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Abstract

We present a robust automatic method for modeling cyclic @@mdmn motion such as walk-
ing using motion-capture data. The pose of the body is repted by a time series of joint
angles which are automatically segmented into a sequenc®idn cycles. The mean and
the principal components of these cycles are computed @asimgw algorithm that enforces
smooth transitions between the cycles by operating in thei€odomain. Key to this method
is its ability to automatically deal with noise and missirgtal A learned walking model is
then exploited for Bayesian tracking of 3D human motion.

Keywords: Human Motion, Functional Data Analysis, Missing Data, $ilag Value Decom-
position, Principal Component Analysis, Motion Captureacking.
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1 Introduction

Increasing amounts of 3-dimensional human motion data\aiable from commercial motion
capture systems and are used for a variety of applicaticarseXample, they provide an input for
the animation of virtual characters in computer graphieg (21] for an overview), for biometric
person identification [8, 17, 55, 56], or for the analysis ait g@bnormalities in medicine [38, 62].
The focus of much of this work has been on cyclic human motsath as walking and running.
A common approach for modeling such motions uses Principahg@nent Analysis (PCA) to
represent them in a low-dimensional linear subspace thaties the natural variations among
people and activities [5, 9, 26, 30, 41, 53, 56, 65, 66]. Oukvemldresses some of the difficulties
in such an approach by providing a fully automatic methoddarning PCA models of human
motion. In particular, we show how the cycle length can bewruatically determined and provide
a new algorithm for learning PCA models with missing data thdailored tocyclic data. The
resulting set of techniques can be exploited by any motiodetiiog approach that first represents
cyclic human motion using PCA. To illustrate the methods e&rh a probabilistic model for
human walking we apply it to the problem of human motion recg¥rom a sequence of 2D video
images.

In many applications, the human body is approximated by kectxdn of articulated limbs
(Figure 1) that form a kinematic tree. The motion of the boaly then be thought of as a collection
of time-series describing the joint angles as they evolez tine. A key difficulty for the modeling
of these body angles is that each time-series has to be deseshpor segmented, into sequences
of meaningful actions (or “movemes” [12]) prior to statisti analysis. For example, in the case of
repetitive human motion such as walking, motion sequeneesrdpose naturally into a sequence
of similar motion cycles. The exact nature of this decomiasiis unknowna priori and needs
to be estimated from the motion data. In this work, we presem¢w set of tools that carry out
this identification automatically. These tools also alleswo automatically compute the mean and

the principal components of the individual cycles. WhileAP@odels of human gait are, by now,
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Figure 1: The human body is represented as a kinematic tmresistimg of articulated, tapered,
cylinders with 25 degrees of freedom (DOF); six degreediettanslation and rotation of the torso
and 19 relative joint angles expressed here as Euler angbkesh limb,i, has a local coordinate

system with theZ; axis directed along the limb. Joints have up to 3 angular D&@pressed as

relative rotationg6’, 6+ 67*) between body partsand;.
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quite standard [5, 9, 30, 41, 53, 56, 65, 66] a number of teetmiifficulties have not previously
been addressed. One important issue involves dealing wighimg information in the motion
time-series due to occlusion. Missing data is common in dagh-quality motion capture data
and commercial systems rely on ad hoc, semi-automated aetbdill in what is missing. Such
methods may introduce bias or remove fine temporal struftone the data. Additionally, in the
case of cyclic activities, one needs to enforce smooth ittans between cycles. To deal with
these problems, we develop a new iterative method for fanatiPrincipal Component Analysis
that is based on a Singular Value Decomposition (SVD) in tberier domain. The result is a
fully automatic method that takes a database of cyclic humations and produces a statistical
model that is suitable for various applications. This awted method ignores missing data and
consequently avoids problems of bias introduced by postdiate manipulation.

To demonstrate the application of such a model we exploresisin recovering 3D human
motion from 2D image sequences. In this tracking applicatibe principal components serve to
define a low-dimensional representation of the human 3Dgiose state-space model that treats
the 2D video images as observations. We specify the trangitiobabilities (or motion prior) for

this state-space model using the singular values of thedeamotion model and we also specify
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an image likelihood term based on a generative model of tlag@&appearance. This generative
model is non-linear and the posterior probability densitgrdiuman poses is non-Gaussian. Con-
sequently, we exploit approximate Bayesian inferencentiectes for temporal filtering. Specifi-
cally, we apply a particle filter [23, 29] where the posteddtribution is represented by a discrete
set of samples and is propagated over time using Monte Gastmtques. The resulting algorithm
is able to track human subjects in monocular video sequem@e recover their 3D motion under
changes in their pose and against complex unknown backdsoun

The remainder of this paper is organized as follows: In the section we briefly review
previous work on human motion modeling and tracking. In BecB, we present details of the
data set under investigation and we describe the sequeigcenaint procedures that divide the
motion capture data into cycles. In Section 4, we explainadgorithm for functional Principal
Component Analysis and we illustrate the method with humalkiwwg motions. The application
for tracking is described briefly in Section 5 to illustrabe ideas; for a detailed description, the

reader is referred to [41, 52, 53].

