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11 IntroductionLayered image models have been proposed for representing a variety of image primitives,including image intensities (see [13]), optical ow (see [4, 14]), and range data (see [11]).In earlier ARK related work we have studied the use of a layered representation for theestimation of optical ow [6, 7]. A similar approach was developed for stereo disparity aspart of a oor anomaly detector (FAD) application [5].The general motivation for this paper is to study the process of �tting layered modelsto image data. Here we consider the application of layered models to the estimation andrepresentation of grey-level image structure. This provides a simpler domain in which tostudy the estimation process than either optical ow or stereo disparity. We expect that someof the techniques developed here will also be applicable to these more complex situations.A secondary motivation is to investigate potential applications of the use of layeredmodelsfor representing grey-level structure which are appropriate for the ARK project. The twoapplications we consider are the segmentation of the oor for use in a stereo FAD system,and the segmentation of simple landmarks. Indeed, we demonstrate that a layered imagerepresentation can facilitate these tasks.
a bFigure 1.1: The sports equipment image (a) and the range map (b).A particularly vivid example for the suitability of a layered representation for grey-levelimages is provided by the sports equipment image pair in Figure 1.1. Here the left image isan intensity image while the right provides the range for the same scene. Note that the basicprocesses involved in the range image, for example, are not overly complex. In particular,we have a piecewise smooth background being occluded by the racket, which is itself roughlyplanar. However, due to the fragmented nature of the occlusion, the resulting range imagehas a complex local structure.Given this sort of image it is natural to consider a representation which allows morethan one grey-level to be represented at any pixel. That is, for the range map in Figure1.1b we seek a representation in which one layer models the smooth depth variation on theracket, while additional layers model the variation of the background. More than one layercan exist at any individual pixel. In particular, the layer describing the racket can smoothlyinterpolate across the holes without implying that the background must be occluded in these



2regions. Finally, a mapping from pixels to layers is used to represent the detailed spatialstructure of the range map.While it is fairly obvious that layered models are appropriate for such complex occlusionrelationships, we show that they are also useful even in simpler situations. The basic advan-tage is that they provide a way to simultaneously estimate the parameters for each of severalsimple processes, such as the range variations of the racket and the background, with onlyweak constraints on the spatial layout of each process. As a result this approach simpli�esthe estimation of an interpolant in the neighbourhood of a discontinuity, which is a commonproblem in vision.In the next section we consider probabilistic mixture models, which provide the basicform of the representation. Then in Section 3 we discuss techniques for �tting mixturemodels to data. A process for the successive revision of a mixture model is then consideredin Section 4, along with a method for determining an appropriate number of layers. Finallyin Section 5 we briey consider the application of the approach to image segmentation.2 Mixture ModelsWe model the image intensities within a given spatial patch in terms of the combinationof several simple random processes. To illustrate the general idea, consider the exampleof an image patch consisting of a single occlusion boundary, say of a light object againsta dark background. For such a patch we seek a representation for the grey-level structurewhich consists of three processes. One process is to be used to model the high intensitiesof the foreground object, while the second is to be used to model the low intensities of thebackground. We refer to these two processes as `layers.' Finally, there is also a ubiquitousoutlier process to model data not captured by the layers. All three processes exist overthe entire patch, and the representation includes a soft assignment of each pixel to theseprocesses. Thus the spatial structure of the image is represented by the appropriate mappingof pixels to processes. As demonstrated in subsequent sections, this type of representationis useful for determining the number of such layers present within a given image patch,for representing complex spatial structure due to fragmented occlusion, and for estimatingproperties such as the mean and variation within each layer.The particular form of representation we use is a \mixture model." This type of modelconsists of a probabilistic mixture of simpler distributions. In our application these simplerdistributions are used to model each process individually, that is, the outliers and each ofthe layers.We represent each individual layer using a Gaussian distribution whose mean value isprovided by a parametric model. In particular, the probability of the grey-level g arising atimage position ~x within one such layer is taken to bep(gj~x;~a; �) = N(g � u(~x;~a);�); (2:1)where N(r;�) denotes a zero-mean normal distribution with standard deviation �. Also,u(~x;~a) provides the spatial variation of the mean of the process over the image patch, andis speci�ed by the parameters ~a. Note that any remaining deviation of grey-level intensitiesaround the mean u(~x;~a) is taken to be uncorrelated across di�erent image locations and tohave a constant variance �2 over the patch.



