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Abstract

We propose a model for the incremental estima-
tion of visual motion fields from tmage sequences.
Our model exploits three standard consirainis on
image motion within en opilimization framework:
i) Data Conservation: the intensity siructure of
a surface patch changes gradually over time; ii)
Spatial Coherence: neighboring points have sim-
ilar motions; iii) Temporal Coherence: the im-
age velocity of a surface paich changes gradually.
Our formulation takes into account the possibility
of multiple motions dt a particular location. We
present an incremental scheme for the minimiza-
tion of our objective function, based on simulated
annealing. “All computations are parallel, local,
and incremental, and occlusion and disocclusion
boundaries are estimated. . :

Introduction

The estimation of visual motion fields from image se-
quences is generally treated as a problem of combin-
ing multiple constraints, each of which is insufficient to
determine the field uniquely, but can together deter-
mine a unique motion field. One of these constraints
involves measurements computed from the image se-
quence, while the others reflect various assumptions
about the spatial and temporal coherence of surfaces
and their motion.

Specifically, we can identify three constraints: The
data conservation constraint states that the image
measurements (e.g., the intensity structure) corre-

sponding to an environmental surface patch change

slowly over time. The spatial coherence constraint is
derived from the observation that surfaces have spa-
tial extent and hence neighboring points on a surface
will have similar motion. The temporal coherence con-
straint is based on the observation that the velocity of
motion tends to change gradually.

The accuracy of flow-field computation depends crit-
ically on the precise form of the constraints and on
tHeir proper integration. The traditional formulations
of the constraints embody a global smoothness as-
sumption. As is well known, this assumption is vio-
lated when multiple motions are present.

In this paper, we suggest ways of reformulating the
data constraint and the spatial smoothness constraint
to allow for the possibility of multiple motion fields
in a single image sequence. Qur formulation is based
on robust statistics (3] and the weak continuity con-
straints{ﬂ used in Markov Random Field (MRF) mod-
els. We also suggest a way to formulate the temporal
coherence constraint.

This paper also presents a highly parallel and in-
cremental model to exploit these constraints in which
computation occurs locally, knowledge about the mo-
tion increases over time, and occlusion and disocclu-
sion boundaries are estimated. The reformulation of
the constraints results in an objective function which
is non-convex, and whose minimization is achieved
through the use of a stochastic temporal updating
scheme. Traditional stochastic relaxation techniques
that are based on simulated annealing typically re-
quire many iterations over the same image data. We
employ a new technique which is more appropriate for
sequences of slowly varying images and in which we re-
place the notion of iteration over the same data with
iteration over time.

The following section describes our new formulation
of the constraints as energy terms defined over a small
neighborhood. This section also describes techniques
for coping with discontinuities in the motion field. We
then present a computational framework for exploit-
ing the constraints and our temporal updating scheme.
Experimental results with synthetic and real images
sequences are presented.

Formulating the Constraints

The paradigm within which we operate is the stan-
dard one of converting each constraint into a term in
an overall objective function that is minimized to ob-
tain the motion field. We reformulate the traditional
constraints to account for multiple motions by using
techniques for outlier rejection [3].

The idea is that, within a window centered on a
motion discontinuity, any measurements pertaining to

.the motion of the surfaces will fall into two distribu-

tions. The types of measurements can be either inten-
sity differences between a patch in one image and a

‘translated patch from a previous image, or differences

in neighboring flow vectors. In either case, these mea-
surements can be classified as belonging to one of two
distributions: measurements consistent with the mo-
tion we are examining, and measurements which are
inconsistent. While attempting to interpret one mo-
tion, measurements corresponding to the other motion
can be viewed as statistical outliers which, if not re-
jected, will contaminate the final interpretation of the
motion.

The standard assumption, in the absence of mo-
tion discontinuities, is that errors can be described
by Gaussian noise. By “errors” we refer to the de-
viations of the measured data from the model predie-
tions. This Gaussian assumption leads to a quadratic
objective function D(z) = z2, which disproportion-
ately weights outliers. Robustness in the presence of
multiple distributions can be achieved by adopting a
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Figﬁre 1: Shape of the ¢’ function

more realistic model of the error. One technique for
relaxing the assumption of simple Gaussian error is
the weak continuily constraint ﬁl, 5, 6], wherein the
quadratic objective function is replaced by:

H*(z,1) = (1 =) D(=) + B(Q),

where [ is a binary valued “line process” which has
_ value | = 0 if z is consistent with our model and a
" value of [ = 1 if not. So the new function H* is just
the original objective function D if our model is valid
but becomes some fixed value 8 when the model is vi-
olated. The term 8 amounts to a penalty for violating
the model.