2 Previous Work

There has been substantial previous work on the modelingrogin motion data in the statistical
and computer science communities. Statistical repreenscof time-series data using functional
analysis are described in detail in [45]. An interestingtneent of the statistical analysis of human
motion data in a medical context can be found in [40] while] [@0plies functional analysis to a
problem in ergonomics. For a good review of human motion riegsee Troje [56].

Much of the work on gait analysis has focused on 2D image semtations such as silhouettes,
raw images, or features derived directly from image [6, 7,18 27, 31, 37, 39]. Here we focus
on 3D body joint angles which have also received a great deattention for biometric person
identification [8, 17, 27, 55] emotion modeling [2, 56] anadking [30, 53, 60, 59, 65].

A common approach to model repetitive 3D human motion data fend-segment and align



the data in contrast to the automated alignment procedugegested here. Previous approaches for
automated alignment can be found, for example, in [46]. Basethis segmentation the individual
walking “cycles” can be modeled using various statistieghhiques, e.g. those described in [4]
or [47].

We focus here on modeling 3D joint angles for tracking, rathan recognition of, human
motion. The simplest such models place constraints on tle®@gnthange in joint angles [25, 61].
These models are derived from biometric studies of humarom{i3, 48, 49] or learned from 3D
motion-capture data. The learned statistical propertiegine captured by wavelets [43], principal
component analysis (PCA) [5, 9, 26, 30, 53, 56, 65, 66], patyial basis functions [22], Fourier
components [58, 17, 56], dynamical models [42, 63], vect@mmgjization [26, 36], phase-space
constraints [14], or various types of Hidden Markov Modél$/M) [9, 10, 11, 36].

Cyclic human motion, in particular, has received speciadraion [1, 35, 50, 56, 65] where
the focus is often on recognition of individuals based ogtisitures” in their gait or recognition
of deviations from the norm (e.g. as a result of carrying a/fedject). For cyclic articulated
motion, [43] use a frequency decomposition of joint angléh & learned, non-parametric, kernel
density estimate of the conditional statistics acrossueegy bands. Sampling from this model
produces synthetic repetitive motions with natural vasiat

In previous work on principal component analysis of humatiomdata, the 3D motion curves
corresponding to particular activities were typically Hesegmented and aligned [6, 53, 65]. In
contrast, this paper details an automated method for segrgehe data into individual activities,
aligning activities from different examples, modeling ttatistical variation in the data, dealing
with missing data, enforcing smooth transitions betweetesy and deriving a probabilistic model
suitable for a Bayesian interpretation. PCA with missintadeas been dealt with in other contexts
[33, 51] but not for the case of cyclic motions.

Murase and Sakai [37] use PCA to reduce the dimensionalisylfoduette images of walkers

and then represent activities as trajectories of eigemspaefficients. This differs from the ap-



proach of representing trajectories themselves in a lowedsional subspace. Similarly, Huang
et al. [27] build an eigenspace of spatio-temporal templates aptbi this for gait recognition.
The approach does not deal explicitly with 3D joint angleadatt the problem of detecting and
modeling individual motion cycles.

In contrast to PCA approaches, Cunaxtal. [17] extract 2D motion information about the
upper leg from video and then model the upper leg motion uaifgurier series. The Fourier
basis is used in contrast to the learned PCA basis for speciiities. An advantage of the PCA
approach is that it automatically captures covariatiomvben limbs when the model is trained
using multiple joints.

Troje [56] takes a slightly different approach by performmPCA on marker positions (not 3D
joint angles) to derive a low dimensional posture model. filme series of postures in this low
dimensional space are then fit by sinusoids. To capturehifityaacross subjects and behaviors
Troje then performs PCA on the reduced-dimension time serie contrast to a learned PCA
representation of the time series, the sinusoid repres@mtaay remove important subtly from the
motion. Our approach goes beyond this to deal with the autimaodeling of cyclic motions. We
work directly with times series and do not make the sinud@daumption. Key to our approach
is the ability to automatically deal with imperfect and niiggdata. Finally we apply the model to
3D human tracking.

