects with widely differ
ent body shapes 111 are scanned and MoSh is performed 
with different numbers of markers 117.

MoSh can be used directly for animation or as a reference 
for animators. The body shape 111 can be changed to 
retarget the mocap sequence to new bodies (cf. [Anguelov et 
al. 2005]). This transfer works for any character with the 
same topology as the body model. Several cartoon charac
ters are aligned to the mesh and then animated without the 
labor-intensive process of developing a rigged model or 
retargeting the skeletal motions. The animations include the 
transfer of soft tissue motions and it is shown further how 
these motions can be magnified to produce interesting 
animations with exaggerated soft-tissue dynamics.

In summary, the main contribution of MoSh is that it 
provides a fully automated method for “mining” lifelike 
body shape 111, pose 113, and soft-tissue motions from 
sparse marker sets.

This makes MoSh appropriate for processing archival 
mocap. By using the same (or slightly augmented) marker 
sets, MoSh complements, existing marker-based mocap in 
that animators can extract standard skeletal models from the 
markers, MoSh meshes, or both.

FIG. 11 shows optimizing shape 111 and markers 117. 
Left: initial guess of markers 117-1, v„ on the template shape 
111 in the canonical pose. Right: Shape and marker locations 
after optimization. Optimized marker locations, m,., are 
shown as markers 117-2. Note that they have moved, as 
shown in the inset.

Extracting body shape 111 from sparse markers 117 is 
clearly an ill-posed problem; an infinite number of bodies 
115 could explain the same marker data. To infer the most 
likely body 115 a model of human shape is used that 
captures the correlations in body shape 111 within the 
population. For this a learned body model is used that is 
similar to SCAPE, as disclosed by [Anguelov et al. 2005]. 
It should be noted however that any mesh model could be 
used, as long as (1) it allows shape and pose variation, and 
(2) is differentiable with respect to its parameters.

The body model is a function that returns a triangulated 
mesh with 10,777 vertices, and is parameterized by a global 
translation center γ, a vector of pose parameters, 0, a mean 
shape, μ, and a vector of shape parameters, β. Shape 111 is 
defined in terms of deformations applied to the triangles of 
a base template mesh. The surface of the body 115 is 
described as S(P,O,y), with the coordinates of vertex k 
notated β^β,θ,γ). The body mesh is segmented into parts
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and each part can undergo a rotation defined by Θ. The pose 
parameters Θ consist of 19 angle-axis vectors, whereby 
length indicates the amount of rotation. Like SCAPE, the 
function S(·) includes posedependent non-rigid deforma
tions that are learned from bodies 115 in a wide range of 
poses 113. Body shape 111 is approximated by the mean 
shape and a linear combination of shape basis vectors; β is 
a vector of these linear coefficients. This shape basis is 
learned from deformations of training body shapes 111 using 
principal component analysis (PCA). In what follows, body 
shape 111 is represented using 100 principal components.

The body shape model is trained from 3803 CAESAR 
scans of people in an upright pose 113 (approximately 2103 
women and 1700 men from the US and EU datasets), as 
disclosed by ROBINETTE, K., BLACKWELL, S., 
DAANEN, H., BOEHMER, M., FLEMING, S., BRILL, T., 
HOEFERLIN, D., AND BURNSIDES, D. 2002. Civilian 
American and European Surface Anthropometry Resource 
(CAESAR) final report. Tech. Rep. AFRL-HE-WP-TR- 
2002-0169, US Air Force Research Laboratory. The posede
pendent component of the model is learned from 1832 scans 
of 78 people (41 women and 37 men) in a wide range of 
poses. The scans are aligned using the technique in [Hirsh- 
berg et al. 2012]. Since the model is trained from an 
extensive set of scans, it is able to realistically capture a wide 
range shapes and poses. For details of SCAPE, it is referred 
to [Anguelov et al. 2005].

Note that three body shape models are trained: separate 
models for men and women, plus a gender neutral model. If 
the gender of the subject is known, the appropriate model is 
used. If not, the gender-neutral model is fitted, the gender is 
inferred, and then a genderspecific model is used as 
described below.

Mocap markers 117 extend from the human body to 
varying degrees and are placed on the body 115 manually. 
Precise placement can be difficult, particularly on heavy 
subjects where fat makes it difficult to palpate honey loca
tions. The result is that it cannot be expected to know the 
exact marker locations in advance. The first step of MoSh 
solves for the marker locations, relative to a template body 
mesh, for a given mocap sequence (or collection of 
sequences for one subject).

It is assumed that the number of markers and their 
approximate location relative to a reference template mesh 
is known. The only manual part of MoSh occurs if a user 
wants to use a new marker set. In this case they need to 
identify a template vertex for each marker 117. Notationally, 
it is said that a user creates a mapping h(i) from marker 
indices, i, to vertex indices on the template. Each marker 117 
requires the user-specification of an expected distance cl, 
from the marker center to the skin surface. Both the location 
and the distance can be approximated since these are opti
mized for each subject.

To parameterize marker locations with respect to the body 
115, it is introduced a latent coordinate system that contains 
markers and the body model in a neutral pose, γ0, θ0, as in 
FIG. 11 (left). The purpose of this latent coordinate system 
is to model the relationship between the body surface and the 
markers 117 in a pose-independent, translation-independent, 
fashion. This relationship is then transferred to meshes in 
observed mocap frames.

Then the default position of the markers, v„ is denoted as,

ν,·(β)=5Λ(,·)(β,θ0,γ0)+ίΖ,.7ν4(,.)(β,θ0,γ0), (15) 

where Ν^β,θ,γ) indicates the vertex normal for index k
given body model parameters. Thus ν,(β) is the position of
the model vertex, offset by a user-prescribed distance, d„
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from the surface, in the latent coordinate system, corre
sponding to marker i. These markers 117-1 are illustrated as 
balls in FIG. 11.

