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Abstract

We develop a method for learning the spatial statistics
of optical flow fields from a novel training database. Train-
ing flow fields are constructed using range images of nat-
ural scenes and 3D camera motions recovered from hand-
held and car-mounted video sequences. A detailed analysis
of optical flow statistics in natural scenes is presented and
machine learning methods are developed to learn a Markov
random field model of optical flow. The prior probability of
a flow field is formulated as a Field-of-Experts model that
captures the higher order spatial statistics in overlapping
patches and is trained using contrastive divergence. This
new optical flow prior is compared with previous robust pri-
ors and is incorporated into a recent, accurate algorithm
for dense optical flow computation. Experiments with nat-
ural and synthetic sequences illustrate how the learned op-
tical flow prior quantitatively improves flow accuracy and
how it captures the rich spatial structure found in natural
scene motion.

1. Introduction

In this paper we study the spatial statistics of optical flow
in natural imagery and exploit recent advances in machine
learning to obtain a rich prior model for optical flow fields.
This extends work on the analysis of image statistics in nat-
ural scenes and range images to the domain of image mo-
tion. In doing so we make connections to previous robust
statistical formulations of optical flow smoothness priors
and learn a newMarkov random field prior over large neigh-
borhoods using a Field-of-Experts model [24]. We extend
a recent (and very accurate) optical flow method [7] with
this new prior and provide an algorithm for estimating op-
tical flow from pairs of images. We quantitatively compare
the learned prior with more traditional robust priors and find
that in our experiments the accuracy is improved by about
10%while removing the need for tuning the scale parameter
of the traditional priors.
Natural image statistics have received intensive study

Figure 1. Flow fields generated for an outdoor (top)
and an indoor scene (bottom). The horizontal mo-
tion u is shown on the left, the vertical motion v on
the right; dark/light means negative motion/positive
motion (scaled to 0 . . . 255 for display).

[17], but the spatial statistics of optical flow are relatively
unexplored because databases of natural scene motions are
currently unavailable. One of the contributions of this paper
is the development of such a database.
The spatial statistics of optical flow are determined by

the interaction of 1) camera motion; 2) scene depth; and
3) the independent motion of objects. Here we focus on
rigid scenes and leave independent motion for future work
(though we believe the statistics from rigid scenes are use-
ful for scenes with independent motion). To generate a re-
alistic database of optical flow fields we exploit the Brown
range image database [1], which contains depth images of
complex scenes including forests, indoor environments, and
generic street scenes. Given 3D camera motions and range
images we generate flow fields that have the rich spatial
statistics of natural flow fields. A set of natural 3D motions
was obtained from both hand-held and car-mounted cam-
eras performing a variety of motions including translation,
rotation, and active fixation. The 3D motion was recovered



from these video sequences using commercial software [2].
Figure 1 shows two example flow fields generated using the
3D motions and the range images.
The first-derivative statistics of optical flow exhibit

highly kurtotic behavior as do the statistics of natural im-
ages. We observe that the first derivative statistics are well
modelled by heavy tailed distributions such as the Student-t
distribution. This provides a connection to previous robust
statistical methods for recovering optical flow that modelled
spatial smoothness using robust functions [6] and suggests
that the success of robust methods is due to the fact that they
capture the first order statistics of optical flow.
Our goal here is to go beyond such local (first deriva-

tive) models and formulate a Markov random field (MRF)
prior that captures richer spatial statistics present in larger
neighborhoods. To that end, we exploit a “Field of Experts”
(FoE) model [24], that represents MRF clique potentials in
terms of various linear filter responses on each clique. We
model these potentials as a product of t-distributions and we
learn both the parameters of the distribution and the filters
themselves using contrastive divergence [15, 24].
We compute optical flow using the learned prior as a

smoothness term. The log prior is combined with a data
term and we minimize the resulting energy (log posterior).
While the exact choice of data term is not relevant for the
analysis, here we use the recent approach of Bruhn et al. [7],
which replaces the standard optical flow constraint equa-
tion with a tensor that integrates brightness constancy con-
straints over a spatial neighborhood. We present an algo-
rithm for estimating dense optical flow and compare the per-
formance of standard robust spatial terms with the learned
FoE model on both synthetic and natural imagery.