More recently, there has been an emphasis on non-parammetdels of human motion that es-
sentially assemble motion clips sampled from a large da@bémotions [3, 32, 34, 44, 64]. Like
the analogous texture synthesis techniques, these mephodsle detailed synthesis but do not
generalize well to motions not present in the database. Oingibnal analysis approach here pro-
vides a probabilistic model that can generalize within dipalar class of motions and hence may
be more appropriate for tracking. Parameterized methaislave advantages for gait analysis
and recognition.

Bayesian methods for tracking 3D human motion have been pisadously in [15, 19, 26,



42, 54, 53]. In these methods, temporal curves learned v €an be thought of as providing
a prior probability distribution over valid human motion&iven the high dimensionality of the
human body, this prior constrains the possible motionstoti a far lower dimensional manifold.
This makes the problem of pose estimation with Monte Camoing techniques more tractable.
Further illustrating the value of PCA-based models of hummemtion, recent work has explored
using these models and deterministic optimization mettodscover 3D motion from video [59,

60].
3 Human Motion Data

In this work, we develop a modeling procedure for periodidiorosequences. By definition, peri-
odic motion is composed of repetitive cycles which constiunatural unit of statistical modeling
and which must be identified in the training data prior to dimidy a model. For example, Figure 2
illustrates one particular cycle of a walking sequenceqéeatly, this segmentation is carried out
manually in an error-prone and burdensome procedure (@eexdample, [45, 65]). In this section,
we present alignment algorithms that segment the data atitwatly. Based on this alignment, the

mean and the principal components of the cycle data are dethjps a statistical model.

3.1 Motion Capture Data

Three-dimensional human motion data was collected usingrarercial Vicon motion capture
system. Four subjects (professional dancers) performadety of activities while wearing retro-
reflective markers. Commercial software was used to reaactghe 3D trajectories of the markers
and the relative joint angles of the limbs over time; see FEdufor an example of one walking
sequence. Eight walking sequences (two per subject) weoeded at a sampling frequency of
120 frames per second and the lengths of the sequences rangaliout 500 to 5000 frames. It
is important to emphasize that the modeling techniquesesigd in this paper can be applied to a
much wider range of repetitive motions.

For the purpose of our analysis, we focus on the 19 relative gmgles describing the limb
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Figure 2: Example walking sequence synthesized from matapture data (torso motion and
relative joint angles).
motion over time (refer to Figure 1). In doing so we eliminatey global position information
though this could be modeled as well. In Figure 3 we show aetulfs3 of these 19 time-series
that characterize the left body-half.

Formally, we letl’; denote the length of thieth motion sequence andwe use 1,...,7;as a
time index. Similarlyyn = 19 is the number of angles in each motion sequencesard,, ..., m

indicates a particular angle. Tl¢h motion sequence can be writtert as
Zi(t) ={ziat)la=1,...,m}fort =0,...,T,.
Associated with each sequence we have the indicator set
L,={te{l,....T;} | z.(t)is not missing.

Thatis,I; , is a set of time indices that labels non-missing pieces ofmétion inz; , and we have
one such set for each sequenead for each angle. Missing observations arise frequently in our
data set because some markers may be occluded by other htslgwang portions of a motion.
This is very common, even in high-quality commercial datéhe Tapturing system reports an
angle of zero for some of the position coordinates in thig cagpically occlusions last for several

frames which prevents the imputation of interpolated v&lusing neighboring observations.

1The dataz; is not to be confused with the reference coordirfagéor limb j in Figure 1.
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Figure 3: Time-series representation of the angles in tHkimgasequence. We show the left
shoulder (Ishx,Ishy,Ishz), elbow (lelb), hip (Ihpx,Ihimgz), and knee angles (Ikne). Note regions
of missing data (e.g. between approximately time insta®@-300 and after 500).

Next, we describe a procedure to estimate alignment paeasitat segment periodic motion
sequences into cycles. There are several ways to appraacssihe in principle (see, for example,
[46]). For the data described in Section 3.1, however, itnseparticularly relevant that the pro-
cedure handle missing observations and that it producedbielestimates even for the relatively
short human motion sequences we have at our disposal, tngsi$only three to four cycles per
sequence. The procedure consists of two steps: For eacbms®quence, we first estimate its
cycle length,p, using a wrapping procedure; second, we estimate an offsahyeterp, which
describes the relative shift of that sequence using artiiteralgorithm. In practice, these param-
eters vary due to different speeds and different startirgitipos of the individuals in the capture

sequence. Based gmando, the individual motion sequences can be transformed intunamon
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Figure 4. Wrapped walking cycles for the left knee andleft: a near-optimal cycle length of
p = 125 results in a strong signal to noise ratkadnal;,. = 254.3). Right: An incorrect cycle
length results in no clear alignment; eyg= 150 (signaly,. = 0.4527).

reference domain for further analysis.