Defining the marker set needs to be done once and then it 
is used for any subject captured with that marker set. For 
example, this is done once for the 47-marker Vicon set and 
used this for all mocap sequences in the CMU database.

The default markers, v, are approximated and below it is 
optimized to solve for the body shape, β, and the actual 
location of the latent markers, in,. for a given subject and 
mocap sequence. Let M denote the collection of latent 
markers. Notationally, i is used to indicate marker number 
and t to indicate the mocap sequence frame number. 
Observed markers are denoted m, t individually and M, 
together. From a collection of M, the latent markers M are 
estimated. These markers 117-2 are shown as balls in FIG.
11.

To that end, a function η^ηί,,β,ν,,γ,) is defined that maps 
latent markers to the world given a particular shape 111, 
pose 113, and location of the body 115. These are called 
“simulated markers”. Intuitively, it is solved for the shape, 
pose, body location, and latent marker locations m, such that, 
when projected into the mocap sequence, the simulated 
markers match the observed markers Mr

This requires a mapping from local surface geometry to a 
3D marker position that can be transferred from the latent 
coordinate system to the observed markers resulting from 
different poses. A marker position is represented in an 
orthonormal basis defined by its nearest triangle in the latent 
coordinate system. That basis is defined by three vectors: the 
triangle normal, one of the triangle’s normalized edges, and 
the cross product between those two. This is geometrically 
depicted in FIG. 12 (left).

FIG. 12 shows marker transformations. In the latent 
coordinate space (left) a marker 117-2, in, is projected into 
a basis defined by the nearest vertex: specifically by its 
normal, an arbitrary normalized edge, and the cross product 
between them. This provides a pose invariant representation 
for the marker 117. When the body pose changes (right), the 
location of the marker, η^ηί,,β,ν,,γ,), is computed in the 
observed frame.

The rigid transformation matrix that projects m into the 
basis for closest triangle T(m) in the mesh, is denoted as 
Βτ(/ίη(β,θ,γ). Then a simulated marker position m(·) is 
defined as

■ ■ 1 (β,θ0,γ0)/Η* (16)

where m*=[m' r,l]'r and m* (·)=[ώ(·)Γ,1]Γdenote the marker 
locations in homogeneous coordinates. Eq. 16 can be seen as 
having two steps. First, the matrix Βτ(Λ)_1(β,θ0,γ0). trans
forms m*  from a 3D latent-space position into a coordinate 
vector in the space of its local basis. In the second step, 
Βτ(Λ)(β,θί,γί) maps this coordinate vector into a 3D 
observed-space position, m*(j,  defined by the specific posi
tion and pose, Qt,yt. This is illustrated in FIG. 12 (right).

With the marker parameterization defined, next the objec
tive function is defined that is used to estimate marker 
positions, shape 111, pose 113, and non-rigid motion.

Let sequences of body pose vx „, and position γχ „, 
with n time instants be denoted as Θ and Γ respectively. It 
is wished to estimate the latent markers M, poses Θ, body 
locations Γ, and body shape β, such that the simulated 
markers m(·), match the observed markers m, ,. To do so it 
is defined an objective function with several terms.

The data term, I:,,. is the sum of squared distances
between simulated and observed landmarks:
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ED(M, β,&,Γ)=^ \\ηι(ηιβ β,θ„γβ-ηιβ,\\2. (17)

Note that distances are measured in cm.
A surface distance energy term, Es encourages markers 

117 to keep a prescribed distance from the body surface in 
the latent coordinate system. Let r(x,S) denote the signed 
distance of a 3D location x to the surface S. Then

Ε5(β,Μ) = Σ ||γ(Α;,5(Α«ο,7ο))-4Ι|2· (18)

Since the marker locations are roughly known to begin 
with, estimated latent markers are penalized if they deviate 
from this. The eneigy term Ez regularizes the adjusted 
marker 117 towards its original position

Ε^β,Μ^Σ^-νβΜ2. (W)

Also pose and shape priors are defined to regularize the 
estimation of body shape 111 and pose 113. These are 
modeled as Gaussian, with their statistics μρ,μθ,Σρ,Σθ com
puted from the pose and shape training data used to train the 
body model, β and 0, are regularized by penalizing the 
squared Mahalanobis distance from the mean shape and 
pose:

A (20)
Εβ(β) = (β-μβ)τ^(β-μβ)

β

y—i a* (21)
Εθ(β)=) - μθ).

θ

It is also added a velocity constancy term Ew that helps to 
smooth marker noise by a small amount:

£■«(0) = y lift - 20,_i + 0,_2ll2·
t=2

The objective in total is the sum of these terms, each 
weighted by its own weight, λ:

Ε(Μ,β,Θ, Γ)= y UL(·). (23)
oje{D, S,9, β,Ι,ΐί}

The objective function above is quite general and it 
enables to solve a variety of problems depending on what is 
minimized and what is held constant. In all cases, optimi
zation uses Powell’s dogleg method, with Gauss-Newton 
Hessian approximation. The gradients of the objective func
tion are computed with algorithmic differentiation. Only the 
differentiation of the body model β^β,θ,γ) and the signed 
mesh distance r(x,S) were done by hand, to improve runtime 
performance.
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There are two main optimization processes. The first 

estimates time-independent parameters (body shape β and 
marker placements M), while the second estimates time
dependent parameters ©={0! . . . θ„}, Γ={γ1 . . . γ„}.

Body Shape and Latent Markers: For a given mocap 
sequence (or set of sequences for the same subject), opti
mization always starts by estimating the latent marker 
locations M, body shape β, poses Θ, and body positions Γ 
for a subset of the frames. The latent marker locations and 
the body shape are assumed to be time independent and can 
be estimated once for the entire sequence (or set of 
sequences).