1.1. Previous work

There has been a great deal of work on modeling natu-
ral image statistics [17] facilitated by the existence of large
image databases. One might expect optical flow statistics
to differ from image statistics in that there is no equivalent
of “surface markings” in motion and all structure in rigid
scenes results from the shape of surfaces and the disconti-
nuities between them. In this way it seems plausible that
flow statistics share more with depth statistics. Unlike opti-
cal flow, direct range sensors exist and a time-of-flight laser
was used in [18] to capture the depth in a variety of scenes
including residential street scenes, forests, and indoor en-
vironments. Scene depth statistics alone, however, are not
sufficient to model optical flow, because image motion re-
sults from the combination of the camera motion and depth.
While models of self-motion in humans and cats [4] have
been studied, we are unaware of attempts to learn or exploit
a database of camera motions captured by a moving camera
in natural scenes.

The most similar work to ours also uses the Brown range
image database to generate realistic synthetic flow fields [8].
The authors use a gaze tracker to record how people view
the range images and then simulate their motion into the
scene with varying fixation points. Their focus is on human
perception of flow and consequently they analyze a retinal
projection of the flow field. They also limit their analysis
to first order statistics and do not propose an algorithm for
exploiting these statistics in the computation of optical flow.
Previous work on learning statistical models of video fo-

cuses on the statistics of the changing brightness patterns
rather than the flow it gives rise to. For example, adopt-
ing a classic sparse-coding hypothesis, video sequences can
be represented using a set of learned spatio-temporal filters
[27]. Other work has focused on the statistics of the clas-
sic brightness constancy assumption (and how it is violated)
rather than the spatial statistics of the flow field [10, 25].
The lack of training data has limited research on learning

spatial models of optical flow. One exception is the work by
Fleet et al. [11] in which the authors learn local models of
optical flow from examples using principal component anal-
ysis (PCA). In particular, they use synthetic models of mov-
ing occlusion boundaries and bars to learn linear models of
the flow for these motion features. Local, non-overlapping
models such as these may be combined in a spatio-temporal
Bayesian network to estimate coherent global flow fields
[12]. While promising, these models cover only a limited
range of the variation in natural flow fields.
There is related interest in the statistics of optical flow

in the video retrieval community; for example, Fablet and
Bouthemy [9] learn statistical models using a variety of mo-
tion cues to classify videos based on their spatio-temporal
statistics. These methods, however, do not focus on the es-
timation of optical flow.
The formulation of smoothness constraints for optical

flow estimation has a long history [16], as has its Bayesian
formulation in terms of Markov random fields [5, 14, 20,
22]. Previous work, however, has focused on very local
models that are typically formulated in terms of the first dif-
ferences in the optical flow (i. e., the nearest neighbor differ-
ences). This can model piecewise constant or smooth flow
but not more complex spatial statistics. Other work has im-
posed geometric rather than spatial smoothness constraints
on multi-frame optical flow [19].
Weiss and Adelson [28] propose a Bayesian model of

motion estimation to explain human perception of visual
stimuli. In particular, they argue that the appropriate im-
age prior prefers “slow and smooth” motion. Their stimuli,
however, are too simplistic to probe the nature of flow pri-
ors in complex scenes. We find these statistics are more like
those of natural images in that the motions are piecewise
smooth; large discontinuities give rise to heavy tails in the
first derivative marginal statistics.
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Figure 2. Scatter plot of the translational camera mo-
tion: (left) Left-right (x) and up-down motion (y).
(right) Left-right (x) and forward-backward (z) mo-
tion (scale in meters).