3.2 Estimation of the Cycle Length

To illustrate the effect of choosing the correct cycle léngtonsider the “wrapping” procedure
shown in Figure 4 which shows the left knee angle during sgweallking cycles. Each candidate
value p defines a segmentation of the original time series into aesampiof segments that can
be represented in the common doméln. . ., p}. Formally, let the “projection index” associated
with p be defined according t%),(t) = ¢ modp, so that{, “folds” the original sequence into the
domain{1,...,p}. Foreachk € {1,...,p} we will consider all those elements & that are
non-missing and that are projected oitoThe indices of these elements are collected in the sets
Liok) ={j € Lk =¢&(j)} fork =1,...,p. Also, let|]; ,(k)| be the cardinality of; ,(k).

Then the mean of the observations mapped égntnd the overall mean of sequencean be

written as
Zz-ﬂ(k‘) = 1 Z Zi,a(])?
[ Lia(B)] ety
7, = \Il | Z zia(J)
val jel;

The following magnitudes measure the signal- and the nmsgent of the projected sequence:

s ) = Dot~ &) "
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. DY (Ei,a(k)_2i>2
signalia(p) = =50 I @)

Specifically,noise; , is an estimate of the average square deviation of the aligyeds from the
mean cyclez, ,; it can be interpreted as the variation in the data that isemptained byz; ,.
On the other handsignal;, is an estimate of the mean variation of the mean cyglg, with
respect to the overall mea#;, and measures the signal intensity. Botlise; , andsignal; , are
normalized so as to account properly for the degrees of dreeaf the estimates and to produce
estimates whose expectation is independent. oBecause it is natural to favor values jpthat
produce simultaneously high signal- and low noise-coutiiims, we combine (1) and (2) into the
“signal-to-noise ratio®

snri(p) = XQ: %. 3)
In our algorithm we try candidate values fpin a suitable range and choose the maximum with
respect to (3) as our estimate of the cycle-length. Note(8)atomprises the accumulated contri-
butions from all angles in our data set. In Figure 5 we showirid&vzidual signal-to-noise ratios
for a subset of the angles as well as the accumulated signadise ratio (3) as functions ¢f
Note the sharp peak of these values around the optimal oyotghp = 126. The peak around
the optimal value is more expressed in some sequences tldhers. While the variance in the
angles differs for each joint, the maximal peak remains émees For example, the left hip angle
(Ihpz) varies much less than the hipangle and the resulting signal to noise ratio for Yhaxis is
eight times that of theZ axis. Note also that the signal-to-noise ratio of the ardfig generated
white noise series in the first row is approximately constesatrranting the unbiasedness of our

approach with respect to changing valueg.of

2Alternative estimation approaches based on spectral sisatgnnot easily be applied due to the missing data.
Even if there were no missing observations, the statis@ffaliency of these estimates might be low due to the rela-
tively small number of frames per period. That is, the cdod# of the Sampling Theorem may not be fulfilled so as
to guarantee a sufficiently small approximation error.

11
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Figure 5: Signal-to-noise ratio of a representative setngfies as a function of the candidate
period length. We show the same angles as in Figure 3. Theetggs<orresponds to a white noise
signal. The bottom series shows the accumulated signadite ratio (3). The minimum overall
variation was obtained fqr = 126, (snr = 8.986505¢ + 02).

3.3 Estimation of the Offset Parameter

The folding procedure described above computes an estimh#te optimal cycle length(:) for
each sequence and stores these values in an array of lengtbur second step, we use this array
to align multiple sequences in a common domain by rescalicg ndividual sequendgeaccording

to p(:) and by shifting it according to an offset parametér). More specifically, for each we

define the following mapping of the time-series index 0, . . ., 7; into the domaino, 1]:
(t — o(z)) modp()
(1) = - .
Gt p(i)

Then we construct offset estimatgs ), o(2), . . ., o(n) so as to allow for the best approximation of
the time-series in terms of a commmeference modelk(7), wherer € [0, 1]. In other words, for
each: we require that the time-series, (¢) deviates as little as possible from its reference value,

r(¢;(t)). We need a separate reference madét) for each angle: and each of these models
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1. Initialize offset values. For each motion sequence 1,...,n, let

o(i) := 0.