Notably, the transformation from latent to observed coor
dinate systems is continuously re-estimated during the opti
mization of marker placement. The assignment of nearest 
neighbors, the local basis itself, and the coefficients relating 
a marker 117 to that basis undeigo continual adjustment to 
allow refinement of the relationship between markers and 
the body surface.

The λ values in Eq. 23 are: λο=0.75, λΛ 100.0. λζ=0.25, 
λρ=1.0, λθ=0.25, λ„=0.

The λ values were initialized to normalize each term by 
an estimate of its expected value at the end of the optimi
zation; in particular, the distance-based λ values I/.,,./..,./.,) 
have interpretations as inverse variances with units of

1
cm2'

These λ values were then empirically refined.
The velocity term is not used in this stage (λ„=0) because 

it is optimized over random disconnected frames.
To help avoid local optima, the optimization is run in six 

stages, starting with strong regularization and then gradually 
decreasing this. Specifically, the regularization weights {λθ, 
λβ,λζ} are lowered from being multiplied by 40, then by 20, 
10, 4, 2, and finally 1. Note that these regularization terms 
are linear and quadratic in contrast to the data term, which 
is non-linear. Similar to graduated non-convexity schemes, 
by increasing the regularization weights the objective func
tion is made more convex, potentially helping the optimi
zation avoid local optima during early stages of the process. 
In practice this is found to work well.

Computational cost increases with the number of frames 
used to estimate the parameters since each frame requires its 
own pose 0,. For efficiency this optimization is performed 
using a randomly selected subset of mocap time instants. 
Experiments are run with different numbers of randomly 
chosen frames and saw little improvement with more than 
12 frames. Consequently 12 random frames for all experi
ments are used here.

Pose: Motion capture now becomes the problem of esti
mating the pose of the body, 0,, and body position, γ„ at each 
time instant given the known body shape 111 and latent 
markers 117. The optimization at frame t is initialized with 
the solution at t-1 if it is available and then a short 
optimization is run for each time step.

For pose estimation, the values are now: λο=0.75, λ, 0.
λζ=0, λρ=0, λθ=1.0, λ„=6.25. Note that now the velocity
smoothness term, /.,., is employed. A weight of zero means
that this term is not used and the corresponding parameters
are not optimized. Specifically, it is not optimized the marker
locations or body shape. However a pose prior, λθ=1.0, is
used to penalize unlikely poses. Here the staged regulariza-
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tion is not used because the optimization begins close to the 
minimum and converges quickly.

Pose and Soft Tissue Motion: In the optimization above it 
is assumed that body shape 111 and latent marker locations 
do not change. To capture soft tissue motions it is now 
allowed for the body shape 111 to vary across the sequence 
while keeping the marker transformation fixed. Still β is 
denoted as a shape 111 estimated in the first stage, but now 
the time-varying deviations in shape from β are denoted 
as ={βχ · · · β„}, such that a person’s shape 111 at time t is 
now β+βΓ

To regularize the β,. one additional energy term is added 
to Eq. 23:

Ε/Β) = Σ 11/5,112 (24)

and set λΔ to 0.25, adding λΔΕΔ(·) in Eq. 23. This term 
allows body shape 111 to change over time while regular
izing it to not deviate too much from the person’s “intrinsic 
shape”, β.

While the body shape training set does not contain 
examples of soft tissue dynamics, it does capture many 
shape variations across the population. These are exploited 
to capture soft tissue deformations during motion. Someone 
inhaling, for example, might look like a different person with 
a higher chest or a bigger stomach. When someone jumps up 
and down, the chest changes in ways that resemble the 
chests of other people. It is interesting, and perhaps surpris
ing, that the shape variations between people can be used to 
approximate the shape variation of an individual due to 
dynamics. Presumably there are soft-tissue deformations 
that cannot be explained this way but, given sufficiently 
many training body shapes 111, and sufficiently many prin
cipal components, it is posit that a wide range of such 
deformations are representable. It is suspected, however, 
that training shapes specific to soft-tissue deformations 
could be used to learn a more concise model. Note further 
that dynamics of soft tissue are not modeled, it is only 
approximated what is present in the mocap marker data.

Since standard marker sets are designed for estimating a 
skeleton, the markers are mostly placed on rigid body 
structures to minimize soft tissue motion. This is another 
reason why existing mocap methods lack nuance. Conse
quently to capture soft tissue dynamics, it is wanted just the 
opposite; markers are on the soft tissue. This is considered 
below.

Run Time: Shape and marker estimation requires about 7 
minutes. Pose estimation without soft tissue estimation takes 
about 1 second per frame; pose estimation with soft tissue 
estimation requires about 2 seconds per frame.

FIG. 13 shows marker sets. The union of all markers 117 
illustrates the 114 possible markers 117 that are considered. 
Light grey markers 117-1 correspond to a standard 
47-marker Vicon set. The 20 darker markers 117-2 were 
found to improve shape estimation the most. The union of 
light grey and darker markers 117-1 and 117-2 corresponds 
to the 67-marker set used for capturing shape and soft-tissue 
motion. Lighter markers 117-3 were deemed redundant and 
were not used. The standard 47-marker set comprises light 
grey markers 117-1. Lighter and darker markers 117-3 and 
117-2 correspond to the set of additional markers 117 that 
are considered. Using the greedy method, it is found that the 
lighter markers 117-3 were not as useful for estimating 
shape as the darker markers 117-2.
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Body shape estimation from motion capture depends on 

the number and placement of markers; here it is proposed a 
method for constructing a new marker set to improve body 
surface reconstruction. To be practical a marker set must be 
simple, make sense to the technician applying it, be repeat
able across subjects, and take into account self-occlusion, 
self-contact, and the impact on subject movement. Conse
quently it is started with a standard marker set and additional 
symmetrical marker locations are proposed for a total of 114 
candidate markers as shown in FIG. 13.

