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Abstract

We propose a Bayesian framework for representing
and recognizing local image motion in terms of two
primitive models: translation and motion discontinu-
ity. Motion discontinuities are represented using a
non-linear generative model that explicitly encodes
the orientation of the boundary, the velocities on either
side, the motion of the occluding edge over time, and
the appearance/disappearance of pixels at the bound-
ary. We represent the posterior distribution over the
model parameters given the image data using discrete
samples. This distribution is propagated over time us-
ing the Condensation algorithm. To efficiently repre-
sent such a high-dimensional space we initialize sam-
ples using the responses of a low-level motion discon-
tinuity detector.

1 Introduction
Motion discontinuities provide information about the posi-
tion and orientation of surface boundaries in a scene. Addi-
tionally, analysis of the occlusion/disocclusion of pixels at
a motion boundary provides information about the relative
depth ordering of the neighboring surfaces. While these
properties have made the detection of motion discontinu-
ities an important problem in computer vision, experimen-
tal results have been somewhat disappointing. As discussed
below, previous approaches have treated motion disconti-
nuities as “noise” (violations of spatial smoothness) or have
used approximate models of the motion discontinuities.

In this paper we formulate a generative model of mo-
tion discontinuities as illustrated in Figure 1. The model in-
cludes the orientation of the boundary, the velocities of the
surfaces on either side, the foreground/background assign-
ment, and an offset of the boundary from the center of the
region. With this explicit model, we can predict the visibil-
ity of occluded and disoccluded pixels so that these pixels
can be excluded when estimating the probability of a partic-
ular model. Moreover, an explicit displacement parameter
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Figure 1: Model of an occlusion boundary, parameterized
by foreground and background velocities,~uf and~ub, an ori-
entation� with normal~n�, and a signed distanced from the
neighborhood center~xc. With this model we predict which
pixels are visible between frames at timest andt� 1.

allows us to predict the location of the edge, and hence track
its movement through a region of interest. Tracking the mo-
tion of the edge allows foreground/background ambiguities
to be resolved.

Explicit generative models such as this have not previ-
ously been used for detecting motion discontinuities due
to the non-linearity of the model and the difficulty of es-
timating the model parameters. To solve this problem we
exploit a probabilistic sampling-based method for estimat-
ing image motion [6]. Adopting a Bayesian framework, we
define the likelihood of observing the image data given the
parameters of the generative model. This likelihood dis-
tribution can be efficiently evaluated for a particular set of
parameters. The prior probability distribution over the pa-
rameters is defined as a mixture of a temporal prior and an
initialization prior. The temporal prior is defined in terms
of the posterior distribution at the previous time instant and
the temporal dynamics of the discontinuity model. The ini-
tialization prior incorporates predictions from a low-level
motion feature detector [8]. The posterior distribution over
the parameter space, conditioned on image measurements,
is typically non-Gaussian. The distribution is represented
using factored sampling and is predicted and updated over
time using the Condensation algorithm to propagate condi-
tional probability densities [12].

Given the relatively high dimensional parameter space,
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Figure 2: Multi-stage probabilistic model. Low-level detec-
tors help initialize a sampled distribution. Likelihoods are
computed directly from pairs of images. The Condensation
algorithm is used to incrementally predict and update the
posterior distribution over model parameters.

naive sampling methods will be extremely inefficient. But
if the samples can be directed to the appropriate portion of
the parameter space, small numbers of samples can well
characterize such distributions [14]. It is for this purpose
that we use an initialization prior (as shown in Figure 2).
At the low level, there is a set of dense motion discontinu-
ity detectors that signal the presence of potential occlusion
boundaries and give estimates of their orientations and ve-
locities. In the example here, these detectors are based on
approximate linear models of motion discontinuities, the
coefficients of which can be estimated with robust optical
flow techniques [8]. Neighborhoods of these filter outputs
provide aprior distribution over model parameters that is
sampled from when initializing non-linear models at the
higher level. The likelihood of the non-linear model is then
computed directly from the image data.