2. Spatial Statistics of Optical Flow

2.1. Obtaining training data

One of the key challenges in learning the spatial statistics
of optical flow is to obtain suitable training data. The issue
here is that optical flow cannot be directly measured, which
makes the statistics of optical flow a largely unexplored
field. Synthesizing realistic flow fields is thus the only vi-
able option for studying, as well as learning the statistics
of optical flow. Our goal is to create a database of opti-
cal flow fields as they arise in natural as well as man-made
scenes. It is unlikely that the rich statistics will be captured
by any manual construction of the training data as in [11].
Instead we rely on range images from the Brown range im-
age database [1], which provides accurate scene depth infor-
mation for a set of 197 indoor and outdoor scenes. While
this database captures information about surfaces and sur-
face boundaries in natural scenes, it is completely static.
A rigorous study of the optical flow statistics of indepen-
dently moving objects will remain the subject of future
work. While we focus on rigid scenes, the range of motions
represented is broad and varied.
Apart from choosing appropriate 3D scenes, finding suit-

able camera motion data is another challenge. In order
to cover a broad range of possible frame-to-frame cam-
era motions, we used a database of 100 video clips of ap-
proximately 100 frames, each of which was shot using a
hand-held or car-mounted video camera. The database is
comprised of various kinds of motion, including forward
walking and moving the camera around an object of inter-
est. The extrinsic and intrinsic camera parameters were
recovered using the boujou software system [2]. Figure
2 shows empirical distributions of the camera translations
in the database. The plots reveal that left-right movements
are more common than up-down movements and that mov-
ing into the scene occurs more frequently than moving out
of the scene. Similarly the empirical distributions of cam-
era rotation reveal that left-right panning occurs more fre-
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Figure 3. Simple statistics of our opticalflowdatabase:
log-histograms of (a) horizontal velocity u, (b) verti-
cal velocity v, (c) velocity r, (d) orientation θ.

quently than up-down panning and tilting of the camera.
To generate optical flow from this motion data we use the

following procedure: We pick a random range image, and
a random camera motion. A ray is then cast through ev-
ery pixel of the first frame to find the corresponding scene
depth from the range image. Each of these scene points is
then projected onto the image plane for the second frame.
The optical flow is simply given by the difference in image
coordinates under which a scene point is viewed in each
of the two cameras. We used this procedure to generate a
database of 400 optical flow fields, each 360 × 256 pix-
els large1. The position of the camera and therefore the
distance to the scene is determined by the position of the
range finder. Nevertheless, in order to cover a range of pos-
sible scenarios, one can scale the magnitude of the transla-
tional motion. Figure 1 shows example flow fields from this
database. Note that we do not explicitly represent the re-
gions of occlusion or disocclusion in the database. A rigor-
ous treatment of occlusions, which will most likely require
a more sophisticated scene geometry model, will remain fu-
ture work (c.f. [12, 23]).

2.2. Velocity statistics

Using the database, we study several statistical proper-
ties of optical flow. Figure 3 shows log-histograms of the
image velocities in various forms. We observe that the ver-
tical velocity in (b) is roughly distributed like a Laplacian
distribution; however the horizontal velocity in (a) shows a
broader histogram that falls off less quickly. This is consis-
tent with our observations that horizontal camera motions

1The database is available to other researchers and can be obtained by
contacting the authors.
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Figure 4. Derivative statistics of optical flow: log-
histograms of (a) ∂u/∂x, (b) ∂u/∂y, (c) ∂v/∂x, (d)
∂v/∂y.

seem to be more common. Figure (c) shows the magnitude
of the velocity, which falls off similar to a Laplacian dis-
tribution. We can also see that very small motions seem to
occur rather infrequently, which suggests that the camera is
rarely totally still. The orientation histogram in (d) again
shows the preference for horizontal motion (the bumps at 0
and ±π). However, there are also smaller spikes indicating
somewhat frequent up-down motion (at ±π/2).

2.3. Derivative statistics

Figure 4 shows the first derivative statistics of both hor-
izontal and vertical image motion. The distributions are all
heavy-tailed and strongly resemble Student t-distributions.
Such distributions have also been encountered in the study
of natural images, e. g., [17]. In natural images, the image
intensity is often locally smooth, but occasionally shows
large jumps at object boundaries or in fine textures, which
give rise to substantial probability mass in the tails of the
distribution. Furthermore, the study of range images [18]
has shown similar derivative statistics. For scene depth the
heavy-tailed distributions arise from depth discontinuities
mostly at object boundaries. Because the image motion
from camera translations is directly dependent on the scene
depth, it is not surprising to see similar distributions for op-
tical flow. The observed derivative statistics likely explain
the success of robust statistical formulations for optical flow
computation. The Lorentzian robust error function in par-
ticular, as used for example in [5], matches the empirical
statistics very well.