3In this paper we take the mean u for any particular layer to be a linear function of theparameter vector ~a, namely u(~x;~a) = ~c(~x) � ~a: (2:2)Moreover, we consider only constant and linear variations with respect to ~x. In the �rstcase ~a = a0, ~c = 1, while for linear spatial variation we have ~c(~x) = (1; x1; x2)T and ~a =(a0; a1; a2)T . Higher order polynomial or spline models could be represented in a similar way.The remaining process is the outlier process, which is included in the model for everyimage patch. The outlier process is taken to have the uniform distributionp0(g) = Uniform(g); (2:3)with g ranging over the possible grey-levels (eg. p0(g) = 1=256 for an 8-bit image). Thismodel states that outliers are equally probable to appear anywhere within the range ofpossible grey-levels.These simple processes for individual layers, along with the outlier process, are combinedin a probabilistic mixture model, namelyp(gj~x; ~m;~a1; . . . ;~aK; ~�) = KXk=0mkpk(gj~x;~ak; �k): (2:4)For k > 0 the component distributions pk are taken to have the form given in (2.1), eachwith their own individual parameters ~ak and �k. The remaining case, k = 0, is the outlierdistribution provided in (2.3). These component processes are combined in (2.4) accordingto the mixture probabilities fmkgKk=0.Intuitively, the mixture model (2.4) represents the following random process. For eachpixel, �rst select a particular component process by randomly choosing k 2 f0; . . . ;Kgaccording to the mixture probabilities fmkgKk=0. Here mk is the probability of selectingprocess k, with mk 2 [0; 1] and PKk=0mk = 1. Once a k is selected, we then randomlyselect a grey-level g according to the component distribution pk(g). Together this providesa generative model for the image patch in terms of a mixture of simple processes.While the resulting generative model captures some properties of images, such as the factthat the grey-levels of pixels within local image patches are often clustered, it ignores others.In particular, the spatial correlation of the assignment of pixels to layers is not modelled.Similarly, the correlation of the individual processes themselves across neighbouring imagepatches is ignored. These properties can be included in an elaborated model (see, for exam-ple, [15] and [8]). However, for our purposes here we choose to keep the generative modelsimple.3 Fitting Mixture Models to DataGiven a set of grey-levels obtained within an image patch , say fg(~xn)gNn=1, we seek parametervalues f~ak; �kgKk=1 and mixture probabilities fmkgKk=0 which provide a maximum likelihood�t to the data set. In particular, the log likelihood of generating this set of observationsfrom a speci�c model islogL(~m;~a1; . . . ;~aK; �1; . . . ; �K) = NXn=1 log p(g(~xn)j~xn; ~m;~a1; . . . ;~aK; �1; . . . ; �K): (3:1)



4At a local extrema, it can be shown that the parameters ~m, along with ~ak and �k fork = 1; . . . ;K, must satisfy NXn=1qkn = �mk; (3.2a)NXn=1qkn @@~ak log pk(g(~xn)j~xn;~ak; �k) = 0; (3.2b)NXn=1qkn @@�k log pk(g(~xn)j~xn;~ak; �k) = 0: (3.2c)Here the quantities qkn represent the \ownership probabilities", that is, the probability thatthe nth pixel belongs to the kth layer. These ownership probabilities are de�ned byqkn = mkpk(g(~xn)j~xn;~ak; �k)PKj=0mjpj(g(~xn)j~xn;~aj; �j) : (3:3)These equations for a maximum likelihood �t have been derived by a number of authors; forfurther details see [12]. The �rst equation, (3.2a), comes from the condition that the partialderivative of logL with respect to the mixture proportion mk must be equal to the Lagrangemultiplier �. This Lagrange multiplier arises by imposing the constraint that the mixtureproportions must sum to one. The second equation is obtained simply by requiring that thepartial derivative of logL with respect to the parameters ~ak must vanish. While the thirdequation is obtained from the variation of logL with respect to �k.3.1 The EM AlgorithmEquations (3.2) and (3.3) suggest an iterative algorithm, known as the EM-algorithm [12],for obtaining a maximum likelihood �t for the parameters mk, k = 0; . . . ;K, and also for~ak, �k for k = 1; . . . ;K. Given an initial guess for these parameters we �rst estimate theownership probabilities, qkn, for each pairing of a pixel, ~xn, with a component, k. This isthe expectation, or \E"-step, and it simply involves the evaluation of the right hand side of(3.3).Next, with these ownership probabilities qkn held �xed, we seek new parameter valuesmk,~ak and �k which maximize the likelihood. This is the \M"-step. A necessary condition for alocal maximum is given by equations (3.2a,b,c). As we see below, for Gaussian distributionsthese equations can be easily solved. The overall result of both the E-step and the M-step isan update of the parameters mk, ~ak and �k which is guaranteed to increase the log likelihood[12]. These two steps are then iterated until convergence.For the details of the M-step, �rst consider the update for the mixture probabilitiesfmkgKk=0. The appropriate choice for mk given the ownerships qkn is obtained from (3.2a).It follows that, in order to ensure that the mixture probabilities fmkgKk=0 sum to one, werequire the Lagrange multiplier � in (3.2a) to be N . Therefore we havemk = 1N NXn=1 qkn; (3:4)



5for k = 0; . . . ;K.Before we consider the corresponding updates for ~ak and �k, we note that the specialcase of normal component distributions pk provide a simpli�cation. In particular, the logprobability for a normally distributed component takes the formlog pk(gj~xn;~ak; �k) = �12 hlog(2��2k) + (g � u(~xn;~ak))2=�2ki : (3:5)Use of this expression in (3.2b,c) gives simple expressions for the updates of ~ak and �k.The update for ~ak can now be derived by substituting (3.5) into the maximum likelihoodcondition (3.2b). This provides a linear equation for ~ak, namelyAk~ak = bk: (3:6)From equation (2.2), we �nd Ak and bk are given byAk = NXn=1 qkn~c(~xn)~c T (~xn); (3.7a)bk = NXn=1 qkn~c(~xn)g(~xn): (3.7b)Note that Ak is simply a weighted sum of the outer product of the coe�cient vectors ~c(~x)used in the de�nition of the mean u(~x;~a) and bk is a weighted sum of the product of ~c(~x)with the observed grey-levels. Furthermore, the weights qkn are just the ownership weightsestimated in the E-step.Finally, to complete the M-step, we also need to update �k according to (3.2c). Usingthe expression (3.5) it is easy to show that the appropriate �k is given by�2k = PNn=1 qkn(g(~xn)� u(~xn;~ak))2PNn=1 qkn : (3:8)In words, this expression is simply the variance of the observed pixel intensities g(xn) rel-ative to the mean u(~xn;~ak), with each observation weighted by qkn (i.e. by the ownershipprobability for the kth process at pixel ~xn).Together the E-step and the M-step provide one iteration of the EM algorithm. TheseEM iterations are repeated until the change in the parameters is su�ciently small.3.2 Anomalous SolutionsThe log likelihood function in (3.1) is nonlinear. It should therefore come as no surprise thatmultiple local maximum can exist, and that techniques are required to avoid undesirablelocal maxima.An example with multiple local maxima is provided by a simple bright/dark occlusionboundary. The histogram of an image patch containing such a boundary has two peakscorresponding to the di�erent regions. Suppose we initialize the mixture model to consist ofa uniform outlier process and a single layer in which we use the spatially constant model. Ifwe don't have prior information about what the grey-levels in the patch might be, we could