Then these putative markers are evaluated to determine 
how important the different markers are for shape recovery. 
For this a set of 165 meshes of 5 females of different shapes 
is used in a variety of poses selected from the FAUST 
dataset, as described in [Bogo et al. 2014]. A template mesh 
is aligned to each of the 3D scans resulting in a set of 
registered meshes, Rz,z=l . . . 165, in which all vertices are 
in correspondence across the 165 instances. The 114 mark
ers are associated with vertices of the template and then 
body shape is estimated from different subsets of the mark
ers. The accuracy of the result is evaluated in terms of the 
Euclidean distance between the vertices of the estimated and 
true mesh. Specifically the root mean squared error (RMSE) 
is computed over all the vertices (including the subset used 
for fitting) for all meshes.

More formally, given a maximum number of markers, c, 
a subset, T, of the mesh vertices, A, is sought that enables the 
most accurate estimation of body shape. This subset T is the 
one that minimizes a cost I'.fyTj: that is

T*  = argmin Em(T). (25)
TcA,\T\=c

Notationally, now body model parameters {β,θ,γ} are 
abbreviated as P. Also vertex k of registered mesh z is 
denoted as R/. The best parameters P*({R 7zljGT}), given 
access only to subset T of the vertices for registered mesh z, 
are defined as

| j e Γ)) = argminj; ||5,(P) - Pf||2. (26)
p ieT

The cost of choosing subset T takes into account the 
distance between all vertices iGA across all the registered 
meshes zGZ={l . . . 165}

£m(U= 2 ||5,(Ρ·({/?5 | j e Γ))) - Pfll2. <27’
<eA,zeZ

Note that the RMSE is (E^(T)/(IA||ZI)) 2.
Evaluating all possible subsets of 114 markers is infea

sible so a greedy approach is taken. If there are currently N 
markers, one is removed, the cost for the N-l possible sets 
is evaluated, and the deleted marker 117 is selected that 
produces the lowest error. This marker 117 is removed and 
it is repeated.

FIG. 14 shows marker selection residuals. The plot shows
the mesh shape reconstruction error as a function of marker
count. FIG. 14 shows a plot of the RMSE for different
numbers of markers. Note that here it is started with the
47-marker set and markers are subtracted from it and mark
ers are added to it. Surprisingly one can remove markers
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from the standard set and still obtain reasonable shape 
estimates down to about 25 markers 117. It is decided to 
keep the original set and add the 20 additional darker 
markers 117-2. The addition of markers 117-2 to the 47 
results in a noticeable decrease in RMSE. Note that a similar 
error to the set of 67 could be obtained with fewer markers 
117 by dropping some of the original 47. To enable com
parison with CMU results, however, it is decided to preserve 
the 47 and add to this set.

The first stage of optimization is evaluated, which com
putes the body shape 111 and marker locations. To compare 
estimated body shapes 111 to real ones, 20 subjects are 
scanned using a high-resolution 3D body scanner (3dMD 
LLC, Atlanta, Ga.). Before scanning, all subjects gave 
informed written consent. Additionally, 10 of the subjects 
were professional models who signed modeling contracts 
that allow us to release their full scan data.

A Vicon mocap system (Vicon Motion Systems Ltd, 
Oxford, UK) is also used to capture subjects with 89 
markers. The 89 markers were selected using the marker 
optimization analysis from the full set of 114, evaluated 
above. At most 67 markers 117 are used for shape and pose 
estimation; unused markers 117 prove valuable to evaluate 
held-out marker error. In all cases the optimization is used 
with soft-tissue deformation. Error is processed and evalu
ated using, a total of 73 mocap sequences.

The goal is to estimate a body shape 111 that minimizes 
3D body shape reconstruction error. This error is measured 
in two different ways: as held-out marker error and as mesh 
registration error. Held-out marker error reveals how well 
marker locations can be predicted that were not used by the 
optimization: for example, if 47 of the markers are used to 
estimate the body shape 111 then the remaining markers are 
used to estimate held-out error.

FIG. 15 shows effects of marker number on reconstruction 
error. The mean and standard deviations of distance residu
als indicate how the marker number affects reconstruction. 
Left: Shape reconstruction error. This is computed as the 
mean absolute distance between the true body shape (as 
represented by the alignment of the template to a scan) and 
the body shape estimated by MoSh reposed to match the 
registered mesh. Right: Held-out marker error across all 
sequences. This measures errors in both shape and pose but 
is inflated by marker placement error and marker movement. 
In both plots, 68.2% (±1) of the residuals are contained 
between the error bars.

As shown in FIG. 15 (right), the mean distance for 
held-out markers 117 drops to approximately 3.4 cm when 
67 markers 117 are used. Note that these errors include 
deviations in placing markers 117 on a subject, which can 
easily exceed a centimeter. Specifically, when shape 111 is 
estimated from a subset of markers 117, the placement of the 
held-out markers 117 is not optimized. So this error com
bines human placement error with errors in soft-tissue 
motion of the held-out markers that are not predicted by the 
subset used for fitting.

After about 25 markers the improvement is very gradual. 
This is interesting because it suggests that small marker sets 
can give good estimates of body shape 111. Note that this 
evaluation uses all 73 mocap sequences and hence evaluates 
how well MoSh explains marker motions due to changes in 
both shape 111 and pose 113.

FIG. 16 shows shape reconstruction. First row: raw 3D
scans from a high-resolution scanner. Second row: regis
tered meshes obtained by precisely aligning a template
mesh, with the same topology as the model, to the scans.
These registered meshes faithfully capture the body shape

5

10

15

20

25

30

35

40

45

50

55

60

65

24
111 and are used for the quantitative analysis. Third row: the 
model with shape, β, estimated from only 67 markers. Here 
the pose, Θ, of the model is estimated to match the registered 
meshes to facilitate comparison. Bottom row: Distance 
between second and third rows. The heat map shows Euclid
ean distance from the registered mesh to the nearest point on 
the surface of the body 115 estimated by MoSh; dark means 
zero and light means>4 cm.