We illustrate the method on natural images and show how
the Bayesian formulation and conditional density propaga-
tion allow motion discontinuities to be detected and tracked
over multiple frames. Explicit image feature models, com-
bined with a Bayesian formulation, and the Condensation
algorithm offer a new set of tools for image motion estima-
tion and interpretation.

2 Previous Work
Previous approaches for detecting occlusion boundaries
have often treated the boundaries as a form of “noise”,
that is, as the violation of a smoothness assumption. This
approach is taken in regularization schemes where robust
statistics, weak continuity, or line processes are used to dis-
able smoothing across motion discontinuities [4, 11]. Sim-
ilarly, parameterized models of image motion (e.g. trans-
lational, affine, or planar) assume that flow is represented

by a low-order polynomial. Robust regression [4, 19] and
mixture models [1, 15, 23] have been used to account for
the multiple motions that occur at motion boundaries but
these methods fail to explicitly model the boundary and its
spatiotemporal structure.

Numerous methods have attempted to detect discontinu-
ities in optical flow fields by analyzing local distributions of
flow [21] or by performing edge detection on the flow field
[18, 20, 22]. It has often been noted that these methods are
sensitive to the accuracy of the optical flow and that accu-
rate optical flow is hard to estimate without prior knowl-
edge of the occlusion boundaries. Other methods have fo-
cused on detecting occlusion from the structure of a correla-
tion surface [3], or of the spatiotemporal brightness pattern
[7, 9, 17]. Still others have used the presence of unmatched
features to detect dynamic occlusions [16].

None of these methods explicitly model the image mo-
tion present at a motion feature, and have not proved suf-
ficiently reliable in practice. For example, they do not
explicitly model which image pixels are occluded or disoc-
cluded between frames. This means that these pixels, which
in one frame have no “match” in the next frame, are treated
as noise. With our explicit non-linear model, these pixels
can be predicted and ignored.

Additionally, most of the above methods have no ex-
plicit temporal model. With our generative model, we can
predict the motion of the occlusion boundary over time
and hence integrate information over a number of frames.
When the motion of the discontinuity is consistent with
that of the foreground we can explicitly determine the fore-
ground/background relationships between the surfaces.

3 Generative Model
For the purposes of this work, we decompose an image into
a grid of circular neighborhoods in which we estimate mo-
tion information. We assume that the motion in any region
can be modeled by translation (for simplicity) or by dy-
namic occlusion. Generative models of these motions are
used to compute the likelihood of observing two successive
images given a motion model and its parameter values.

The translation model has two parameters, i.e., the hor-
izontal and vertical components of the velocity, denoted
~u0 = (u0; v0). For points~x at time t in a regionR, as-
suming brightness constancy, the translation model is

I(~x 0; t) = I(~x; t� 1) + �(~x; t); (1)

where~x 0 = ~x+~u0. In words, the intensity at location~x 0 at
timet is equal to that at location~x at timet�1 plus noise�.
We assume here that the noise is white and Gaussian with a
mean of zero and a standard deviation of�n.

The occlusion model contains 6 parameters: the edge ori-
entation, the two velocities, and the distance from the center
of the neighborhood to the edge. In our parameterization,
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as shown in Figure 1, the orientation,� 2 [��; �), speci-
fies the direction of a unit vector,~n = (cos(�); sin(�)), that
is normal to the occluding edge. We represent the location
of the edge by its signed perpendicular distanced from the
center of the region (positive meaning in the direction of the
normal). Thus, the edge is normal to~n and passes through
the point~xc + d~n, where~xc is the center of the region.

Relative to the center of the region, we define the fore-
ground to be the side to which the normal~n points. There-
fore, a point~x is on the foreground if(~x � ~xc) � ~n > d.
Similarly, points on the background satisfy(~x�~xc)�~n < d.
Finally, we denote the velocities of the foreground (occlud-
ing) and background (occluded) sides by~uf and~ub.