6simply initialize the constant model with a mean near the middle of the grey-level range, andset the corresponding variance, �21, to be large. In this relatively common situation we haveobserved that EM can converge to one of three solutions. The �rst two solutions involvethe layer providing a model of one of the two peaks in the grey-level histogram, with theremaining peak treated as outliers. These are satisfactory results, given the constraint thatonly one layer is to be used, since the derived mixture models accurately represent someintuitive component of the structure in the data set (namely the grey-level distribution forone of the two surfaces imaged within this patch). However the remaining solution, describednext, is not so desirable.The third solution the algorithm can often arrive at consists of a constant model whichhas a mean grey-level somewhere between those for the light and dark regions, and with asu�ciently large variance so that the model can account for both peaks in the histogram. Forwell separated peaks, this solution has a lower likelihood than the previous two. Moreover,this is a less desirable solution in that the model does not reect any individual componentwithin the data set, but rather it represents a weighted combination of two such components.The failure here is that this third model has not resolved the two separate components, eventhough there is su�cient data for it to do so.We see basically two ways of attempting to deal with such unwanted solutions. Oneway is to explore the data set further, by attempting to �t additional models perhaps withmore layers and/or from di�erent initial guesses. We can then compare the various solutionsobtained and try to settle on a single model. A second approach is to examine statisticalproperties of the derived representation in an attempt to identify further unmodelled `struc-ture' in the data set. This can be viewed as a way to predict which models are appropriatefor further exploration. We pursue both of these approaches in subsequent sections.3.3 Deterministic AnnealingA simple yet e�ective way to explore a data set further is to use the EM-algorithm coupledwith deterministic annealing. Here the idea is to begin with a large variance for the initialguess of any particular model. The variance should be large enough to cover the range ofuncertainty in the initial guess, since data more than a few standard deviations away fromthis guess will have little or no initial ownership and will therefore have only a weak inuenceon the EM updates. The problem, as mentioned above, is that when given such a broadinitial guess the EM algorithm can converge to a broad anomalous solution.The idea behind annealing is to systematically reduce the standard deviation �k of themodel during the EM updates. This forces smaller variance solutions to be considered, andallows the model parameters ~ak to be re�ned during the process. In the computational resultspresented in subsequent sections we use the following annealing approach. Each EM-stepis modi�ed so that the standard deviation estimate, say ��k where � denotes the iterationnumber, is not directly updated according to equation (3.8). Instead let ~��+1k be equal tothe right hand side of equation (3.8), that is the standard M-step estimate for �k. Then weset the new value ��+1k to be��+1k = max[min[~��+1k ; ���k ]; �min] if ��k > �A: (3:9a)Here � < 1 is the factor ��k must be reduced by in one iteration. We use � = 0:975 in thecomputations. Note that if the estimate ~��+1k provided by the M-step is smaller than ���k