Example 3D scans of several subjects are shown in FIG. 
16 (row 1). For each subject a template mesh is aligned to 
the scan and this template mesh has the same topology as the 
MoSh body model (FIG. 16 row two); this produces a 
registered mesh that is used for evaluation. Note that the 
registered meshes faithfully represent the scans and conform 
to the mesh topology of the model but do not have holes. 
Registration error is a measure of how well a subject’s 
registered mesh can be explained in terms of average 
vertex-to-vertex mesh distance. Recovered body shapes 111 
using 67 markers are shown in FIG. 16 row three. Here the 
MoSh result is posed in the same pose 113 as the scan. Given 
that MoSh results in a shape vector β, {θ,γ} are adjusted for 
a body model to minimize model-to-registration distance. 
The heat map in the bottom row of FIG. 16 shows the 
distance from the MoSh shape to the registered mesh, 
illustrating how well MoSh approximates the shape from 67 
markers 117.

This registration error is shown in FIG. 15 (left). Regis
tration error behaves much like held-out marker error, 
except it is uniformly smaller. Unlike the held-out experi
ment, here it is only needed to explain shape 111 and not 
both pose 113 and shape 111. Shape estimates are obtained 
from 12 mocap frames and are well constrained.

While large marker sets like those used in [Park and 
Hodgins 2006] certainly contain more information, it is seen 
in FIG. 15 (left) diminishing returns with larger marker sets. 
The ideal number of markers is likely related to the resolu
tion of the mesh.

FIG. 17 shows shape from markers. The effect of the 
number of markers (5, 10, 25, 47, 67) on the registration 
error (in m) of the estimated shape is shown. Far right: 
reference image of the subject. To give some insight into 
what these numbers mean, FIG. 17 shows body shape 111 
for one subject reconstructed using different numbers of 
markers 117. Here markers 117 are selected based on the 
greedy evaluation strategy. What is surprising is that with 
only 10 markers 117, a shape 111 is got that roughly captures 
the person’s size. Note that the registration error decreases 
as more markers 117 are added; the numerical results show 
the registration error in m.

For the 10 models, scans, aligned meshes, mocap 
sequences, and MoSh fits can be provided. This data allows 
others to estimate shape 111 from the same sequences and 
compare with both the ground truth shape 111 and the 
results.

FIG. 18 shows CMU bodies and extracted shapes 111 
(bottom) and reference images (top) for several CMU sub
jects. Shape 111 and pose 113 is computed with MoSh using 
47 Vicon markers only.

While a ground truth shape 111 for the CMU dataset is not 
given, results can be evaluated qualitatively. A visual inspec
tion of shape recovery from CMU can be seen in FIG. 18, 
where video frames are shown above the bodies and poses 
estimated from 47 standard markers. To be clear, MoSh does 
not use this video frame; it is shown here only for a visual 
evaluation of rough shape. Since the CMU dataset has no 
anthropometric data, a quantitative evaluation is not pos
sible.
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For the above CMU results sequences are used for which 
the gender of the subject could be determined using accom
panying video footage. Next it is asked whether gender can 
be estimate from the markers automatically (cf. [Livne et al. 
2012]). A linear support vector machine is used to predict 
gender from body model parameters. First a gender-neutral 
body model is fitted to all subjects in the CAESAR dataset 
to obtain linear shape coefficients. Then the SVM is trained 
to predict known gender given the shape parameters. Then 
gender classification is evaluated on body shape parameters 
estimated by MoSh from the CMU dataset with the gender
neutral body model. For the 39 subjects with known gender 
it is correctly predicted 89.7% of the time; this is comparable 
to [Livne et al. 2012], which is not surprising since both 
methods rely on essentially the same kind of marker data.

Given the estimate of intrinsic shape, β, and the marker 
locations, M, now the pose 113 across a mocap sequence is 
optimized. The pose 113 for 39 subjects is computed across 
722 different mocap sequences in the CMU dataset.

FIG. 19 shows CMU mocap. Example meshes extracted 
from the CMU mocap dataset and representative frames 
from the animation. All shapes and poses are estimated 
automatically using only 47 markers 117. FIG. 19 shows 
some representative frames from some representative 
sequences in the CMU dataset. Even with 47 markers 117 
some soft tissue deformation can be captured and the results 
shown here allow body shape deformation over time. The 
visual nuance of pose reconstruction is difficult to illustrate 
in a static image but is apparent in the accompanying video. 
Note that this is fully automatic.

The best way to evaluate accuracy of pose 113 and shape 
111 together is in terms of held out marker error. For this 20 
subjects and 73 mocap sequences are used acquired with the 
extended marker set. 67 markers are used for estimation and 
22 to compute held-out error. This error is 3.4 cm and 
corresponds to the rightmost point on the right plot in FIG. 
15 (right).

With a small marker set, noise in any one marker 117 can 
have an impact. In the shape estimation stage, the shape and 
marker placement are estimated from many poses 113, so 
variation in any individual marker 117 should not unduly 
harm shape or marker placement estimation. During pose 
estimation, velocity constancy helps reduce the effect of 
single marker noise. Future work should address methods to 
automatically detect and downweight missing markers or 
markers that have moved.

The body model was learned to represent both shape 111 
and posedependent deformations from registered meshes of 
static subjects. Many other subtle body shape deformations 
were not explicitly learned by the model, including static 
muscle contraction, breathing, gravity, external forces, and 
dynamics. What is shown is that the space of body shapes 
111 learned from different people captures variations in 
shape 111 that can approximate soft tissue motions. Note 
that the dynamics of soft tissue are not modeled. Only the 
effects of such motions are fitted that are apparent in the 
marker data.