Assuming that the occluding edge moves with the fore-
ground velocity, the occurrences of occlusion and disoc-
clusion depend solely on the difference between the back-
ground and foreground velocities. In particular, occlusion
occurs when the background moves faster than the fore-
ground in the direction of the edge normal. Ifufn = ~uf � ~n
andubn = ~ub �~n denote the two normal velocities, occlusion
occurs whenubn � ufn > 0. Disocclusion occurs when
ubn�ufn < 0. The width of the occluded/disoccluded re-
gion, measured normal to the occluding edge, isjubn�ufnj.

With this model, parameterized by(�; ~uf ; ~ub; d), a pixel
~x at timet� 1 moves to location~x 0 at timet, as follows:

~x 0 =

�
~x + ~uf if (~x�~xc) � ~n > d
~x + ~ub if (~x�~xc) � ~n < d+ w

(2)

wherew = max(ubn�ufn; 0) is the width of the occluded
region. Finally, with~x 0 defined by (2), the brightness con-
stancy assumption for a motion edge is given by (1).

Referring to Figure 1, in the case of disocclusion, a circu-
lar neighborhood at timet� 1 will map to a pair of regions
at timet, separated by the width of the disocclusion region
jubn � ufnj. Conversely, in the case of occlusion, a pair
of neighborhoods at timet � 1, separated byjubn � ufnj,
map to a circular neighborhood at timet. Being able to look
forward or backwards in time in this way allows us to treat
occlusion and disocclusion symmetrically.

4 Probabilistic Framework
For a given image region and images up to timet, we wish
to estimate the posterior probability distribution over mod-
els and model parameters at timet. This distribution is not
directly observable and, as described below, we expect it
to be multi-modal. It is discrete over the model types and
continuous over model parameters.

Let statesbe denoted bys= (�;~p), where� is the model
type (translation or occlusion), and~p is a parameter vector
appropriate for the model type. For the translation model
~p = (~u0), and for the occlusion model~p = (�;~uf ; ~ub; d).
Our goal is to find the posterior probability distribution over
states at timet given the measurement history up to timet,

i.e.,p(st j ~Zt). Here,~Zt = (zt; :::; z0) denotes the measure-
ment history. Similarly, let~St = (st; :::; s0) denote the state
history (a stochastic process).

Following [12], we assume that the temporal dynamics
of the motion models form a Markov chain, in which case
p(st j~St�1) = p(st j st�1). We also assume conditional in-
dependence of the observations and the dynamics, so that,
given st, the current observationzt and previous observa-
tions ~Zt�1 are independent. With these assumptions one
can show that the posterior distributionp(st j ~Zt) can be fac-
tored and reduced using Bayes’ rule to

p(stj~Zt) = k p(ztjst) p(stj~Zt�1) (3)

wherek is a constant factor to ensure that the distribution
integrates to one. Here,p(ztjst) represents the likelihood of
observing the current measurement given the current state,
while p(stj~Zt�1) is referred to as a temporal prior (the pre-
diction of the current state given all previous observations).

According to the generative models discussed above (1),
the likelihood of observing the current image pair given the
current state is normally distributed. The current state de-
fines a mapping from visible pixels in one frame to those in
the next. The intensity difference between a corresponding
pair of pixel locations is taken to be normally distributed
with a mean of zero and a standard deviation of�n.

Using Bayes’ rule and the conditional independence as-
sumed above, it is straightforward to show that the tempo-
ral prior can be written in terms of temporal dynamics that
propagate states from timet� 1 to timet and the posterior
distribution over states at timet� 1. In particular,

p(stj~Zt�1) =

Z
p(stjst�1) p(st�1j~Zt�1) d st�1: (4)

The probability distributionp(stjst�1) embodies the tem-
poral dynamics, describing how states evolve through time.