7then it can be accepted as an update. The �min in (3.9a) provides a lower bound on the�k, which is used to avoid the singular point at � = 0. We use �min to be 2.5 (grey-levels).Finally note that this annealing approach is only used when ��k is larger than the threshold�A, which we take to be 5 (grey-levels) in the example computations. Below this thresholdwe use ��+1k = max[~��+1k ; �min] if ��k � �A: (3:9b)This is essentially the update from the M-step, except we still impose the constraint that��k � �min.The approach described by (3.9) is a reliable way to explore a data set for peaks inthe grey-level histograms having a standard deviation down to about �A. For the simpleocclusion boundary example considered above, the approach avoids the anomalous solution,typically converging to a model of one of the two peaks.However, this annealing approach is clearly a heuristic, and as such it does have someshort-comings. In particular, it can occasionally fail by converging instead to another anoma-lous solution. For the occlusion boundary example discussed above, this anomalous solutiontreats both peaks as outliers, modelling some other minor structure instead. This type ofproblem is alleviated by using a value of � closer to one in the annealing. A second problemis that, when given a data set which has a component with a standard deviation larger than�A, then the model derived using this annealing approach will give an underestimate for it'svariance. In such a situation a better estimate of �k could be obtained by using the annealedsolution as an initial guess for the standard EM-algorithm. We refer to such a process asan \anneal-release" schedule for �, since � is �rst annealed down to a particular value andthen released to �nd a local maximum according to the EM updates. This anneal-releaseschedule was not used for any of the �gures, for reasons we discuss later.3.4 How Many Layers?An example of using this annealing procedure on an 8-bit image taken within the AECL bayis given in Figure 3.1. The original image is given later in Figure 4.3a, but here we can usethe bottom left image in Figure 3.1 as a good approximation of the original for the purposesof comparison.The top row of Figure 3.1 shows the results of using the annealing procedure with justone spatially constant model within each 16 � 16 patch of the image. In addition, we havean outlier distribution within each patch, so K = 1 in (2.4). On the top left we displaythe grey-level for the constant model recovered within each patch, while on the top right wedisplay an image of the outlier ownership, namely q0(~xn) � q0n as provided by the equation(3.3) in the last E-step. The ownership images show outliers (i.e. q0(~x) near one) in black.The results demonstrate that the annealing procedure is capable of selecting an appropriatesingle layer model despite the possible presence of a large number of outliers.In the three subsequent rows in Figure 3.1 we show the results when the mixture model islimited to K = 2; 4; and 10 layers, respectively. Again spatially constant models within eachimage patch are used. In order to estimate these multi-layer models we used a procedure,described in Section 4, which builds on previous solutions by adding a single layer at a timeand then re-running the annealing procedure. In order to display the results, at each pixel~x we show the grey-level for the layer which has the maximum ownership, that is, layer j
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Figure 3.1: Reconstructed images and outliers (black) for constant layer models using atmost (top to bottom) one, two, four and ten layers. Here the light grey in the outlier mapsindicates an ownership probability of about 0.02. The original image appears in Figure 4.3a.



9where j = argmaxfqk(~x)jk = 1; . . . ;Kg:The one exception to this rule is for pixels with a very high outlier ownership, namelyq0(~x) > 0:99. For these outlier pixels we display the closest grey-level to the original imagefrom amongst the values provided by all the layers k = 1; . . . ;K.Except for some artifacts caused by using constant models within each patch, the re-constructed images on the bottom two rows of Figure 3.1 are good approximations of theoriginal image. Note that the outliers are reduced and the detail in the reconstructed imageis improved as we add more layers. However, the improvement obtained with each additionallayer diminishes. Clearly the appropriate number of layers depends on the complexity of theimage structure within a given patch and on the desired �delity. In the next section weconsider one simple approach for evaluating a given model and for deciding when to consideran additional layer.4 Model Evaluation and RevisionIn order to build a mixture model for a particular image patch we consider a process in whichthe current mixture model is incrementally revised. Each revision step consists of either: (i)adding one new layer; or (ii) switching some constant models to linear models. To specifysuch an incremental revision process we need to consider several basic steps. In particular,given a current model we need to decide if it is a candidate for revision. Moreover, we needto decide whether or not a new layer should be added, or additional parameters should beconsidered in any particular layer. Once a decision to revise a model has been made, we needto select an initial guess for the subsequent execution of the EM algorithm. Finally, giventhe results of the EM algorithm (with annealing) using this initial guess, we need to decidewhether or not to accept the revised model over the previous one. We refer to these basicsteps as, respectively, identifying a revision candidate, generating an initial guess, �tting amodel, and comparing two models.In our implementation each of these steps is based on the use of the log likelihood (3.1)as a gold standard. For example, recall that the EM algorithm for �tting a model seeks alocal maximum for log(L). As described below, we use the same measure to identify revisioncandidates, to generate initial guesses, and to compare two models. It is convenient to beginthe discussion with model comparison, since it is the most direct.4.1 Model ComparisonTo compare di�erent mixture models for the same data set, say having di�erent numbers oflayers and/or di�erent order parameterizations for the mean functions u(~x;~ak), we use thedi�erence of the log likelihood of generating the data set. Roughly speaking, we consider amodel to be better if the model more accurately predicts the frequency of the observed data.Such a model has a larger likelihood.In revising a model we seek one which captures an additional signi�cant component inthe data set, with a corresponding step up in log(L). However, due to the EM algorithmsettling into a local maximum, it is possible that the likelihood of the revised model is lowerthan for the original model. This behaviour has been observed in the example computations,



10however it is not typical. A more commonly observed result is that the likelihood for therevised model roughly remains the same as for the original model.It is easy to see why this latter result commonly occurs. If the data set is well ap-proximated by the current model, then there is no new component for the revised model tocapture. Instead, the EM algorithm often converges to a solution in which one of the previouscomponents is duplicated, say components k and k0 are duplicates. That is, the parameters~ak and ~ak0 are essentially the same, as are �k and �k0. In such a case, the dominant e�ect ofthe revision is simply to split the previous mixture probability between mk and mk0 in therevised model. Such a split has no e�ect on the likelihood of the data, as can easily be seenfrom (3.1). Thus, we see that the revised model will have the same logL if any componentis duplicated in this fashion. Note that this type of duplication can also occur even thoughthe current model does not adequately capture the data set, as it depends on the initialguess provided for the revision. Therefore a failure to achieve a signi�cant increase in log(L)should not necessarily be viewed as a reliable indicator that an adequate model of the datahas been found.In the computations we have used the simple criteria that the log likelihood of the revisedmodel, say log(Lr), is signi�cantly larger than that for the current model, say log(Lc). Thatis, we require log(Lr)� log(Lc) > �; (4:1)where � = 2:5 in the computations reported in Figures 4.1 through 4.5.The use of such a threshold is related to a minimum description length criteria [2], inwhich the � is chosen with regards to the extra cost of coding the more elaborate revisedmodel. Another approach for limiting the number of layers is to use the Bayesian estimationapproach of [9], which essentially penalizes both for model complexity and model parameterswhich are not well speci�ed. Here we use the simple threshold (4.1), which appears to beroughly su�cient in practice and avoids the need for additional machinery such as specifyingcoding cost or detailed priors on the space of possible models.14.2 Identifying Candidates for RevisionGiven a current mixture model of the data set, we wish to identify whether any componentprocess within this model should be replaced by two or more processes. As discussed in theabove, such a revised model will be successful if it's log likelihood is su�ciently larger thanthat of the current model. Therefore, it is natural to consider what the potential increase inlog(L) is for any given component.An important fact which is useful for determining an appropriate revision is the relationbetween the expected log likelihood of samples from a distribution and the entropy of thatdistribution. In particular, given a model which provides the grey-level distribution p(g),the expected value of log(L) is�NS(p) = N Z p(g) log(p(g))dg; (4:2)where N is the number of (independent) observations and S(p) is the entropy of the modeldistribution p(g).1We thank Richard Mann for suggesting the use of (4.1) rather than more complex methods.