Blake and Zisserman [4] show that the line processes
can be eliminated from the objective function by first
minimizing over them, resulting in an objective func-
tion which is solely a function ¢ of the actual variables
under consideration.

Geman and Reynolds [6] remove the binary restric-
tion from the line processes and in doing so derive an-
other ¢ function (see figure 1) with similar properties:
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This function has been used for the spatial smooth-
ness constraint in [6] for image restoration preserving
discontinuities. Regardless of the ¢ function chosen,
the objective function simply becomes H(z) = ¢(z).

Qualitatively, the effect of the type of ¢ function
given above is to weight highly measurements which
correspond to our model and remain uncommitted
about areas which do not conform to expectations.
This is a simple, yet important, heuristic for increas-
ing robustness in the presence of outliers resulting from
multiple motions.

¢(2) =

The Data Conservation Constraint

The data error term embodies the assumption that the
intensity of a surface element remains constant over
time, although its image location may change.

Let S = {s1,82,...,8,2} be a fixed set of sites cor-
responding the n X n pixels in image I. Let (i(s), j(s))
denote the pixel coordinates of site s. Given 1mage
intensity functions I, and I,4; between two succes-
sive frames (n and n + 1), the local contribution (at
site s) to the data conservation constraint is defined

as an energy term E%(u,v) over the space of possible
displacements (u,v) at pixel “site” s:

Y- #0Un(i(2), §(1) = Inar (i(t) +u, (1) + v)), (2)

t€G,

where G, denotes a neighborhood of s (usually a
square window of a pre-specified size).

Note that if we define ¢p(z) = (z/A)? (where A is
simply a scaling factor), then ¢p defines the standard
sum of squared differences (SSD) measure [1]. This
measure assumes that all the points in the neighbor-
hood G, are translated by the uniform velocity (u,v)
and the resulting image is corrupted by additive Gaus-
sian noise. (In practice, this measure serves as a good
approximation even if the velocities vary gradually
around (u,v).)

The Gaussian noise model on which the SSD mea-
sure is based is inappropriate for dealing with multiple
motions. To allow the possibility of multiple motions
within the neighborhood we relax this assumption and
adopt the Geman and Reynolds ¢ function described
above. ’

In comparison with the SSD measure, the proposed
¢ function has the following property: if two motions
are present, then a pixel that is consistent with one
of the two motions tends to contribute less (than the
SSD measure) to the data error of the other motion,
resulting in less “cross-talk.”

The Spatial Smoothness Constraint

We formulate the spatial smoothness constraint as con-
sisting of a sum of error terms E§(u, v) defined locally
at site s as:

E5(u,v) = ) ¢s(u(s) ~u(t))+4s(v(s) —v(1), (3)

teG,

where (u(s), v(s)) is the motion vector at site s. Once
again, there are a variety of choices for ¢g. Tak-
ing ¢s(z) = (z/A)? results in the standard quadratic
smoothness term [2].

The Bayesian 1nterpretation of the standard
smoothness error term corresponds to a particular
prior model of the motion field. In this case it is
a Gaussian random variable model (white noise, or
as’ Szeliski -notes, an MRF with a fractal prior [8])
with a particular covariance structure reflected in the
smoothness error term.

Once again, the smoothness assumption and its
standard (quadratic) formulation are invalid in areas
containing multiple motions. To deal with this we
use the weak continuity constraint. The property of
becoming non-committal as the differences increase
amounts to a weakening of the smoothness assump-
tion. For our current implementation, we have chosen
the same weak continuity function ¢ for both the data-
conservation and the smoothness terms with a possibly
different A.

The Temporal Coherence Constraint

The temporal coherence constraint is intended to cap-
ture the idea that the motion of a particular surface
element changes gradually over time. Implementing
the constraint requires maintaining a correspondence




between sites and moving patches of the environment.
The obvious solution is to use the estimated motion
field itself to determine the correspondence. of points
over time. This amounts to tracking points over time.
The details of a tracking scheme are described later in
this document.

Assuming that tracking is achieved, even if only im-
perfectly, the temporal coherence constraint can be
formulated as an error function defined over the tem-
poral change in the motion field. In order to achieve
a degree of robustness, we introduce the notion of the
history of a point. At a minimum the history of a point
should include its past motion information. (Addition-
ally, it can also include the length of time the point has
been visible, or even more complex information such
as to what surface the point belongs.)