For now assume that the model type (i.e. translation or
occlusion) remains constant between frames (this can be ex-
tended to allow transitions between model types [5, 13]).
For the translational model, we assume the velocity at time
t equals that at timet� 1 plus Gaussian noise:

p(stjst�1) = G�u (�~u0) (5)

whereG�u denotes a mean-zero Gaussian with standard de-
viation�u, and�~u0 = ~u0;t � ~u0;t�1 denotes the temporal
velocity difference.

Similarly, for the temporal dynamics of the occlusion
model we assume that the expected orientation and veloci-
ties remain constant, while the location of the edge propa-
gates with the velocity of the foreground. Moreover, inde-
pendent noise is added to each. Therefore, we can express
the conditionalp(stjst�1) as

G�u(�~uf )G�u(�~ub)G�d(�d� ~n � ~uf;t�1)Gw
��
(��) (6)
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Figure 3: One frame of the Pepsi Sequence, with responses
from the low-level motion edge detector, which feed the
initialization prior. The motion is primarily horizontal.

whereGw denotes a wrapped-normal (for circular distribu-
tions), and as above,�� = �t� �t�1 and�d = dt � dt�1.

5 Low-Level Motion-Edge Detectors
Unlike a conventional Condensation tracker for which the
prior is derived by propagating the posterior from the previ-
ous time, we have added an initialization prior that provides
a form of bottom-up information to initialize new states.
This is useful at time 0 when no posterior is available from
a previous time instant. It is also useful to help avoid getting
trapped at local maxima thereby missing the occurrence of
novel events that might not have been predicted from the
posterior at the previous time. This use of bottom-up in-
formation, along with the temporal prediction of Conden-
sation, allows us to effectively sample the most interesting
portions of the state-space.

To initialize new states and provide a distribution over
their parameters from which to sample, we use a method
described by Fleetet al. [8] for detecting motion disconti-
nuities. This approach uses a robust, gradient-based opti-
cal flow method with a linear parameterized motion model.
Motion edges are expressed as a weighted sum of basis flow
fields, the coefficients of which are estimated using a area-
based regression technique. Fleetet al. then solve for the
parameters of the motion edge that are most consistent (in
a least squares sense) with the linear coefficients.

Figure 3 shows an example of applying this method to
an image sequence in which a Pepsi can translates horizon-
tally relative to the background. The method provides a
mean velocity estimate at each pixel (i.e., the average of the
velocities on each side of the motion edge). This is simply
the translational velocity when no motion edge is present.
A confidence measure,c(~x) 2 [0; 1] can be used to deter-
mine where edges are most likely, and is computed from the
squared error in fitting a motion edge using the linear coef-

ficients. The bottom two images in Figure 3 show estimates
for the orientation of the edge and the horizontal difference
velocity across the edge at all points wherec(~x) > 0:5.

While the method provides good approximate estimates
of motion boundaries, it produces false positives and the
parameter estimates are noisy, with estimates of disocclu-
sion being more reliable than those of occlusion. Also, it
does not determine which is the foreground side and hence
does not predict the velocity of the occluding edge. Despite
these weaknesses, it is a relatively quick, but sometimes er-
ror prone, source of information about the presence of mo-
tion discontinuities.

Initialization Prior. When initializing a new state we use
the distribution of confidence valuesc(~x) to first decide on
the motion type (translation or discontinuity). If a disconti-
nuity was detected, we would expect some fraction of con-
fidence values,c(~x), within our region of interest, to be
high. We therefore rank order the confidence values within
the region and let the probability of a discontinuity state be
the95th percentile confidence value, denotedC95. Accord-
ingly, the probability of translation is then1� C95.