11
a b
c dFigure 4.1: The floor image (a), the number of layers (b) with black denoting 1 and whitedenoting 11 layers, the reconstructed image (c), and the outliers (d).To use this fact, we �rst estimate the entropy of the portion of the data set owned byeach process. For a given process, say the kth, this is done by constructing an ownershiphistogram. Instead of accumulating the number of data items in each bin, as for a standardhistogram, the ownership histogram is formed by accumulating the ownerships, qkn, for eachdata item g(xn) which lands in a particular bin. That is, a given data item g(xn) contributesa partial vote to all processes for which the ownership is nonzero, and the total of thesecontributions sums to one. The ownership histograms are then estimates of the componentdistributions, pk(g), for each process k. From the ownership histogram for the kth process,say fHi;kghi=1, we estimate the entropy of the observations for this process usingSok = � hXi=1(Hi;k=Hk)log(Hi;k=Hk);where Hk is the total ownership for the kth process,Hk = hXi=1Hi;k:Note that if the ownership histogram reects the true component distribution then, accordingto (4.2), the expected log probability of Hk observations from this process is just �HkSok. Ina sense, this is the expected log probability of an ideal model of this component of the data.



12
a b
c dFigure 4.2: The hall image (a), the number of layers (b) with black denoting 1 and whitedenoting 9 layers, the reconstructed image (c), and the outliers (d).We need to compare this estimate for an ideal model with what the current model actuallypredicts. Following the above approach, the expected log probability of Hk data items se-lected independently from the model's component distribution pk(gj~ak; �k) can be computedaccording to (4.2). In particular, the current model accounts for an expected log probabilityof �HkSmk , where Smk is the entropy for the component distribution pk(g). While Smk can becomputed in closed form, we �nd it more convenient to estimate it using a histogram withthe same bins that were used for the ownership histogram. This allows quantization e�ectsto be comparable in the estimation of the two entropies Smk and Sok.Therefore we have the estimate �HkSok, for the expected log probability given an idealmodel for the data owned by the kth process, along with �HkSmk , which is the expected logprobability according to the current component distribution, pk(g), in our model. The di�er-ence, namely �HkSok +HkSmk , therefore reects the potential increase in the (expected) logprobability if this component distribution pk(g) was revised. This motivates the requirementthat �HkSok +HkSmk > � (4:3)in order for process k to be considered suitable for revision. In the reported computations
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a b
c dFigure 4.3: The forklift image (a), the number of layers (b) with black denoting 1 andwhite denoting 12 layers, the reconstructed image (c), and the outliers (d).we used � = 5.4.3 Generating an Initial Guess for a Revised ModelGiven that the kth component process has been identi�ed as a candidate for revision, ac-cording to (4.3), we need to generate an initial guess for a new model. The new model isformed using the same components as the current model, except for the kth component. Thekth component, and it's mixture proportion mk, is split into two components. These twocomponents are determined using a histogram parsing technique to determine the dominantpeaks in the ownership histogram fHi;kghi=1. This determines the initial guess for the EMalgorithm. If the histogram parsing technique obtains more than two peaks, then a sequenceof di�erent initial guesses is generated, pairing the largest peak with each of the remainingones.4.4 Hypothesize and TestThe overall incremental algorithm for building a mixture model can now be described. Theinitial guess for the model is the outlier model p0(g). We then iterate the following procedure.We identify the set of processes that are candidates for splitting according to (4.3) and, ifthere is more than one such process, we order them according to the potential di�erences inlog likelihood (i.e. the value on the left hand side of (4.3)). For each process, we determine
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a b
c dFigure 4.4: The sports equipment range image (a), the number of layers (b) with blackdenoting 1 and white denoting 8 layers, the reconstructed image (c), and the outliers (d).The patch size is still 16 � 16 but the range image is only 125 � 130.a sequence of initial guesses according to the splitting procedure described in Section 4.3.Taken together, this generates an ordered set of initial guesses. In addition, at the beginningof this sequence of initial guesses, we consider a revision which does not add a layer but rathersimply changes any constant model, u(~x; a0), to a linear model, u(~x; (a0; a1; a2)), within anylayer k which has a su�cient total ownership Hk.For each initial guess, taken in the above sequence, we run the EM algorithm withannealing for �tting the mixture model. Given the result, the revised model is checked for asigni�cant increase in log(L) (i.e. the condition (4.1) is used). We accept the �rst instance(4.1) is satis�ed, and repeat this revision process.The revision process stops when: (i) no candidates for revision are identi�ed; (ii) noneof the revised models provide a signi�cant increase in log(L); or (iii) the maximum numberof layers is reached.4.5 Computational ExamplesIn Figures 4.1 through 4.5 we show results from this algorithm. The maximum number oflayers allowed was taken to be large enough so that the revision process would stop when itwas unable to �nd a better model, rather than when it bumped up against the constraint
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a b
c d
e fFigure 4.5: The sports equipment image (a), the number of layers (b) with black denoting1 and white denoting 12 layers, the reconstructed image (c), and the outliers (d) for � = 2:5.When � is reduced to 1:5 up to 16 layers are used and several image patches are resolvedfurther (e), with the remaining outliers shown in (f).