In our current formulation, we maintain a moving
average of the past motion information associated with
a point. Let s denote the site of that point in the cur-
rent image frame, and (Uayg(s), Vavg(s)) be the aver-
age motion. Then the temporal coherence constraint
is formulated as a error term:

E7(u,v) = ¢r(u(s)—tang (8))+¢1(v(s)—vavg (s)) (4)

where ¢7 is the same function used in the data conser-
vation and the smoothness error terms, with a possibly
different A.

The Computational Model

Survival imposes strong requirements on the visual
system of a mobile agent. Computation must be fast;
this leads to a computational model which is highly
parallel and in which computations are simple and lo-
cal. Information about motion must always be avail-
able even if is only a rough estimate. In a dynamic
world, off-line processing of motion is unacceptable.
While rough motion estimates may be useful, they are
not enough. A mobile agent should be able to improve
its knowledge about the environment over time.

The model of motion processing we propose has the
flavor of MRF approaches in that the probability of a
surface patch having a particular displacement is de-
termined by its relationship to its neighbors in space
and time. A separate processor is allocated to each
site s € S described in the previous section and can
communicate with some set of its neighbors G,.

Each processor represents a small environmental
surface patch and maintains information about the
motion of that patch over time; where it originated and
where it is going. Associated with processor s is a ran-
dom vector (us,v,) which represents the current im-
age displacement of the corresponding surface patch.
In out current implementation, the vector (u,, vs) can
take on any value from within a discrete set A, which
is defined as,

A={(u,v)] —m<u,v<m}

where m is the maximum expected displacement.

The constraints described in the previous section are
defined in terms of nearest neighbor relations. Our
goal is to find the values of (u,,v,) which minimize
the function:

H(u,v,t) = Bp Ep(u,v) + Bs Es(u,v) + fr Er(u,v),

where each of the error terms is evaluated at the cur-
rent time instance t, and f, are constant weights which
control the relative importance of the constraints.

Each of the individual terms constituting the the
objective function H is a non-convex function with
multiple local minima. Our method for the minization
of H is derived from simulated annealing. For each
site, a probability density function II is defined over A
as follows: ‘

H(u" v, t) = Z—le—H(u,u,t)/T(t),

where:
Z — Z e—H(u,v,t)/T(t)'

u,v

The quantity T'(t) can be viewed as a temperature and
serves to sharpen (or flatten) the distribution.

At each time instance, each processor randomly se-
lects a displacement vector according to its probabil-
ity density function I. This sampling method is re-
peated with decreasing values of the temperatures. At
high temperatures our sampling process freely chooses
among displacements, but as the temperature is low-
ered, the minimum is chosen with increasing probabil-
ity as the probability distribution I becomes concen-
trated about the minimum.

The similarities between our formulation and simu-
lated annealing techniques for MRF models [5] are ob-
vious. There are some important differences, however.
For instance, in our formulation, different sites may
have distinct temperatures. We also do not try to find
a global minimum of the objective function H at a sin-
gle time instance. The standard stochastic relaxation
techniques used for this purpose require a large num-
ber of iterations with fixed data, which makes them
undesirable for dynamic motion processing.

By exploiting slowly varying imagery and keeping
track of the motion of patches, we attempt to replace
iteration over a pair of frames with iteration over a
sequence. Thus, while our approach raises the poten-
tial for true dynamic processing, we do not make any
claims to the applicability of the the rigorous conver-
gence results associated with the standard stochastic
relaxation methods.

Each patch is tracked in the image by updating the
grid of processors to reflect the predicted motion. At
any time instance, after all processors have determined
the motion of their corresponding patches, the grid is
updated to determine what patch projects to a partic-
ular processor at the next time instance. This can be
viewed as warping the previous image according to the
current motion field in order to produce an expectation
for the following image.

At occlusion boundaries, patches on both the oc-
cluding and the occluded surfaces may project to the
same site. Hence, each site receiving multiple projec-
tions marks itself as a possible occlusion boundary and
chooses to take on the motion of one of the projecting
neighbors.