4.866 1.777 0.9557 0.4651 0.313

0.2835 0.2431 0.1415 0.1173 0.1097

Figure 5. First 10 principal components of the hori-
zontal velocityu in 5×5 patches. The numbers denote
the variance of each principal component.

2.4. Principal component analysis

We also performed principal component analysis on
small image patches of various sizes. Figure 5 shows the
results for horizontal flow u in 5 × 5 patches. The princi-
pal components of the vertical flow v look very similar, but
their variance is smaller due to the observed preference for
horizontal motion. We can see that a large portion of the
image energy is focused on the first few principal compo-
nents which, as with images, resemble derivative filters of
various orders (c.f. [11]).

3. Learning the Spatial Statistics

We learn the spatial statistics of optical flow using the
recently proposed Fields-of-Experts model [24]. It models
the prior probability of images (and here optical flow fields)
using a Markov random field. In contrast to many previous
MRF models, it uses larger cliques of for example 3 × 3
or 5 × 5 pixels, and allows learning the appropriate clique
potential from training data. We argue here that spatial reg-
ularization of optical flow will benefit from prior models
that capture interactions beyond adjacent pixels. For sim-
plicity, we will treat horizontal and vertical image motions
separately, and learn two independent models.
In the Markov random field framework, the pixels of an

image or flow field are assumed to be represented by nodes
V in a graphG = (V,E), whereE are the edges connecting
nodes. The edges are typically defined through a neighbor-
hood system, such as all spatially adjacent pairs of pixels.
We will instead consider neighborhood systems that con-
nect all nodes in a squarem×m region. Every such neigh-
borhood centered on a node (pixel) k = 1, . . . , K defines a
maximal clique x(k) in the graph. We write the probability
of a flow field component x ∈ {u,v} under the MRF as

p(x) =
1
Z

K∏
k=1

ψ(x(k)), (1)

where ψ(x(k)) is the so-called potential function for clique
x(k) (we assume homogeneous MRFs here) and Z is a nor-



malization term. Because of our assumptions, the joint
probability of the flow field p(u,v) is simply the product of
the probabilities of the two components p(u) · p(v) under
the MRF model. Most typical prior models for optical flow
can be written this way, as they are based on first derivatives
that can be approximated by differences of pixel neighbors.
When considering MRFs with cliques that do not just

consist of pairs of nodes, finding suitable potential func-
tions ψ(x(k)) and training the model on a database be-
come much more challenging. In our experiments we have
observed that linear filter responses on the optical flow
database show histograms that are typically well fit by t-
distributions. Based on this observation, the FoE model that
we propose uses the Products-of-Experts framework [26],
and models the clique potentials with products of Student
t-distributions, where each expert distribution works on the
response to a linear filter Ji. The cliques’ potential under
this model is written as:

ψ(x(k)) =
N∏

i=1

φ(JTi x(k);αi), (2)

where each expert is a t-distribution with parameter αi:

φi(JTi x(k);αi) =
(

1 +
1
2
(JTi x(k))2

)−αi

. (3)

The FoE optical flow prior is hence written as

p(x) =
1
Z

K∏
k=1

N∏
i=1

φ(JTi x(k);αi). (4)

The filters Ji as well as the expert parameters αi are jointly
learned from training data using maximum likelihood esti-
mation. Because there is no closed form expression for the
partition function Z in case of the FoE model, maximum
likelihood estimation relies on Markov chain Monte Carlo
sampling, which makes the training process computation-
ally expensive. To speed up the learning process, we use
the contrastive divergence algorithm [15], which approxi-
mates maximum likelihood learning, but only relies on a
fixed, small number of Markov chain iterations in the sam-
pling phase. For our experiments, we trained FoE mod-
els with 8 filters of 3 × 3 pixels on randomly selected and
cropped flow fields from the training database. We restrict
the filters so that they do not capture the mean velocity in
a patch and are thus only sensitive to relative motion. The
use of larger patches or more filters may yield performance
improvements, but this will remain future work. For more
details about how FoE models can be trained, we refer the
reader to [24].
In the context of optical flow estimation, the prior knowl-

edge about the flow field is typically expressed in terms of

an energy function E(x) = − log p(x). Accordingly, we
can express the energy for the FoE prior model as

