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ABSTRACT

We develop a Bayesian model of digitized archival films and
use this for denoising, or more specifically de-graining, indi-
vidual frames. In contrast to previous approaches our model
uses a learned spatial prior and a unique likelihood term that
models the physics that generates the image grain. The spa-
tial prior is represented by a high-order Markov random field
based on the recently proposed Field-of-Experts framework.
We propose a new model of the image grain in archival films
based on an inhomogeneous beta distribution in which the
variance is a function of image luminance. We train this noise
model for a particular film and perform de-graining using a
diffusion method. Quantitative results show improved signal-
to-noise ratio relative to the standard ad hoc Gaussian noise
model.

1. INTRODUCTION

The restoration of archival film footage requires solutions to
a number of problems including the removal of scratches, dirt
(e. g., hairs) and film grain resulting from the photographic
process and digitization. Here we consider the problem of
removing film grain and focus on the development of a fully
Bayesian model that is learned from example images. In par-
ticular, we develop this model in the context of denoising in-
dividual film frames and leave the problem of temporal mod-
eling for future work. Our main contribution is the develop-
ment of a physically-motivated noise model for film grain.
We show that the noise in films can be modeled using an in-
homogeneous beta distribution in which the variance of the
noise is a function of image luminance. In particular, due to
the physics of the film imaging process the variance of the
noise decreases for very low and very high brightness values.
We also model the prior probability of natural images using
the recently proposed Field-of-Experts (FoE) model [1] that
captures the spatial statistics using a high-order Markov ran-
dom field (MRF) and is learned from a database of natural
images. On images with artificial Gaussian noise, this FoE
model has previously been shown to give state-of-the-art de-
noising results. Here the learned beta noise model is used
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Fig. 1. Example frame (partially visible) from an archival
film: (top) Actual movie frame. (bottom) Difference image
revealing the grain (see text).

to construct an image-dependent likelihood model, which is
combined with the rich FoE spatial prior to give a fully learned
Bayesian model of archival film frames.

The removal of noise produced by film grain has a long
history and previous authors have noted the dependence of the
noise variance on image luminance [2, 3, 4]. Previous meth-
ods, however, have used simplified models that assume Gaus-
sian noise where the variance is a simple function of lumi-
nance. Typical denoising techniques exploit a Gaussian noise
model to perform Wiener filtering [2] or MAP estimation [3].
Like our method many of these previous approaches focus on
denoising individual frames rather than sequences [5]. In con-
trast however, we model the non-Gaussian nature of the noise
using an inhomogeneous beta distribution where the depen-
dence between the noise and the luminance is learned from
training images.

Physical motivation

Photographic film [6] is a strip of plastic covered by silver
halide salts. The crystal sizes and structures determine the
resolution and the sensitivity of the film. When exposed to
radiation (in the visible or other spectrum), the salts release
atomic silver that forms the latent image. After the process
of film developing, the silver forms a metallic structure that



blocks light. The density of the metallic silver depends on the
amount of radiation absorbed by the film. As the intensity of
the light increases, so does the density of the silver structure.

If the light is too intense, then the film achieves its mini-
mum transparency. We call this the superior saturation point
(SSP), which corresponds to the brightest tone possible (Film
regions in this condition are called overexposed). If the light
is too dim, then the film achieves its maximum transparency.
We call this the inferior saturation point (ISP), which cor-
responds to the darkest tone possible. Note that the abso-
lute maximum and minimum transparency will mean that the
noise process cannot be Gaussian as the support of the distri-
bution is finite.

Depending on the type of film we consider and the reso-
lution of the digital scanner, the images could have spatially
correlated or spatially uncorrelated grain structure. For NTSC
resolution video and standard film, the discretized pixel size
will always be significantly larger than the physical structure
of the film grain resulting in spatially uncorrelated noise. Of
course, film grain is also temporally uncorrelated since each
frame is produced by exposing an independent piece of film
(this assumes that there is no pre-processing of the digitized
film such as frame rate conversion).

Noise depends on luminance

From a simple model of the physics of photographic film it
is easy to see that there is a relationship between the variance
from the grain (noise) and the brightness of a film patch. As-
sume that the film negative is covered with perfectly opaque
regions B (ISP regions) and perfectly transparent regions W
(SSP regions). Let the total area of the digitized patch of film
be 1 so that B + W = 1. If we measure the intensity at a
point in the patch we will measure 1 with probability W and
0with probabilityB. Hence, the mean and the variance of the
measurement are

μ = 0 ·B + 1 ·W σ2 = B(0− μ)2 + W (1− μ)2.