2. From a given function claskR, choose the minimum least-squaresi fit
with respect to the aligned data. ko= 1, ..., m:

—argmlnz Z Zia(3) — 1 (G5 ))] )

1=1j€l;,

3. Update the offset parameters. Fet 1,...,n

o(i) :=argmin Y~ 3" [z4(j) — 74 (G(5))]"-

a j€liq

4. Stop, if the performance improvement is beld . Otherwise, gotq
Step 2.

Figure 6: lterative algorithm for the computation of theioyl offset parameters.

belongs to a pre-specified class of functioRs, As a measure of deviation between,(¢) and
r(¢;(t)) we use their squared distance.

There are two technical issues complicating this stratéggt, because the motion sequences
are typically asynchronous after rescaling using the eggdhcycle-lengths, we have to adapt our
definitions of the reference signal and of the noise leveldorginuous-time framework. Second,
we are facing a computational problem. An exhaustive sefarctine optimal offset-combination
requiresO ([]7_, p(i)) evaluations of the signal-to-noise criterion, which isaclg infeasible in
practice. Instead, we suggest the iterative procedurgiifited in Figure 6 to compute an approxi-
mate solution. We initialize the offset values to zero ingSteand we define the reference signal
r, IN Step 2 so as to minimize the deviation with respect to tlymat data. Note that missing data
are discarded for estimation. Next, we choose the offse#dl sequences so that they minimize
the prediction error with respect to the reference signeddS). By contrast to the exhaustive
search, this operation requires ordy(>"" , p(i)) comparisons. Because the solution of the first
iteration may well be suboptimal, we construct an improwefdnence signal using the current off-

set estimates, and use this signal in turn to improve thebéstimates. Repeating these steps,
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Figure 7: Aligned representation of eight walking sequer(béue). The red curve denotes repe-
titions of the periodic regression spline estimate (cogerce after five steps).

we obtain an iterative optimization algorithm that is tematied if the improvement falls below a
given threshold (Step 4). Since Steps 2 and 3 both decreagedtiction error, it is clear that the
algorithm converges.

Figure 7 shows eight sequences of a walking motion, aligis@thithis procedure. As a func-
tion class for the reference sign@, we chose periodically constrained regression splinesiin o
implementation; i.e. the zeroth, first, and second dekieatof the spline are designed so as to co-
incide at the boundaries (for details, see Appendix A). \bdtithese constraints, the concatenated

reference signal in Figure 7 would be discontinuous at #esitions between cycles.
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3.4 Transformation into Reference Domain

Next, we use this aligned representation to transform the idéo a new reference domain. This
step is necessary because even though the data are aligihégline 7, they are still sampled
asynchronously due to the different alignment parameteesich sequence. The goal of the syn-
chronization is to represent the data in a matrix of fixed gia¢ will be the basis of our principal
component algorithm in Section 4. Note also that using therghm of Section 3.3 we effectively
estimated a continuous-time model of the mean curve (theuea) in Figure 7. For synchroniza-
tion we will estimate continuous-time models for each cyfléhe individual time-series (the blue
curves) and then transform this model into a new referenoeadta We will denote the transformed

cycle data as “motion segments” and we will use the referelooeain{0, ..., 7 }. The sequence

T;—o(i)
p(i)

ranges over the combined segments from all sequenees, ..., nandK = > " ;| K;. (We also

Ziq, CONtaiNsK; = | 1 + 1 cycles foro(i) # 0 which are labeled;. ,. Herek = 1,... | K
count the partially filled “ends” on the left and on the rigivhich are filled up with missing data
labels.)z , andf,w denote the:-th segment and the corresponding indicator set, resgdgtive.
jk,a contains the indices of the non-missing elementg, gf As a function estimate, we compute a
(unconstrained) regression spline estimate in the doffalhfor eachk = 1, ..., K and for each

angle:

. L il
fra = argmin > l%&])-f(mﬂ :

jeik,a
Here S is the class of functions that can be expressed as lineansixpe of the basis vectors
o1, ..., ¢ defined in Appendix A. This gives a representation of the sagmin a continuous

domain. Next, we define the reference doméin...,7} and we transform the data into the

reference domain according fp,,:

200) = fra (%) forj=0,1,...,7.

The superscriptl) is to distinguish the original data from various approxiimas in intermedi-

ate computing steps described below. For the principal corapt analysis, it is convenient to
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rearrange the data Ef()l in matrix format. We define the following design matrix forgipurpose:

oo [ O e AT 0 AR

200) o 2T L 2P0 L 2D (T

That is, each row ofY (V) is a concatenation of the segments corresponding to thesumgk

1,...,m and the rows ofX (") correspond to the index = 1, ..., K. Below we use the symbols
(N

Z,W) and X ™) to refer to the same data depending on whether we prefer twides processing

step using vector or matrix format.