FIG. 20 shows motion of soft tissue and examples from 
several sequences. Some representative samples are shown. 
In each pair, the left image is without modeling dynamics 
(body shape 111 fixed) and the right with dynamics (body 
shape varying). Each image shows the full body and a detail 
region. Light balls correspond to the mocap markers 117. 
Dark balls correspond to the simulated marker locations. 
Allowing body shape 111 to change over time better cap
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tures soft tissue deformations. Note that, with dynamics, the 
predicted markers much more closely match the observed 
markers.

The estimated body shape 111 is shown with a single body 
shape, β, per subject (left image in each pair) and the results 
allowing deviations, β,. from this shape 111 (right image in 
each pair). Note the markers on the chest and belly. Dark are 
the simulated markers predicted by the model and light are 
the observed markers. With changing body shape 111, the 
markers 117 undergoing soft-tissue deformation are more 
accurately fitted. This is not surprising, but what is important 
is that the shape 111 remains “natural” and continues to look 
like the person.

Numerically it is seen that the mean observed marker 
error go down from 0.79 cm to 0.62 cm with dynamics. 
Again this is not surprising since it is allowed for the shape 
111 to deform to fit these markers 117. Held out marker error 
is also tested; these are markers 117 that were not used to 
estimate shape 111. Here too the mean error is seen to go 
from 3.41 cm to 3.39 cm. This is not a significant improve
ment, but rather a validation that fitting the soft-tissue 
motion does not hurt held-out marker error. This confirms 
the subjective impression that the body shape 111 does not 
deform unnaturally and the non-rigid motions, away from 
the tracked markers, reflect realistic body deformations. 
While, of course, fine ripples cannot be captured with a 
sparse set of markers, it is surprising how much realistic 
deformation MoSh can estimate.

In the video one sees the observed markers “swimming” 
around relative to the estimated shape 111 when dynamics 
are not modeled. There 47 markers are also compared with 
the 67-marker set and find that the extra markers placed on 
the soft tissue are important.

The soft tissue deformations correspond to directions in 
the space of human body shapes 111. The amount of 
deformation along these directions can be varied to either 
attenuate or amplify the effect. Specifically the 3D motion is 
magnified by multiplying β, by a userspecified constant to 
exaggerate the soft tissue deformations.

This is difficult to show in print but the video shows 
examples of the same sequence with different levels of 
exaggeration. It is found that the deformations could be 
magnified by a factor of 1.5 or 2 while retaining something 
like natural motion. Pushing the exaggeration by a factor of 
4 sometimes produce interesting effects and, other times, 
unnatural body shapes 111.

This tool could be useful to animators to produce refer
ence material since it highlights how soft tissue deforms. It 
could also be used to create new effects that exaggerate 
human actions but in a way that is based on physically 
realistic deformations.

FIG. 21 shows retargeting soft-tissue motions. Top row: 
Body part segmentation for human and stylized characters. 
Middle row: retargeting pose and soft-tissue motion of an 
actor (left) to a stylized female character (middle), with heat 
maps (right) illustrating the percentage of soft-tissue defor
mation; dark means zero and light means>20 percent defor
mation. Bottom row: retargeting to another stylized charac
ter. The soft-tissue motions can be visualized.

An important use of skeletal mocap data is the retargeting 
of motion to a new character; the same can be done with 
MoSh. Consider the stylized characters in FIG. 21 that were 
downloaded from the Internet. For each character, the tem
plate is deformed towards the character using regularized 
registration, initialized by hand-clicked correspondences. To 
model shape deformations from this character mesh, the 
PCA model of body shape 111 is simply re-centered by
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replacing the original mean shape, μ, with the character’s 
template deformations. The soft tissue deformation coeffi
cients, are then simply applied to this new mean shape. 
The estimated translation, γ„ and MoSh part rotations, θ„ are 
also directly applied to the parts of the new character along 
with the learned non-rigid pose-dependent shape deforma
tions. This produces plausible animations. Note that, to get 
realistic soft-tissue transfer, human actors with body shapes 
are used that resemble the stylized character; see FIG. 21. Of 
course, these deformations can also be exaggerated. MoSh 
addresses a key criticism of existing motion capture meth
ods. By estimating a changing body shape 111 over time 
from sparse markers, MoSh captures detailed non-rigid 
motions of the body 115 that produce lifelike animations. 
MoSh is completely compatible with existing industry
standard mocap systems. It can be used alone or in conjunc
tion with traditional skeletal mocap since no information is 
lost and MoSh can use exactly the same markers as current 
systems. The hope is that MoSh breathes new life into old 
mocap datasets and provides an easily adopted tool that 
extends the value of existing investments in marker-based 
mocap.

There are several current limitations that present interest
ing directions for future work. For example, it is needed to 
roughly know the marker set and it is also assumed the 
markers are in correspondence. It can be corrected for some 
mislabeled markers but still a largely labeled dataset is 
assumed. Establishing correspondence and cleaning markers 
sets is a time consuming part of current mocap practices. It 
would be interesting to leverage the body model to try to 
solve these problems automatically. For example, the simu
lated markers could also be used to detect when a marker 
117 is missing or has moved. If a marker 117 moves between 
sessions its location could then be updated on the fly. It could 
also be estimated the noise in each marker 117 indepen
dently and take this into account during pose and shape 
estimation. The estimated body pose 113 could also be used 
to create a virtual marker sequence that could replace the 
original. This would provide a principled way of fixing 
occlusions. Simulating a different set might be useful for 
methods that extract skeletal data from markers.

The quality of MoSh output is very dependent on the 
quality of the body model that is used. If the model cannot 
represent a pose 113 realistically, then the output of MoSh 
will have artifacts. This is observed for a few poses, for 
example, both arms pointed forward, elbows straight and 
palms together. This suggests the pose training set should be 
augmented with new poses.

An interesting direction for future work would be to use 
other types of body models. For example, it should be 
possible to replace the model with one that uses linear blend 
skinning and corrective blend shapes.