EFoE(x) = −
K∑

k=1

N∑
i=1

log φ(JTi x(k);αi) + log Z. (5)

Note that that for fixed parameters α and J, the partition
function Z is constant, and can thus be ignored when esti-
mating flow.
The optical flow estimation algorithm we propose in the

next section relies on the gradient of the energy function
with respect to the flow field. Since Fields of Experts are a
log-linear model, expressing and computing the gradient of
the energy is relatively easy. Following Zhu and Mumford
[29], the gradient of the energy can be written as

∇xEFoE(x) = −
N∑

i=1

J−
i ∗ ξi(Ji ∗ x), (6)

where Ji ∗ x denotes the convolution of image veloc-
ity component x with filter Ji. We also define ξi(y) =
∂/∂y log φ(y;αi) and let J−

i denote the filter obtained by
mirroring Ji around its center pixel [29].

4. Optical Flow Estimation

In order to demonstrate the benefits of learning the spa-
tial statistics of optical flow, we integrate our model with
a recent, competitive optical flow method and quantita-
tively compare the results. As baseline algorithm, we chose
the combined local-global method (CLG) as proposed by
Bruhn et al. [7]. Global methods typically estimate the hor-
izontal and vertical image velocities u and v by minimizing
an energy of the form [16]

E(u,v) =
∫

I

ρD(Ixu + Iyv + It)+

λ · ρS(
√
|∇u|2 + |∇v|2) dx dy.

(7)

ρD and ρS are robust penalty functions, such as the
Lorentzian [6]; Ix, Iy, It denote the spatial and temporal
derivatives of the image sequence. The first term in (7)
is the so-called data term that enforces the brightness con-
stancy assumption. The second term is the so-called spatial
term, which enforces (piecewise) spatial smoothness. Since
in this model, the data term relies on a local linearization
of the optical flow constraint equation (OFCE), such meth-
ods are usually used in a coarse-to-fine fashion, e. g., [6],
which allows the estimation of large displacements. For the
remainder, we will assume that large image velocities are
handled using such a coarse-to-fine scheme.
The combined local-global method extends this frame-

work through local averaging of the brightness constancy



constraint by means of a structure tensor. This connects
the method to local optical flow approaches that use locally
smoothed image derivatives to estimate the image velocity.
Using ∇I = (Ix, Iy, It)T we can define a spatio-temporal
structure tensor as Jσ(I) = Gσ ∗ ∇I∇IT, where Gσ de-
notes a Gaussian convolution kernel with width σ. The CLG
approach estimates the optical flow by minimizing

ECLG(w) =
∫

I

ρD(
√

wTJσ(I)w)+

λ · ρS(
√

|∇w|2) dx dy,

(8)

where w = (u,v, 1)T. Experimentally, the CLG approach
has been shown to be one of the best currently available
optical flow estimation techniques. The focus of this paper
are the spatial statistics of optical flow; hence, we will only
make use of the 2D-CLG approach, i. e., only two adjacent
frames will be used for flow estimation.
We will further refine the CLG approach by using a spa-

tial regularizer that is based on the learned spatial statistics
of optical flow. Many global optical flow techniques en-
force spatial regularity or “smoothness” by penalizing large
spatial gradients. In Section 3 we have shown how to learn
higher order Markov random field models of optical flow,
which we use here as spatial regularizer for flow estimation.
Here, our objective is to minimize the energy

E(w) =
∫

I

ρD(
√

wTJσ(I)w) dx dy + λ · EFoE(w). (9)

Since EFoE(w) is non-convex, minimizing (9) is generally
difficult. Depending on the choice of the robust penalty
function, the data term may in fact be non-convex, too. We
will not attempt to find the global optimum of the energy
function, but instead perform a simple local optimization.
At any local extremum of the energy it holds that

∇wE(w) = 0. (10)

We can discretize this constraint using (6) for the spatial
term and the discretization from [7] for the data term. The
discretized constraint can be written as

A(w)w = b, (11)

where A(w) is a large, sparse matrix that depends on w,
which is a vector of all x- and y-velocities in the image. In
order to solve forw, we make (11) linear by keepingA(w)
fixed, and solve the resulting linear equation system using a
standard technique such as GMRES [13]. This procedure is
then iterated until a fixed point is reached.