Analogously, a site may have no other patches pro-
jecting to it. This is the case at a disocclusion bound-
ary where new surfaces become visible. These sites
correspond to, and are assigned, new patches in the
world which have yet to be tracked. These sites are
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Figure 2: Random Dot Experiments. a) Intensity image. b) Final temperatures. ¢) Occlusion and disocclu-
sion boundaries. d) Initial flow field. e) Flow field after 6 images. f) Final flow field after 20 images.

marked as a possible disocclusion boundaries and as-
signed an initial high temperature to reflect their lack
of history. The temperatures in recently disoccluded
areas tend to be high, and gradually decrease as their
corresponding surface patches persist in the image.
In addition to the current motion of a patch, each
site records information about the history of the patch.
When a site is updated at time t, a weighted average
of the patches motion (Ugyg, Vavg) is computed, where:

uavg = (1 - 6)“! + 6Uavg, 0 < 6 < 1. V

The value of § determines the rate at which old infor-
mation decays and is overridden by the recent motion
of a patch.

After the grid is updated, a new image in the
sequence is examined and the annealing process is
restarted. The number of annealing iterations between
any particular pair of frames is a parameter of the sys-
tem.

Experimental Results

The model described in the previous section has been
implemented on the Connection Machine. The archi-
tecture of the machine is ideally suited to our compu-
tational model.

The first example involves a synthetic image se-
quence with a textured square moving across a station-
ary textured background. The random dot texture of
the foreground and background patches is uniformly

distributed between 0 and 255 (figure 2a4). The se-
quence consists of thirty frames; in each frame the fore-
ground patch moves one pixel up and to the left. Uni-
form random noise over the range [—7, n] was added to
each image in the sequence. For the example in figure
2a, n is taken to be five percent of the intensity range;
so = 12.75.

The results of the motion algorithm applied to the
sequence are shown in figure 2. Only a single iteration
of the temporal annealing algorithm was performed for
each pair of images in the sequence.

Figure 24 shows the temperature at each site at the
end of the image sequence. Lighter areas correspond to
higher temperatures. The stationary background and
the patch itself are dark, indicating that by the end
of the sequence, the motion of these areas is known
accurately. The brightest areas correspond to recently
disoccluded portions of the background.

Occlusion and disocclusion estimates are shown in
figure 2¢; occlusion boundaries are displayed as white,
and disocclusion boundaries appear black.

Figure 2d shows the initial flow field. The incremen-
tal algorithm continually improves the estimate over
the 30 frame sequence, resulting in the flow field in
figure 2f. The motions of the patch and background
are known with fairly high accuracy while the recently
disoccluded areas with high temperatures have not yet
settled into a stable interpretation. Increasing the
number of iterations per frame would permit these ar-
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Figure 3: Pepsi Sequence, a) Intensity image. 4) Flow field. ¢) Discontinuities.

eas to settle more quickly to the correct interpretation,
but would diminish the dynamic nature of the process-
ing. ) A
gI‘he final results of the model applied to a real image
sequence are shown in figure 3. This sequence! con-
sists of ten images. The images contain a can in the
foreground, moving approximately one pixel to the left
each frame, in front of a textured background which is
undergoing a very slight leftward motion.

Since the motion sequence is relatively short, good
motion estimates cannot be achieved with only a sin-
gle iteration of the annealing algorithm for each frame.
For this reason, ten iterations were used for this exam-
ple.

Figure 3b shows the final flow field. Figure 3¢ shows
the occlusion and disocclusion estimates, Errors in the
flow field appear in areas of the image where there is
little texture.

Conclusion

We have reformulated data conservation, spatial co-
herence, and temporal coherence constraints to take
into account the possibility of multiple motions. We
have also presented a new computational framework
for exploiting these constraints. The model has some
desirable properties: it is parallel, computation is lo-
cal, occlusion/disocclusion boundaries are estimated,
and its incremental nature means that a motion esti-
mate is always available and improves over time.

Much work remains to be done, however; for exam-
ple, while our updating scheme is derived from MRF
approaches, we have not attempted to extend the of
the mathematical foundation of MRF's to this tempo-
ral framework. We make no claims about the con-
vergence of our new incremental scheme; a theoretical
analysis of the model is required.

Our preliminary implementation assumes that all
motion is approximately one pixel per frame. While
larger motions can be dealt with by expanding the
state space, the result is a loss of efficiency. In-
stead, our current work is extending the computational

model to include a multi-resolution processing scheme
2, 7].

!We would like to thank Joachim Heel for providing the
motion sequence.
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The greatest weakness of this initial implementation
is that only discrete motions are detected. To extend
the model to general fractional pixel motion requires
extending the data constraint to provide sub-pixel ac-
curacy and extending the minimization scheme to deal
with a continuous state space. The former problem has
been addressed in [2]. Continuous minimization can be
realized by exploiting results in continuous annealing
[9]. Finally, new warping and discontinuity detection
schemes are being developed to cope with arbitrary
motions.
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