Combining these two equations, we get σ2 = μ ·(1−μ) with-
out having to assume any particular distribution. By adding
a scale parameter to the above result, we obtain the generic
noise variance

σ2(μ) = 4σ2
maxμ(1− μ). (1)

We thus find that the variance is a function of the average
luminance over a patch. In reality, film has complicated phys-
ical properties [6] and the process of digitization is also not an
ideal sampling process. Hence, we expect the noise variance
function to deviate somewhat from this generic form.

2. DATA EXPLORATION

Consider the example from a black-and-white film in Figure
1 (top). This image is taken from a sequence of 400 frames

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

A C

B

Fig. 2. Pixel value histograms for regions A, B, C represented
in Figure 1.

in which the camera does not move (though the actor in the
center does). Given the temporal independence of the grain
we averaged the first 50 frames to obtain a mean image in
which the grain in the static regions is effectively removed.
Subtracting the top image from the mean reveals the pixel
noise as shown in Figure 1 (bottom). We useM to denote the
mean image, F t to denote the t-th frame, and Dt to denote
the difference between the mean and frame t.

Ignoring the moving regions, the difference image reveals
many of the properties of the grain. As predicted by the pre-
ceding derivation, there is almost no noise in the regions A
and B marked in Figure 1, while region C is relatively noisy.
This is because region A is close to the ISP while region B is
close to the SSP.

Figure 2 shows histograms of the brightness values in each
of these roughly uniform regions. In very bright and in very
dark regions we find that the distribution of pixel values is
skewed, because the range of admissible pixel values is lim-
ited. This motivates us to employ a model that allows for
skewed distributions on a bounded interval.

3. THE BETA NOISE MODEL

Given the physical process and the observed noise statistics
described above, we propose a model of image noise for film
grain. For this model we assume that the film exhibits spa-
tially independent noise due to the large relative size of the
image pixels to the grain. Let Y 0 be the observed image and
X0 be the true image. For convenience of notation, we rescale
and shift the image intensities to lie on the interval [0, 1], and
denote those images X and Y . Using the assumption of spa-
tial independence we can write the likelihood as

p(Y 0|X0) = p(Y |X) =
∏
ij

p(yij |xij). (2)

We claim that the pixels yij are well modeled by an inho-
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Fig. 3. The noise variance function trained on 50 frames of
the sequence, corrected for global luminance changes. The
dotted line represents a smoothed version (using Gaussian
kernels).

mogeneous beta distribution

p(yij |xij) =
Γ(α(xij) + β(xij))

Γ(α(xij)) · Γ(β(xij))

· yα(xij)−1
ij · (1− yij)β(xij)−1,

(3)

where Γ is the gamma function and α(xij), β(xij) are two pa-
rameters of the beta distribution that depend on the grayvalue
of the true pixel xij . The beta distribution is preferable over
an inhomogeneous Gaussian distribution (used e. g. in [4]),
because the beta distribution has a finite support and models
the skew that we empirically observe. We should also note
that this likelihood term does not assume additive noise.

To complete the model we assume that the mean value of
yij is equal to xij (the true intensity value) and that the vari-
ance of yij is a function of xij . Using the relation between the
parameters α, β and the mean and variance, we can express α
and β as

α(xij) = xij ·
(

xij(1− xij)
σ2(xij)

− 1
)

(4)

β(xij) = (1− xij) ·
(

xij(1− xij)
σ2(xij)

− 1
)

. (5)

Our model has a functional parameter σ2(xij) that we call the
noise variance function. We expect that the real noise variance
function will look similar to the generic one derived above.

Fitting the model to data.

We can train the model for a particular sequence by fitting
the noise variance function to the data. In particular, we used
50 frames from our sequence, found regions with no motion,
and computed the mean image M . The regions with no mo-
tion are sufficiently large to cover the full range of gray val-
ues. We correct the sequence for global illumination changes,
take the difference images Dt and compute the variance of

Fig. 4. Comparison between actual and synthetic noise: (left)
Original frame. (middle) Inhomogeneous beta noise added to
mean image. (right) Gaussian noise added to mean image.

the noise for each grey value. The resulting variance function
is plotted in Figure 3 together with a smoothed version that
is obtained by putting a small Gaussian kernel on each bin
of the discrete noise variance. The smoothed variance func-
tion is continuous and differentiable, which is required for the
denoising algorithm in Section 4.