Given a discontinuity model, we assume that motion
boundary locations are distributed according to the confi-
dence values in the region (pixel locations with largec(~x)
are more likely). Given a spatial position, the detector at
that position provides estimates of the edge orientation and
the image velocity on each side, but does not specify which
side is the foreground. Thus, the probability distribution
over the state space, conditioned on the detector estimates
and location, will have two distinct modes, one for each of
the two possible foreground assignments. We take this dis-
tribution to be a mixture of two Gaussians which are sepa-
rable with standard deviations1:5�u for the velocity axes,
5�� for the orientation axis, and2�d for the position axis.
The standard deviations are larger than those use in the tem-
poral dynamics described in Section 4 because we expect
greater noise from the low-level estimates.

To generate a translational model, we choose a spatial po-
sition according to the distribution of1�c(~x). The distribu-
tion over translational velocities, given the detector estimate
and spatial position, is then taken to be a Gaussian distribu-
tion centered at the mean velocity estimate of the detector
at that location. The Gaussian distribution has standard de-
viations of1:5�u along each velocity axis.

6 Computational Model
In this section we describe the computational embodiment
of the probabilistic framework above. The non-linear nature
of the discontinuity model means thatp(stj~Zt) will not be
Gaussian and we represent this distribution using a discrete
set,fs(i)t ; i = 1; : : : ; Sg, of random samples [6, 12, 24].

The posterior is computed by choosing discrete samples
from the prior and then evaluating their likelihood. Normal-
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izing the likelihoods of the samples so that they sum to one
produces weights�(n)t :

�
(n)
t =

p(ztjs(n)t )PS
i=1 p(ztjs(i)t )

:

The set ofS pairs,(s(n)t ; �
(n)
t ), provides a fair sampled rep-

resentation of the posterior distribution asS !1 [12].

6.1 Likelihood
To evaluate the likelihoodp(ztjs(i)t ) of a particular state, we
draw a uniform random sampleR of visible image loca-
tions (as constrained by the generative model and the cur-
rent state). Typically we sample 50% of the pixels in the
region (cf. [2]). Given this subset of pixels, we compute
the likelihood as

p(ztjs(i)t ) =
1p
2��n

exp

"
�1

2�2njRj
X
~x2R

E(~x; t; s(i)t )2

#

(7)
whereE(~x; t; s(i)t ) = I(~x 0; t)� I(~x; t� 1), jRj is the num-
ber of pixels inR, and the warped image location~x 0 is a
function of the states(i)t , e.g., as in (2). The warped image
valueI(~x 0; t) is computed using bi-linear interpolation.

6.2 Prior
The prior used here is a mixture of the temporal prior and
the initialization prior. In the experiments that follow we
use mixture proportions of 0.8 and 0.2 respectively; that is,
80% of the samples are drawn from the temporal prior.

Temporal Prior. We draw samples from the temporal
prior by first sampling from the posterior,p(st�1j~Zt�1), to

choose a particular states(n)t�1. The discrete representation
of the posterior means that this is done by constructing a
cumulative probability distribution using the�(n)t�1 and then

sampling from it. Givens(n)t�1, we then sample from the dy-

namics,p(stjs(n)t�1), which, as explained above, is a normal
distribution about the predicted state.

This is implemented using the following dynamics which
propagate the state forward and add a sample of Gaussian
noise:

~ut = ~ut�1 +N (0; �u) (8)

dt = dt�1 + ~uf;t�1 +N (0; �d) (9)

�t = [�t�1 +N (0; ��)] mod 2� (10)

where~ut denotes any one of~u0;t, ~uf;t, or ~ub;t. With a
wrapped-normal distribution over angles, the orientation
�t�1 is propagated by adding Gaussian noise and then re-
moving an integer multiple of2� so that�t 2 [��; �). This
sampling process has the effect of diffusing the parameters
of the states over time to perform a local search of the pa-
rameter space.