4 Principal Component Analysis

Next, we derive a statistical model of the repetitive cyales-igure 7. For example, in 3D-
animation, it may be desirable to model a mean motion anés)aic deviations from the mean to
assign personalities to virtual characters. Similarlyniotion tracking we wish to identify motion
sequences that deviate from the mean and for activity retogrwe must represent the unique
characteristics of a person’s motion and the natural vaitiab

As a more comprehensive description of the underlying driba distribution, we use the
principal components of the synchronized time-series. dégae an important question is whether
to compute the principal componentantly over all the angles oindividually for each angle.
Clearly this decision depends on the amount of dependerteeebe the individual angles in a
particular type of motion. For repetitive sequences — irtipalar for walking — the individual
angles are typically highly dependent, suggesting the joimdeling approach.

A new algorithm to estimate the principal components is showFigure 8. The algorithm
addresses the problems of previous approaches which dacmtrat for missing data or enforce
continuity across cyclic movemes. In our approach, the daginentsz,gc)b defined above un-
dergo a sequence of processing stages. We use the nozﬁﬁom\f = 1,...,6 to denote the
intermediate results of this stage-wise computation, aedmserpretz,gi as the first element of

this sequence. Similarlyy V) is the design matrix at stag€ which is composed of the data in
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[ —

. Compute the row-meagmof XM, and letX® := X1 — 17, Herel is a vector of
ones. Initialize missing values iK(? using zeros.

2. For each of the segmertg) in X *, compute the first 20 Fourier coefficients and store
the result in a new matrix %,

3. Compute the Singular Value Decompositiondf):

X® =pysyT.

4. Reconstruct the design matrix, using the ram@pproximation tos:

XW=yswr. (4)

5. Apply the Inverse Fourier Transform to obtaii®).

6. Evaluate the reconsruction erq@K@) - X(5)||- Update the imputation of the missing
values: )
22() = 20() for all j € Ty,

7. If the error reduction is above) ¢ goto Step 2.

8. ReturnX(©®) = X0 4 17,

Figure 8: Functional PCA algorithm with data imputation ardorcement of smoothness con-
straints.

Z,E{Z), k=1,...,K,a=1,...,m. Our algorithm addresses several difficulties: First, heeaof
the missing data itk (), we cannot simply use a standard Singular Value Decompagi8VD)

to obtain the principal components. As an alternative apgipwe use an iterative approxima-
tion scheme suggested recently by [24, 57] in the contexhafyaing Gene Expression Arrays.
Specifically, we alternate between an SVD step (2 througm8)eadata imputation step (Step 6),
where each update is designed so as to decrease the matinxceidetween the original data and
their reconstruction. As an additional complication, wartat compute the SVD directly because
the principal components obtained in this manner could lmepeyiodic or even discontinuous. A
pragmatic approach is to project the data onto a smooth amadpebasis prior to carrying out
the SVD (Step 2). We choose a Fourier basis for this purpogewa truncate the high-frequency

components by keeping only the 20 leading coefficients. giviss a new coefficient matriX ©).
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Next, we compute the optimal rankapproximation toX ® using a complex SVD in Steps 3

and 4, and we reconstruct the signal in the original domai§teap 5. In Step 6 we use the re-
constructed values as improved estimates for the missitaginl& ®), and then we repeat Steps 2
through 5 using these improved estimates. This iterativegss is continued until the performance

improvement falls below a given threshold.

Theorem 1 The Functional Principal Component Algorithm in Figure 8matonically minimizes

the matrix distance between the normalized design matiixtameconstruction|| X — X)),

Proof: It is clear that the data imputation step 6 decreases thengsagcation error because the
differences between the imputations of missing values etréoszero. Steps 2 through 5 project
X @ onto the linear subspace spanned by the low-frequency étegisis. To see this, note that

the Steps 2 and 5 can be written alternatively as matrix plidétions
X® =X®B and X® = xWBT =ysvTpT.

Here B = (B, B, ) describes the angle-wise Fourier transform &hi$ the submatrix of3 that
corresponds to the first 20 coefficient$, determines the remaining coefficients and is orthogonal
to B, i.e. BB, = 0. Because the Fourier basis is orthonornialand B, satisfy the conditions

BTB = I andBT B, = I, respectively. The reconstruction error can be decompaséallows:

||X(5) _X(2)||2 _ ||(X(5) —X(3))B||2 + ||(X(5) —X(Q))BLHQ
= [|[USVTBTB - X®B|?+ |[US'V'BTB, — X® B, |]

= [JUSTVT — XO|2 + || XxP B (5)