16on the maximum number of layers. In our experiments we used the maximum number oflayers to be 20, which was more than su�cient. The same control parameters �, �A, �min, �,and � were used in each case, with the values mentioned previously. The patch sizes were16 � 16 except for the last patch on a row or in a column, these were adjusted to �t withinthe boundaries of the image.In almost all cases the reconstructed images are close approximations to the original,although smoother. There are a few places that are not captured by the derived layers, asindicated by the outlier images. These typically involve a small number of pixels and/or awide range of grey levels (so the addition of one more layer does not raise the log likelihoodvery much). A clear example of this is provided in Figure 4.5c, where several image patchescontaining the strings of the racket are not accurately modelled. The actual grey-levels hereare scattered, due to highlights on the strings and structure in the background. Nevertheless,when the threshold on the step in log likelihood required for accepting a revision is loweredfrom � = 2:5 to 1:5, this image structure is then resolved (see Figure 4.5e,f).Note that the results indicate that in image patches with more complex structure thenumber of layers is correspondingly larger. However the number of layers chosen can besurprisingly large in places. In the examples shown in Figures 4.1 through 4.5 the maximumnumber of layers selected was between 8 and 12 (for � = 2:5), which seems high, especiallyrelative to the quality of reconstruction a four layer model is seen to given in Figure 3.1.Indeed, in patches for which a large number of layers are selected, many of these layers haverelatively low mixture probabilities.In an attempt to control the number of layers we investigated the e�ect of varying �,that is the increment of log(L) required for a revision to be accepted. As � was increased weobserved the expected result that the number of layers used by the model steadily decreased.Unfortunately, a particular setting of � could eliminate all but one layer in some imagepatches but still allow a surprisingly large number of layers in another. One reason for thisis that the particular value of � for which a layer appears or disappears depends on manyfactors, including the number of data items supporting the layer, their variance, the overallscatter of other grey-levels within the patch, and so on. Indeed, in hindsight, this behaviourshould be expected from our method since all these factors inuence the likelihood.We also briey tried the `anneal-release' schedule for � mentioned at the end of Section3.3. By releasing the �k's after the annealing, and letting them settle into a local maximumof the likelihood function, we expected the number of layers to be reduced. The reason isthat if there are any broad peaks in the grey-level histogram then, with annealing, these willbe modelled by a collection of small variance layers. On the other hand, if the variances werenot constrained, we might be able to model the same peak with a single layer having largevariance. This idea was tested and the number of layers used was seen to be reduced withthe anneal-release schedule. But in spatial patches having a complex local structure, themodel revision approach then often failed to extract the appropriate structure. For example,when the model revision approach along with the anneal-release schedule was used on thefloor image in Figure 4.1a, some of the patches containing the grating in the oor weremodelled by a single high variance layer and were not subsequently revised. Our conclusionis that the annealing is an important component of our model revision process, and that thisprocess bene�ts from having prior knowledge about the scale of the noise in the signal (interms of setting the annealing limit �A in equation (3.9a)).In summary, the results indicate that our model revision approach can reliably derive