The method for evaluating new marker sets could be used 
to construct sets to capture specific types of non-rigid 
deformations such as breathing. If the 3D mesh sequences 
are given the analysis could be extended to select marker 
sets directly relevant for capturing soft tissue motion. It is 
not evaluated which poses 113 are most effective for esti
mating body shape 111; 12 are simply chosen at random. 
Jointly optimizing the marker set and the poses 113 could 
make a mocap system a more effective “body scanner;” the 
body scanning protocol would involve attaching the markers 
and having the subject assume the prescribed poses.

The soft-tissue motions are approximations based on
sparse markers but result in dense deformations. Since it is
easy to acquire the data, it would be interesting to use these
to train a more physical model of how soft tissue moves.
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That is, possibly MoSh could be leveraged to learn a more 
sophisticated body shape model with dynamics. This could 
allow generalization of soft-tissue motions to new body 
shapes 111 and movements. Improved estimation could also 
be achieved by coupling the marker-based analysis with 
video or range data.

An important application of MoSh is virtual production: 
enabling directors to see realistically what an entire ani
mated character would look like in a scene, while on-set, has 
the potential to be a valuable asset for creative control. But 
it should be clear to someone practiced in the art that 
although it is applied to the body 115 as a whole, this method 
can be applied with specific focus to particular parts (faces, 
hands and feet) or with attention to clothing.

Marker-based motion capture (mocap) is widely criticized 
as producing lifeless animations. It is argued that important 
information about body surface motion is present in standard 
marker sets but is lost in extracting a skeleton. It is dem
onstrated a new approach called MoSh (Motion and Shape 
capture), that automatically extracts this detail from mocap 
data. MoSh estimates body shape 111 and pose 113 together 
using sparse marker data by exploiting a parametric model 
of the human body 115. In contrast to previous work, MoSh 
solves for the marker locations relative to the body 115 and 
estimates accurate body shape 111 directly from the markers 
117 without the use of 3D scans; this effectively turns a 
mocap system into an approximate body scanner. MoSh is 
able to capture soft tissue motions directly from markers 117 
by allowing body shape 111 to vary over time. It is evaluated 
the effect of different marker sets on pose and shape accu
racy and propose a new sparse marker set for capturing 
soft-tissue motion. It is illustrated MoSh by recovering body 
shape 111, pose 113, and soft-tissue motion from archival 
mocap data and using this to produce animations with 
subtlety and realism. It is also shown soft-tissue motion 
retargeting to new characters and show how to magnify the 
3D deformations of soft tissue to create animations with 
appealing exaggerations.

The scope of the invention is given by the claims and is 
restricted neither by the above description nor by the accom
panying figures. All features discussed with respect to par
ticular embodiments or figures can be combined in various 
ways in order to simultaneously realize their advantageous 
effects.

What is claimed is:
1. A computer-implemented method comprising: 
providing one or more frames of motion capture data, 

which one or more frames includes an observed set of 
physical three-dimensional (3D) coordinate body 
markers, wherein a first physical 3D coordinate body 
marker of the observed set of physical 3D coordinate 
body markers is at a first physical location on a body 
and a second physical 3D coordinate body marker of 
the observed set of physical 3D coordinate body mark
ers is at a second physical location on the body;

accessing a 3D body model that allows shape and pose 
variations;

generating a set of virtual 3D coordinate body markers in 
which a first virtual 3D coordinate body marker corre
sponds to the first physical 3D coordinate body marker 
and a second virtual 3D coordinate body marker cor
responds to the second physical 3D coordinate body 
marker, wherein generating the set of virtual 3D coor
dinate body markers comprises at least selecting the set 
of virtual 3D coordinate body markers from a superset 
of markers associated with the 3D body model, based 
at least partly on a Euclidean distance between (i) a
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vertex of the 3D body model corresponding to a virtual 
location of the a virtual 3D coordinate body marker in 
the set of virtual 3D coordinate body markers and (ii) 
a location of a physical 3D coordinate body marker in 
the observed set of physical 3D coordinate body mark
ers;

initializing the first virtual 3D coordinate body marker to 
a first virtual location on the 3D body model and the 
second virtual 3D coordinate body marker to a second 
virtual location on the 3D body model;
aligning the 3D body model to the body, wherein 

aligning the 3D body model to the body comprises: 
minimizing a distance between (i) the first physical 
location of the first physical 3D coordinate body 
marker of the observed set of physical 3D coordinate 
body markers on the body and (ii) the first virtual 
location applied to the first virtual 3D coordinate 
body marker on the 3D body model; and

minimizing a distance between the (i) second physical 
location of the second physical 3D coordinate body 
marker of the observed set of physical 3D coordinate 
body markers on the body and (ii) the second virtual 
location applied to the second virtual 3D coordinate 
body marker on the 3D body model; and 

determining a 3D body shape of the 3D body model and a 
pose of the 3D body model based at least in part on the 
aligning.

2. The computer-implemented method according to claim 
1, wherein one or both of the shape and pose of the 3D body 
model is trained with a set of scans in a plurality of shapes 
and poses in order to represent shape and pose-dependent 
deformations.

3. The computer-implemented method according to claim 
1, wherein the observed set of physical 3D coordinate body 
markers is sparse, the computer-implemented method fur
ther comprising determining the 3D body shape and the pose 
from the sparse set of physical 3D coordinate body markers.

4. The computer-implemented method according to claim 
3, wherein a quantity of the physical 3D coordinate body 
markers in the observed set of physical 3D coordinate body 
markers is below or equal to 67.

5. The computer-implemented method according to claim 
1, further comprising using the 3D body shape of the 3D 
body model for providing an animation of a character 
without converting motion capture data to a rigged model of 
the character.

6. The computer-implemented method according to claim 
1, further comprising directly using the 3D body model for 
an animation of a character.

7. The computer-implemented method according to claim
6, further comprising deforming a surface of the 3D body 
model during the animation to exhibit dynamics of soft 
tissue deformation.