The first term in (5) is the rank+econstruction error ok ? which is minimized by the values of
U, S, andV computed in Step (4). Hencé® is the optimal rank; approximation ofX ® within

the class of matrices whose row-space is spanned by the fows @n other words, X ®) is a
orthogonal projection ok ? with respect td| - || and the second term in (5), which is independent

of U, S, andV/, corresponds to the residuals of this projection. BecatSeminimizes||X®) —
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Figure 9: Left: Mean and the four leading principal components of the lgftdngle during
walking, estimated from eight sequences. The singularega@wrresponding to these principal
components are 892.0, 410.5, 362.2, 290.6, 25Right: The same data for the left elbow. The
singular values of these data are 631.8, 513.3, 430.0, 354638.
X®@||, it is superior to theX® from the previous iteration in particular. Hence both théada
imputation and the SVD steps redu¢& ) — X @)|| which gives the desired result. m

In Figure 9 we show the mean and the four principal compontemtsarious body angles
estimated from the walking data. Because a common mean wasuted for different individuals
in this figure, the principal components can be interpregathe main sources of variatidaetween
different individuals. In Figure 10 we show the same priatigpmponents using different means
for different individuals. Hence, the principal comporgeaharacterize variationgithin different
realizations by one and the same individual in this case.nfuitive way to interpret these data is
by using animation. Here we add a relatively large multigleach component to the mean cycle
and visualize the resulting motion sequence. Correspgnaiovies are available on the World
Wide Wel3; they can be interpreted in terms of specific charactesisticcome individuals in the
experiment. Another interesting experiment is to artifigigenerate new motion sequences by
using different random combinations of the principal comgrts. Sequences generated in this

manner are also available on our web site.

Shttp://www.cs.brown.edu/people/black/3Dtracking.htm

19



I I I I I I I I I . I I I I I I I I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 [} 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 10: Left: Mean and the four leading principal components of the lgftdmgle during
walking, estimated from eight sequences. The singularega@wrresponding to these principal
components are 497.5, 465.9, 365.1, 273.9, 21Right: The same data for the left elbow. The
singular values of these data are 698.7, 542.5, 390.4, 288642.

5 Application: Motion Tracking in Video Sequences

In this section, we briefly overview an application of thengipal component model for the track-
ing of human motion in monocular video sequences. This elaithpstrates the how the learned
statistical model of human motion can be exploited to cagptine prior probability of human mo-
tion for specific activities. Since our primary focus in thwerk is not on tracking but on the
modeling aspects of human motion, we shall not discuss ttelsiéere; instead, we refer the
reader interested in details to [52, 53].

In our approach to tracking, the goal is to estimate the jangles of the body and its 3D
pose given a sequence of 2D image measuremé&nts,{J;,..., J;}. Of course, 2D image data
is insufficient in general to infer 3D information exactly.sA&n approximation, we interpret the
human 3D poses as unobserved variallgsn a state-space model and we treat the image.flata
as observations. Here the principal components serve toedafiow-dimensional representation
of the human 3D poses which is particularly important to pedilne computational burden and to
incorporate prior information. Such additional infornmatiregarding the type of motion that can

be expected in a video sequence is crucial to simplify theptextracking task.
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Formally, letd(t) = (0,(t)|a = 1,...,m) be a random vector summarizing the relative joint
angles at time; in other words, the motion sequencg(t), at timet is now interpreted as theth
realization off(¢). Under the modeling assumptions of the SVD in Figuré(8) can be written in

the form

0(t) = i) + 3 cruvn (),

k=1
whereuv,, is the Fourier inverse of the-th column of V' in (4), rearranged as @ x m-matrix;
similarly, iz denotes the rearranged mean vegtan Figure 8. v, () is thew-th column ofuy,
and thec, , are time-varying coefficients), € {0,7 — 1} maps absolute time onto relative cycle
positions or phases, ang denotes the speed of the motion such that, = (¢ + p;) mod7.
Also, letc, = (¢4, - - ., ¢ ) denote a vector of thelinear coefficients and let and@? represent
the global 3D translation and rotation of the torso. Thenybeakitions are characterized by the

State-vector

¢t - (Ctv wtv Pt T?v Of)T
The dynamics of a state-space model are described by thiidens

p(b,|l¢,_,) “Transition Model”

p(Ji|@,) “Observation Model’

In other words, the transition model, or transition density,|¢,_,) characterizes the random
change ing, from timet — 1 to ¢, and the observation model(.J;|¢,), characterizes the gener-
ation of images. Details of these densities are describg¢dlin52, 53]. In tracking, interest at
time ¢ focuses on the conditional distributigii¢,|J;). This is because we would like to recover
the probability distribution over the 3D body poses givea siequence of previous images. One

possibility is to compute(¢,|J;) recursively using theredictionandfiltering equations:

PedIn) = [ plo )P ilTir)de, ©)
P@I) x pHSIP( ). ™
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Figure 11:Tracking of person walking, based on a particle filter wit®Q0 samples. The two upper rows
show frames 0, 10, 20, 30, 40, 50 in the sequence with theqiafeof the expected model configuration
overlaid. The lower row shows the expected 3D configuratioihné same frames.