4.1. Evaluation

To evaluate the proposed method, we performed a series
of experiments with both synthetic and real data. The quan-
titative evaluation of optical flow techniques suffers from

Method AAE
(1) Quadratic 2.93◦

(2) Charbonnier 1.70◦

(3) Charbonnier + Lorentzian 1.76◦

(4) FoE + Lorentzian 1.32◦

Table 1. Results on synthetic test data: Average angu-
lar error (AAE) for best parameters.

the problem that only a few image sequences with ground
truth optical flow data are available. The first part of our
evaluation thus relies on synthetic test data. To provide re-
alistic image texture we randomly sampled 25 (intensity)
images from a database [21], cropped them to 100 × 100
pixels, and warped the images with randomly sampled, syn-
thesized flow that was generated in the same fashion as the
training data to obtain 25 input frame pairs.
We ran 4 different algorithms on all the test image pairs:

(1) The 2D-CLG approach with quadratic data and spatial
terms; (2) The 2D-CLG approach with Charbonnier data
and spatial terms as used in [7]; (3) The 2D-CLG approach
with Lorentzian data term and Charbonnier spatial term; (4)
The 2D-CLG approach with Lorentzian data term and FoE
spatial term. The Charbonnier robust error function has the
form ρ(x) = 2β2

√
1 + x2/β2, where β is a scale param-

eter. The Lorentzian robust error function is related to the
t-distribution and has the form ρ(x) = log(1 + 1

2 (x/σ)2),
where σ is its scale parameter. For all experiments in
this paper, we chose a fixed integration scale for the struc-
ture tensor (σ = 1). For methods (2) and (3) we tried
β ∈ {0.05, 0.01, 0.005}2 for both the spatial and the data
term and report the best results. For methods (3) and (4)
we fixed the scale of the Lorentzian for the data term to 0.5.
For each method we chose a set of 5 different λ values (in
a suitable range), which control the relative weight of the
spatial term. Table 1 shows the average angular error in de-
grees (see [3]) averaged over the whole test data set. The
error is reported for the λ value that gave the lowest aver-
age error on the whole data set, i. e., the parameters are not
tuned to each individual test case. Table 1 summarizes the
results and shows that the FoE flow prior improves the flow
estimation error on this synthetic test database. In contrast
to methods (2) and (3) the FoE prior does not require any
tuning of the parameters of the prior. Only the λ value re-
quires tuning for all 4 techniques.
In a second experiment, we learned an FoE flow prior

for the Yosemite sequence [3] containing a computer gener-
ated image sequence (version without the cloudy sky). First
we trained the FoE prior on the ground truth data for the
Yosemite sequence, omitting frames 8 and 9 which were
used for evaluation. Estimating the flow with the learned
model and the same data term as above gives an average

2This parameter interval is suggested in [7].



a b c

Figure 6. Optical flow estimation: Yosemite fly-through. (a) Frame 8 from image sequence. (b) Estimated optical flow
with separate u and v components. Average angular error 1.47◦. (c) Estimated optical flow as vector field.