From our measurements we find that for this particular se-
quence the grayvalues for the ISP and SSP are GISP = 0 and
GSSP = 243. As predicted by the generic noise variance func-
tion derived above, we empirically find that σ(0) = σ(1) = 0,
i. e., there is no noise at the ISP or the SSP. Furthermore, near
the ISP and SSP the noise is only moderate, but there is sig-
nificantly more noise in the midtones. We also find that the
empirical noise variance function is somewhat skewed, which
is in contrast to the symmetric generic variance function.

In order to determine if this is a realistic model of the
image noise, we added noise to the noise-free mean image,
which allows the comparison with an original frame in Figure
4. We can see that the learned, inhomogeneous beta model
produces more realistic looking noise when compared to a
simple Gaussian noise model, particularly in bright or dark
regions.

4. FILM DENOISING

To remove grain from archival films we follow a Bayesian ap-
proach and combine the noise model developed above with a
recent prior model of images called Fields of Experts (FoE)
[1]. The FoE is a high-order Markov random field model
that captures rich structural properties of natural images us-
ing large cliques in the random field. The model is trained
on a database of generic natural images. For brevity we will
omit any detailed discussion of this image model and refer
the reader to [1]; the main point to note here is that the model
gives us an unnormalized prior probability p(X) of the true
image X . Combining this with the likelihood of the noisy
image given the true image p(Y |X), we can write the poste-
rior probability of the true image as

p(X|Y ) ∝ p(Y |X) · p(X). (6)

De-graining proceeds by approximately maximizing the pos-
terior using a gradient ascent procedure related to nonlinear



Fig. 5. Denoising using learned model: (left) Original sequence. (middle) De-grained sequence. (right) Detail results from
various frames shown in ”split screen” format with the left side being the restored version of the right side.

diffusion techniques (see [1]). If X(t) denotes the image at
iteration t, the gradient ascent updates the image according to

X(t+1) ← X(t) + τ ·
(

λ · ∂

∂X(t)
log p(Y |X(t))

+(1− λ) · ∂

∂X(t)
log p(X(t))

)
,

(7)

where τ is the step size and λ ∈ (0, 1) is a weight term that
specifies the importance of the data term with respect to the
prior term. We set the λ parameter such that we obtain the
maximum peak signal-to-noise ratio (PSNR) improvement on
a set of 5 training images; we concluded that the optimum
value is λ = .21. For τ we used values in the range (0.1,1).
The derivative expressions in this de-graining procedure can
be expressed in closed form but are omitted here for brevity.

We applied the de-graining algorithm based on the learned
beta noise model to 150 frames from the sequence discussed
above. Figure 5 shows some of the results. Qualitatively we
find that the noise from the film grain has been suppressed
well in all of the frames. In order to also make a quantitative
statement, we added beta noise to the mean image M using
the learned variance function, and de-grained the artificial im-
age. When comparing the result to that obtained with a stan-
dard homogeneous Gaussian likelihood term, we find that the
beta model increases the PSNR from 36.25dB to 36.42dB.

Moreover, we quantitatively evaluated the performance on
the image sequence from Figure 5, which is corrupted by real
film grain. We used the mean image described in Section 2
as pseudo ground-truth, and measured the PSNR only in ar-
eas that were not moving. Averaged over 20 frames, we find
using the learned inhomogeneous beta likelihood increases
the PSNR from 34.44dB to 35.87dB when compared to a ho-
mogeneous Gaussian model. One reason why the beta noise
model only leads to moderate PSNR improvements is that the
data term only strongly deviates from a Gaussian data term
near the ISP or the SSP. However, given that an inhomoge-
neous beta data term is only slightly more difficult to imple-
ment, we feel that the performance improvement outweighs

the effort.

5. CONCLUSIONS

To the best of our knowledge, the presented inhomogeneous
beta noise model is the first realistic learned model of the
noise specific to photographic processes. We believe that the
proposed model has broad applications in many fields, in-
cluding artificial noise synthesis, as well as image and film
de-graining.
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