(6) and (7) can be evaluated in closed form provided theitiansand the observation models are
linear with Gaussian noise. Unfortunately, the observagiguation resulting from the generative
image model is highly non-linear so that we have to resorpfr@aximate inference for filtering.
We use a particle filter for this purpose wheld;|¢,) is represented as a weighted set of particles,
or samples, where each sample represents the pose of thenbieagns of the parameters of the
learned body model. Tracking is achieved by propagatinggiparticles in time (e.g. [23, 28]).

To illustrate the method we show an example of tracking a iwglgerson in a cluttered scene.
On an Ultra 1 Sparc station the C++ implementation ran atesaapproximately 1 frame per
minute. To visualize the posterior distribution we dispthg projection of the 3D model corre-
sponding to the expected value of the model parameters. akfirpeters were initialized with a

Gaussian prior at time= 0.
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Figure 11 shows the tracking results for frames 0 to 50 of &iwglsequence. Note that the
legs of the model are better aligned with the image data tatms. This is probably due to the
fact that the arms are more often occluded by the torso, argirttore prior driven than the legs.
Note also that the subject was not present in the training. dahe small training set may lack
sufficient variation to capture the motion of the test subjec

In parts of the cycle where large occlusion occurs (frametl3®model has little image infor-
mation, and starts to drift off the person. However, it rerswhen a larger part of the body is
visible (frame 40). Video animations of these results cafobead online at
http://www.cs.brown.edu/people/black/3Dtracking.htm | .

For the interested reader, it is worth contrasting our sietib Bayesian estimation method
with a recent deterministic approach which uses the sanestgbPCA models for tracking but

exploits deterministic optimization methods [59, 60].

6 Conclusion

Fields as diverse as graphics, gait recognition, and rétzinn medicine require representations
of cyclic human motions for synthesis or analysis and marithese methods rely on hand-crafted
PCA representations. The approach described here proaidesitomated method for learning
these periodic human motions from training data. Statibtieethods are presented for detecting
the length of the periods in the data, segmenting it intoeg,chnd optimally aligning the cycles.
We also presented a novel principal component analysisigel for modeling the motion curves.
The method copes with missing data and enforces smootheessdn the beginning and ending
of a motion cycle. The principal components serve to definat@-space model for the tracking
of human motion in video sequences. We have demonstratetisrdésr tracking a person in
a cluttered image sequence but the method is applicableyt@yarthesis or analysis problem

involving cyclic motions.
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A Periodic Regression Splines

We consider a regression spline estimate in the dofbalhwith fixed knotsi;, € {0.1,0.2,...,0.9}.
The regression spling(x), is a linear expansion of the basis functiongz), £ = 0,. .., K (for

details, see Section 3.2.5 in [45]):

Po(x) =1, ¢1(z) =@, ¢oa) = 2%, Ps(x) = 2°, dpya(e) = (& — )]

These basis functions are summarized in the funcbion = (¢(z), ..., ¢x(x))" sothatf(x) =
d(x)T 5 using aK + 1 vector of coefficientss. Our objective is to enforce boundary constraints
of the form f®(0) = f@(1) fori = 0,1,2 where f)(x) is thei-th derivative off(x) atz. We

formulate these constraints using matrix notation as
cT3=0

where

$1(0) — <1> o 0x(0) — o (1)
61" (0) — (1) ... #(0) — o} (1)
¢ (0) — ¢<2 1) ... ¢2(0) -2 (1)

Note thatC'is a(K + 1) x 3 matrix, and consider the Singular Value Decomposition

_ T _ S1 0 %4
C=USVT = (U U2)<0 o ) v )

0
cT=10
0
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Here S, corresponds to the part ¢f with non-zero diagonal entries. Next, observe thap =

ViD,UL 3 equals zero if and only it/ 3 = 0. UsingUU” = I, we can rewritef () as follows:

()

O(x)"6

d(x)'UUT B

(®(@) U @(2)"0) < g;;g )
O(x)" Uy 8

Hencef(z) is also the solution of an unconstrained regression usiegrémsformed basis vector

d(x) = ®(z)TU,. The computation of the coefficient vector= U7 3 is straightforward using

this transformation.
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