17multi-layer models of local image structure. However, the number of layers selected canbe large, and is not conveniently controlled using the log likelihood threshold �. If only acrude approximation of the original image is desired, we recommend using the current modelrevision process, with a relatively low � and a strict bound on the maximum number oflayers (as used to generate Figure 3.1). More exible methods for limiting the number oflayers, such as pruning layers which have su�ciently small mixture probabilities, can also beconsidered in post-processing the derived representation.5 Connected ComponentsAs a simple application of this approach we considered deriving large connected componentsfrom a given image. The motivation from the ARK robot is two-fold. One application is tosegment out a large portion of the oor. This would be useful to determine \oor anomalies,"especially when used in conjunction with stereo disparity [5], or motion information [10]. Asecond motivation is to segment fairly large uniform objects which may serve as landmarks,such as the door in the hall image in Figure 4.2. Such a process may provide a fast andreliable means of roughly locating a landmark.To do the segmentation we implemented connected components on the layers in therepresentation rather than on image pixels. The connected components algorithm dependson the speci�cation of the neighbours of any given layer in any given spatial patch and alsoon the criteria for when two such neighbours are considered connected. In particular, let~akn, �kn, and mkn be the parameters for the mean, the standard deviation, and the mixtureprobability, respectively, for the kth layer in the nth image patch. Similarly, we denotethe same parameters for the jth layer in the lth patch by ~ajl, �jl, and mjl, respectively.These two layers are considered neighbours if the lth image patch is within the 3� 3 spatialneighbourhood of the nth patch, and if the ownership probabilities mkn and mjl are bothlarger than a threshold mmin. This threshold mmin was used to help avoid low probabilitycomponents forming connections between relatively disparate items. We used mmin = 0:1.Note that in a one-layer model patches can have no more than eight neighbours, while formulti-layer models they can have many more.Given two such neighbours, say with the parameters listed in the previous paragraph, weconsider them to be connected only if the corresponding layer models are su�ciently close.In particular, let ~x � be the midpoint between the centers of the nth and the lth image patch.Then the squared distance between the two models is taken to beD2(k; n; j; l) = (u(~x �;~akn)� u(~x �;~ajl))2=(min(�kn; �jl))2 + jj~5ukn � ~5ujljj2=�2grad: (5:1)Here ~5ukn represents the spatial gradient of the kth layer in the nth patch, that is, thevector formed from the last two components of ~akn. The �rst term on the right side of(5.1) measures the squared distance between the two layers at the midpoint ~x �, relative tothe minimum standard deviation of the two layers. The second term measures the squareddi�erence in the gradients, relative to a constant �grad. This constant is used to provide arelative weight between the two contributions to D(k; n; j; l) and was set to �grad = 30 onthe intensity images. Finally, given this distance function, the two neighbours are consideredconnected if D(k; n; j; l) < �; (5:2)



18

Figure 5.1: The model obtained using just one layer, the outliers, and the four largestconnected components for the floor image (run time 5.5 secs).



19

Figure 5.2: The model obtained using just one layer, the outliers, and the four largestconnected components for the hall image (run time 3.2 secs).



20for some threshold �. We used � = 1:75 in all the reported computations except for thosein Figure 5.5. A variety of other connectivity measures were also tried and they producedroughly comparable results.This de�nition for pairwise connected layers is then used to determine the various con-nected components within a given image representation. A two-pass algorithm, which is asimple modi�cation of a standard 2D connected components algorithm, can rapidly deter-mine all the components.A given connected component in the layered model was then viewed by displaying theindividual pixels which were maximally owned by each layer in that component. As a result,the image of the components displayed in Figures 5.1 through 5.4 may not actually beconnected in the image. This occurs, for example, in the oor components for the floorimage (see the middle right panel in Figure 5.1).This behaviour illustrates one of the bene�ts of considering connectivity within the layers,as opposed to individual pixels. In particular, small disruptions of a particular layer, suchas the gaps between the grating and the oor do not disrupt the overall component when itis determined using su�ciently large patches.A second bene�t of this approach is that it can alleviate some of the di�culties with thenon-robustness of connected component algorithms. In particular, in standard connectedcomponents a single errant pixel can lead to a bridge between two image regions that mightotherwise be considered to be separate components. While this can and does occur whenconsidering the connectivity for models with several layers, we can control it to some extentby limiting the number of layers and/or by setting the minimum mixture probability tobe used in considering the connected layers. Indeed, the most reliable components for theimages tested turned out to be those for the simplest types of layered models, namely onelayer of constant or linear models (plus outliers), such as those on top row in Figure 3.1.For the examples in Figures 5.1, 5.2, and 5.3 we used the original image subsampledtwo times. In each case the resulting images were around 150 � 100. We ran the �ttingprocedure described in the previous section, with the same parameters other than the patchsize, which was also halved to 8 by 8. We restricted the number of layers to one. The overallprocess of �tting a constant or a�ne one-layer model to these subsampled images, runningconnected components on the layers, and producing the images of the resulting componentstook between 3 seconds (for the hall image) and 7 seconds (for the forklift image) on anSGI Indy workstation2. The results indicate that the approach can rapidly segment someuseful regions, such as the oor regions in the AECL industrial bay, and the walls anddoorway in the hall image. Note that highlights and reections o� of the oor, present inthe hall image, cause the oor to be over segmented.One potential application of this result is to the stereo FAD system. In particular,the large segments can provide a rough guess for where to �t planar oor models to thestereo disparity. The requirements here are fairly loose in that a precise segmentation is notneeded since the stereo FAD approach described in [5] is also tolerant of outliers. Secondly,this stereo FAD system has no spatial integration. As a result, spots on the oor with littleor no texture (such as within the piece of paper in Figure 5.1) are considered to have anundetermined depth. However, the regions derived from a segmentation procedure such asours can provide a means for spatially integrating the stereo FAD results. (For similar work2Roughly similar results can also be obtained using constant models, instead of linear models, resultingin some speed-up (2.5 to 5 seconds run time) and some degradation in segmentation.
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Figure 5.3: The model obtained using just one layer, the outliers, and the four largestconnected components for the forklift image (run time 6.7 secs).