8. The computer-implemented method according to claim
7, further comprising transferring the dynamics of soft tissue 
deformation to a further three-dimensional body model.

9. The computer-implemented method according to claim
8, further comprising exaggerating or attenuating the 
dynamics of soft tissue deformation.

10. The computer-implemented method according to 
claim 1, further comprising using the 3D body model as a 
reference for retargeting the motion capture data to an 
animated character having a different body shape than the 
3D body shape.
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11. The computer-implemented method according to 

claim 1, further comprising accessing the one or more 
frames of motion capture data from a set of archival motion 
capture sequences.

12. The computer-implemented method according to 
claim 1, further comprising positioning at least one of the 
virtual locations of the set of virtual 3D coordinate body 
markers on a region of the 3D body model corresponding to 
soft tissue.

13. The computer-implemented method according to 
claim 1, further comprising selecting the set of virtual 3D 
coordinate body markers to optimize a given objective 
function.

14. The computer-implemented method according to 
claim 1, further comprising using a greedy search method 
for selecting the set of virtual 3D coordinate body markers.

15. Non-transitory computer readable medium containing 
computer-readable instructions stored therein for causing a 
computer processor to perform the elements of the com
puter-implemented method according to claim 1.

16. The computer-implemented method according to 
claim 1, wherein the 3D body model includes a triangulated 
mesh parametrized by at least a vector of pose parameters 
and a vector of shape parameters, the computer-imple
mented method further comprising:

determining a value for the vector of pose parameters and 
a value for vector of shape parameters based at least in 
part on the aligning;

determining the pose based on the vector of pose param
eters; and

determining the 3D body shape based at least in part on 
the vector of shape parameters.

17. The computer-implemented method according to 
claim 1, further comprising:

determining, in an observed frame:
a third location of the first physical 3D coordinate 

marker in the observed set of physical 3D coordinate 
body markers; and

a fourth location of the first physical 3D coordinate 
marker in the observed set of physical 3D coordinate 
body markers;

creating a latent frame containing the set of virtual 3D 
coordinate body markers and the 3D body model in a 
neutral pose; and

aligning the 3D body model to the body, wherein aligning 
the 3D body model to the body comprises: 
repositioning a third virtual 3D coordinate body marker 

in the latent frame to correspond to the third location 
of the first physical 3D coordinate marker in the 
observed frame; and

repositioning a fourth virtual 3D coordinate body 
marker in the latent frame to correspond to the fourth 
location of the first physical 3D coordinate marker in 
the observed frame.

18. The computer-implemented method according to 
claim 17, further comprising determining the 3D body shape 
and the pose simultaneously with repositioning the third 
virtual 3D coordinate body marker and the fourth virtual 3D 
coordinate body marker in the latent frame.

19. The computer-implemented method according to 
claim 18, further comprising determining the 3D body shape 
and the pose based at least in part on repositioning a vertex 
of the 3D body model to at least one of the third virtual 3D 
coordinate body marker or the fourth virtual 3D coordinate 
body marker repositioned in the latent frame.

20. The computer-implemented method according to 
claim 1, further comprising:
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performing the aligning for a subset of the one or more 
frames of motion capture data; and

computing pose separately for each of the one or more 
frames.

21. The computer-implemented method according to 
claim 20, wherein the one or more frames comprise a first 
frame and a second frame representing a time point after the 
first frame, the computer-implemented method further com
prising:

computing a first pose for the first frame; and 
computing a second for the second frame using the first 

pose as an initialization.
22. An apparatus comprising:
computer storage having stored thereon (i) one or more 

frames of motion capture data which includes an 
observed set of physical three-dimensional (3D) coor
dinate body markers, wherein a first physical 3D coor
dinate body marker of the observed set of physical 3D 
coordinate body markers is at a first physical location 
on a body and a second physical 3D coordinate body 
marker of the observed set of physical 3D coordinate 
body markers is at a second physical location on the 
body, and (ii) a 3D body model that allows shape and 
pose variations; and

one or more processors configured to at least:
generate a set of virtual 3D coordinate body markers in 

which a first virtual 3D coordinate body marker 
corresponds to the first physical 3D coordinate body 
marker and a second virtual 3D coordinate body 
marker corresponds to the second physical 3D coor
dinate body marker, wherein generating the set of 
virtual 3D coordinate body markers comprises at 
least selecting the set of virtual 3D coordinate body 
markers from a superset of markers associated with 
the 3D body model, based at least partly on a 
Euclidean distance between (i) a vertex of the 3D 
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body model corresponding to a virtual location of the 
a virtual 3D coordinate body marker in the set of 
virtual 3D coordinate body markers and (ii) a loca
tion of a physical 3D coordinate body marker in the 
observed set of physical 3D coordinate body mark
ers,

initialize the first virtual 3D coordinate body marker to 
a first virtual location on the 3D body model and the 
second virtual 3D coordinate body marker to a 
second virtual location on the 3D body model, 

align the 3D body model to the body, wherein aligning 
the 3D body model to the body comprises: 
minimize a distance between (i) the first physical 

location of the first physical 3D coordinate body 
marker of the observed set of physical 3D coor
dinate body markers on the body and (ii) the first 
virtual location applied to the first virtual 3D 
coordinate body marker on the 3D body model, 
and

minimize a distance between the (i) second physical 
location of the second physical 3D coordinate 
body marker of the observed set of physical 3D 
coordinate body markers on the body and (ii) the 
second virtual location applied to the second vir
tual 3D coordinate body marker on the 3D body 
model, and

determine a 3D body shape of the 3D body model and 
a pose of the 3D body model based on the aligning, 
and

train the 3D body model by means of a set of scans in 
a plurality of shapes and poses in order to represent 
shape and pose dependent deformations to the 3D 
body model, wherein training the 3D body model is 
executed separately for men and women.