Initialization Prior. From the initialization prior for a
particular neighborhood, discontinuity states are drawn
with probabilityC95. In these instances, we sample from
the discrete set of confidence values,c(~x), to choose a
spatial position for the motion edge within the region.
Then, as explained above, since the assignment of fore-
ground/background is ambiguous, the distribution of the re-
maining parameters is taken to be an equal mixture of two
Gaussians from which a sample is drawn.

Translational models are drawn with probability1�C95,
from which we sample a spatial position according to the
distribution of 1 � c(~x). We then sample from a Gaus-
sian distribution over image velocities that is centered at
the mean velocity estimate of the detector.

6.3 Algorithm Summary
Initially, at time 0, a set ofS samples is drawn from the
initialization prior, their likelihoods are computed, and nor-
malized to give the weights�(n)0 . At each subsequent time,
the algorithm then repeats the process of sampling from the
combined prior, computing the likelihoods, and normaliz-
ing.

Note that given the sampled approximation to the dis-
tribution p(stj~Zt), we can compute the expected value for
some state parameter,f(st), as

E[f(st)j~Zt] =

SX
n=1

f(s(n)t )�
(n)
t :

Care needs to be taken in computing this for the orientation
as there are often 2 modes 180 degrees apart.

For displaying results, we compute the mean state for
each type of model (translation or discontinuity) by com-
puting the expected value of the parameters of the state di-
vided by the sum of all normalized likelihoods for that state.
These mean states can be overlaid on the image.

Detection can be performed by comparing the sum of the
likelihoods for each model type. Given the way the Con-
densation algorithm allocates samples, this is not the most
reliable measure of how well each model fits the data. If the
likelihood of a model drops rapidly, the distribution may
temporarily have many low likelihood states allocated to
that portion of the state space. The combined likelihood
of these states may easily be greater than the likelihood of a
new model that does a much better job of fitting the data. In-
stead, we therefore compute and compare the likelihoods of
the mean models to determine which model is more likely.

7 Experimental Results
We illustrate the method with experiments on natural im-
ages. For these experiments, the standard deviation,�n, of
the image noise was 7.0, we use circular image regions with
a 16 pixel radius, and we use 3500 state samples to repre-
sent the distribution in each image region.
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Figure 4: Pepsi Sequence. Discontinuity (filled) and translational (empty) models shown superimposed on image. Various
marginal probability distributions for each region.

7.1 Pepsi Sequence
Since we represent distributions over models and model pa-
rameters, it is often difficult to visualize the results. Figure
4 shows marginal probability distributions for different pa-
rameters at various image locations. For each region we
indicate which model was most likely. Translational mod-
els are shown as empty circles (Figure 4C). For discontinu-
ities, we compute the mean state then sample pixel locations
from the generative model; pixels that lie on the foreground
are shown as white and background pixels as black. Figure
4 A, B, D, shows three such regions.

To the right of the image are views of the marginal prob-
ability distributions for various parameters which illustrate
the complexity of the posterior. Shown for regionA is
the probability of the horizontal velocity of the foreground;
the ambiguity regarding foreground/backgroundmeans that
there are two possible interpretations at�1:7 and�0:8 pix-
els per frame. The distribution has multiple peaks, two of
which correspond to these interpretations and both of which
are significant. The foreground/background ambiguity is
pronounced in regionB where the motion is parallel to the
edge; this results in strong bi-modality of the distribution
with respect to the edge normal,�, since the direction of the
normal points towards the foreground. In regionC there is
no ambiguity with respect to the horizontal velocity of the
translation model as shown by the tight peak in the distribu-
tion. Finally we plot the offset of the edge,d, for regionD.
In this case, the distribution also non-Gaussian and skewed
to one side of the boundary.