22done with optical ow, see [3].)A second application is in determining the location of landmarks in an image. Forexample, the majority of the large door in the hall image can be segmented, despite somehighlights on it. This segmented region could instantiate a process for verifying the landmark,perhaps through the use of edges or an image template.5.1 Range ImagesConsider the range image that we used as a motivating example in the introduction (i.e.Figure 1.1b). This image is only 125 � 130, which is roughly equivalent to the subsampledimages in Figures 5.1 through 5.3, so we did not subsample it further. Also, to be consistentwith the results in Figures 5.1 through 5.3 we used 8 � 8 patches. In order to resolve thecomplex depth structure we allowed the revision process to use up to 4 layers. Otherwisethe control parameters for �tting the model are the same as before. The result, shown inFigure 5.4a, is a good approximation of the original range image. We then ran the connectedcomponents algorithm on the layered representation, with the control parameters � and mminthe same as before (i.e. 1.75 and 0.1, respectively), but with the scale parameter for thegradient terms �grad roughly half the size as before. The reason for this last change is thatthe results indicated that the local gradient estimates were less noisy for this range imagethan for the previous intensity images. The results of the connected components algorithmdisplayed in Figure 5.4 show an excellent separation of the racket from the background, andof several other components in the background itself.A second example is provided by the wires image pair shown in Figure 5.5a,b. Thewires in this example provide a challenge in that they are only 3 pixels wide and theycan have a large depth variation along their length. In Figure 5.5c-e we show the resultsof �tting a mixture model limited to 4 layers using the same control parameters as abovewith 8� 8 spatial patches. Again we see we get a good approximation of the original rangeimage. The control parameters for the connected components algorithm used in the intensityimages, namely � = 1:75, �grad = 30 and mmin = 0:1, were found to oversegment the wires.Instead, in order to accommodate the depth variation along the wires, we used � = 2:5.Also, to allow for the thinness of the wires we set mmin = 0:01. (The exact settings are notcritical, a reasonable range of values produced essentially the same results.) The four largestconnected components given these parameters are shown in Figure 5.5f-i. The segmentationof the background, the outlet box, and several of the wires provides another example of theusefulness of layered models in situations of fragmented occlusion.6 ConclusionWe approach the problem of �nding a suitable layered representation for a grey-level imagefrom the point of view of data exploration. That is, the process of building a model involvesseeking out and discovering various structures within the data. The exploration is basedon the use of the likelihood of the data as the appropriate �gure of merit for a given imagerepresentation. Revised models are considered whenever the data set is considered to exhibitunmodelled structure, and these revised models are �t using a modi�ed EM algorithm withdeterministic annealing. Finally, the result of such a �tting procedure is accepted if itprovides a signi�cant increase in the likelihood of the original data. The number of layers
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g h iFigure 5.4: The layered model limited to at most four layers (a), the outliers (b), the numberof components (c), and (d-i) the six largest connected components are shown for the sportsequipment range map (run time 24 secs).



24
a b c
d e f
g h iFigure 5.5: The wires intensity image (a) and the associated range image (b). The layeredmodel for the range image limited to at most four layers (c), the number of layers (d), theoutliers (e) and the four largest connected components (f-i) (run time 21 secs).



25can be automatically selected in this way. The proposed incremental algorithm for buildinga layered representation of grey-level images has been successfully tested on a variety ofimages.One shortcoming we have noted is that the number of layers can be unnecessarily large,especially if only a rough approximation of the original image is desired. Perhaps the numberof layers chosen can be reduced using an MDL or Bayesian approach (see [2] and [9]), or byusing spatial correlations in the generative model (see [15]). For the present we recommendthat the current algorithm is used with a strict upper limit on the number of layers, andpossibly with pruning in a post-processing step. As demonstrated here, the results thenappear to be su�cient for many practical purposes.Our current approach treats each separate image patch as a new data set, so in a sensethe data exploration is restarted from scratch in each patch. This is appropriate for ourpresent purpose of studying the process of �tting layered models. However, for a practicalsystem it would be of interest to consider spatial interactions between neighbouring patchesduring the �tting process, perhaps along the lines described in [8].Several other extensions are also of interest. The application to colour data, for example,is a straight forward extension. This involves replacing the scalar grey-level with a colourvector and the variance estimates with a 3 � 3 covariance matrix. We already have promis-ing results with a colour version of the same algorithm. Also, recall one of the primarymotivations for this work was derived from using layered models for the estimation of vector�elds describing either optical ow or stereo disparity. We expect that much of the approachdeveloped here, possibly including the above mentioned extensions, will be useful for thesevector �eld estimation problems.Finally, the applications we considered for a robot such as ARK were based on runningconnected components within the layered representation itself. There are several advantagesof doing this. In general the connected components algorithm depends on local estimatesof the mean and the variance of the grey-levels within each component, as is standard forregion based grouping. But the di�erence here is that by �tting a mixture model to the dataset we are e�ectively estimating the required layer parameters simultaneously with a softsegmentation of the image patch. The use of a layered representation also allows for spatiallycomplex images generated by fragmented occlusion to be relatively easily segmented, asdemonstrated in Figures 5.4 and 5.5. In addition, gaps which are smaller than the size of thepatches are e�ectively ignored by computing the connected components within the layeredrepresentation and not at the pixel level. Finally, by choosing a model which is restrictedto only a small number of layers we can alleviate some of the problems with the well knownsensitivity of connected components to the precise choice of thresholds. However, this useof a connected components algorithm is de�nitely the weak link in the two ARK speci�capplications presented. More robust grouping techniques, perhaps along the lines suggestedby Amir and Lindenbaum [1], should be considered.AcknowledgementsWe are grateful to Charles Stewart for supplying both the sports equipment and the wiresimage pair. Funding for this work was provided, in part, by the ARK (Autonomous Robot fora Known environment) Project, which receives its funding from PRECARN Associates Inc.,Industry Canada, the National Research Council of Canada, Technology Ontario, Ontario
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