angular error of 1.47◦ (standard deviation 1.54◦). This is
0.15◦ better than the result reported for the standard two
frame CLGmethod (see [7]), which is as far as we are aware
the current best result for a two frame method. While train-
ing on the remainder of the Yosemite sequence may initially
seem unfair, most other reported results for this sequence
rely on tuning the method’s parameters so that one obtains
the best results on a particular frame pair. Figure 6 shows
the computed flow field. We can see that it seems rather
smooth, but given that the specific training data contains
only very few discontinuities, this is not very surprising.
In fact, changing the λ parameter of the algorithm so that
edges start to appear leads to numerically inferior results.
An important question for a learned prior model is how

well it generalizes. To evaluate this, we used the model
trained on our synthetic flow data to estimate the Yosemite
flow. Using the same parameters described above, we found
that the accuracy of the flow estimation results decreased
to 1.82◦ average angular error (standard deviation 1.61◦).
This suggests that our training database is not representa-
tive for the kinds of geometries or motions that occur in
the Yosemite sequence. Furthermore this suggests that par-
ticular care must be taken when designing a representative
optical flow database.
In a final experiment, we evaluated the FoE flow prior

on a real image sequence. Figure 7 shows the first frame
from this “flower garden” sequence. The sequence has two
dominant motion layers, a tree in the foreground and a back-
ground, with different image velocities. We applied the FoE
model as trained on the synthetic flow database and used
the parameters as described above for model (4). Figure 7
shows the obtained flow field, which qualitatively captures
the motion and object boundaries well.

5. Conclusions and Future Work

We have presented a novel database of optical flow as it
arises when realistic scenes are captured with a hand-held
or car-mounted video camera. This database allowed us to
study the spatial statistics of optical flow, and furthermore
enabled us to learn prior models of optical flow using the

Fields-of-Experts framework. We have integrated the FoE
flow prior into a recent, accurate optical flow algorithm and
obtained moderate accuracy improvements. In our current
work, we are training models with larger filters such as 5×5
and joint models of horizontal and vertical motion which we
hope will further increase accuracy. While our experiments
suggest that the training database may not yet be represen-
tative of the image motions in certain sequences, we believe
that this is an important step towards studying and learning
the spatial statistics of optical flow.
There are many opportunities for future work that build

on the proposed prior and the database of flow fields. For
example, Calow et al. [8] point out that natural flow fields
are inhomogeneous; for example, in the case of human mo-
tion, the constant presence of a ground plane produces quite
different flow statistics in the lower portion of the image
than in the upper portion. Here we proposed a homoge-
neous flow prior but it is also possible, with sufficient train-
ing data, to learn an inhomogeneous FoE model.
It may be desirable to learn application-specific flow pri-

ors (e. g., for automotive applications). This suggests the
possibility of learning multiple categories of flow priors
and using these to classify scene motion for applications
in video databases.
A natural extension of our work is the direct recovery

of structure from motion. We can exploit our training set of
camera motions to learn a prior over 3D camera motions and
combine this with a spatial prior learned from the range im-
agery. The prior over 3D motions may help regularize what
is often a difficult problem given the narrow field of view
and small motions present in common video sequences.
Future work must also consider the statistics of indepen-

dent, textural, and non-rigid motion. Here obtaining ground
truth is more problematic. Possible solutions involve ob-
taining realistic synthesized sequences from the film indus-
try or hand-marking regions of independent motion in real
image sequences.
Finally, a more detailed analysis of motion boundaries is

warranted. In particular, our current flow prior does not ex-
plicitly encode information about the occluded/unoccluded
surfaces or the regions of the image undergoing dele-
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Figure 7. Optical flow estimation: Flower garden sequence. (a) Frame 1 from image sequence. (b) Estimated optical
flow with separate u and v components.

tion/accretion. Future work may also explore the problem
of jointly learning motion and occlusion boundaries using
energy-based models such as the Fields of Experts.

Acknowledgements We would like to thank David Capel
(2d3) and Andrew Zisserman for providing camera motion
data, Andrés Bruhn for providing additional details about
the algorithm from [7], John Barron for clarifying details
about the Yosemite sequence, and Frank Wood for help-
ful discussions. This research was supported by Intel Re-
search and NIH-NINDS R01 NS 50967-01 as part of the
NSF/NIH Collaborative Research in Computational Neuro-
science Program.

References

[1] Brown range image database. http://www.dam.-
brown.edu/ptg/brid/index.html.

[2] boujou, 2d3 Ltd., 2002. http://www.2d3.com.
[3] J. L. Barron, D. J. Fleet, and S. S. Beauchemin. Performance

of optical flow techniques. IJCV, 12(1):43–77, 1994.
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