Figure 5 illustrates the temporal behavior of the method.
Note that the correct assignment of model type is made
at each frame, the mean orientation appears accurate, and
the boundaries of the Pepsi can are tracked. In the first
frame, the assignment of foreground for regionA is incor-
rect which is not surprising given that it is ambiguous from
two frames. By propagating information over time, how-
ever, the initial ambiguities are resolved since the motion of
the edge over time is consistent with the foreground being
on the right. Note that the ambiguity remains for regionB,
as can be seen by inspecting the distribution in Figure 4, de-
spite the fact that the displayed mean value matches the cor-

Horizontal Velocity Horizontal Velocity Difference

Confidence Edge Orientation

Figure 6: Low level detector responses for one pair of
frames in the Flower Garden sequence.

rect interpretation. In general, propagation of neighboring
distributions would be needed to resolve such ambiguities.

7.2 Flower Garden Sequence
Results on the Flower Garden sequence are shown in Figure
7. The low-level detector responses for the initialization
prior are shown in Figure 6; they provide reasonable initial
hypotheses but do not precisely localize the edge.

Figure 7 shows the results of our method within several
image regions. RegionsC, D, E, andF correctly model
the tree boundary (both occlusion and disocclusion) and,
after multiple frames, correctly assign the tree region to
the foreground. Note that the orientation of the edge cor-
rectly matches that of the tree and that, after the edge passes
through the region, the best model switches from disconti-
nuity to translation.

The bottom of Figure 7 shows the probability distribu-
tion corresponding to the horizontal velocity of the fore-
ground in regionC. At frames 2 and 3, there are two
clear peaks corresponding the motions of the foreground
and background indicating that this relationship is ambigu-
ous. Frames 4 – 6 illustrate how the distribution has formed
around the correct motion corresponding to the foreground.
By frame 7, the peak has diminished as the translation
model becomes more likely.
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Figure 5: Pepsi Sequence. Top: mean states at frames 1, 3, 4, 7, and 9. Bottom: detail showing regionA

Region B corresponds to translation and is correctly
modeled as such. While translation can be equally well ac-
counted for by the discontinuity model, the low-level detec-
tors do not respond in this region and hence the distribution
is initialized with more samples corresponding to the trans-
lational model. RegionA is more interesting; if the sky
were completely uniform, this region would also be mod-
eled as translation. Note, however, that there are signifi-
cant low-level detector responses in this area (Figure 6) due
to the fact that the sky is not uniform. The probability of
translation and discontinuity are roughly equal here and the
displayed model flips back and forth between them. For
the discontinuity model, the orientation corresponds to the
orientation of the tree branches in the region.

8 Conclusions

Work on image motion estimation has typically exploited
limited models of spatial smoothness. Our goal is to move
towards a richer description of image motion using a vo-
cabulary of motion primitives. Here we describe a step in
that direction with the introduction of an explicit non-linear
model of motion discontinuities and a Bayesian framework
for representing a posterior probability distribution over
models and model parameters. Unlike previous work that
attempts to find a maximum-likelihood estimate of image
motion, we represent the probability distribution over the
parameter space using discrete samples. This facilitates
the correct Bayesian propagation of information over time
when ambiguities make the distribution non-Gaussian.

The applicability of discrete sampling methods to high
dimensional spaces, as explored here, remains an open
issue. We find that an appropriate initialization prior is
needed to direct samples to the portions of the state space
where the solution is likely. We have proposed and demon-

strated such a prior here but the more general problem
of formulating such priors and incorporating them into a
Bayesian framework remains open.

This work represents what we expect to be a rich area
of inquiry. For example, we can now begin to think about
the spatial interaction of these local models. For this we
might formulate a probabilistic spatial “grammar” of mo-
tion features and how they relate to their neighbors in space
and time. This requires incorporating the spatial propaga-
tion of probabilities in our Bayesian framework. This also
raises the question of what is the right vocabulary for de-
scribing image motion and what role learning may play in
formulating local models and in determining spatial interac-
tions between them (see [10]). In summary, the techniques
described here (generative models, Bayesian propagation,
and sampling methods) will permit us to explore problems
within motion estimation that were previously inaccessible.

Acknowledgements We thank Allan Jepson for many
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