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Abstract
This paper describes a framework for learning probabilistic
models of objects and scenes and for exploiting these mod-
els for tracking complex, deformable, or articulated objects
in image sequences. We focus on the probabilistic track-
ing of people and learn models of how they appear and
move in images. In particular, we learn the likelihood of
observing various spatial and temporal filter responses cor-
responding to edges, ridges, and motion differences given a
model of the person. Similarly, we learn probability dis-
tributions over filter responses for general scenes that de-
fine a likelihood of observing the filter responses for arbi-
trary backgrounds. We then derive a probabilistic model
for tracking that exploits the ratio between the likelihood
that image pixels corresponding to the foreground (person)
were generated by an actual person or by some unknown
background. The paper extends previous work on learning
image statistics and combines it with Bayesian tracking us-
ing particle filtering. By combining multiple image cues,
and by using learned likelihood models, we demonstrate
improved robustness and accuracy when tracking complex
objects such as people in monocular image sequences with
cluttered scenes and a moving camera.

1 Introduction
This paper extends recent work on learning the statistics
of natural images and applies the results to the problem of
tracking people in image sequences. We learn probabilistic
models of how people appear in images and show how this
information can be combined with probabilistic models that
capture the statistics of natural scenes [10, 11, 14, 20, 26].
In particular, we learn models that characterize the proba-
bility of observing various image filter responses given, for
example, we are looking at a human arm at a particular ori-
entation. Filter responses corresponding to edges, ridges,
and motion for the different limbs of the body and for
generic scenes are considered. We show how these learned
models can be combined in a Bayesian framework for track-
ing complex objects such as people. We employ a particle
filtering method [7, 8] and demonstrate its behavior with
examples of people tracking in monocular image sequences

1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
10

9

8

7

6

5

4

3

2

1

Lower Arm
Background

1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
12

11

10

9

8

7

6

5

4

3

2

1

Lower Arm
Background

Original Image

Edge Filter Response

Ridge Filter Response

Log Likelihood for Edge Response

Log Likelihood for Ridge Response

Figure 1:Learning the appearance of people and scenes. Distri-
butions over edge and ridge filter response are learned from exam-
ples of human limbs and general scenes.

containing clutter, camera motion and self-occlusion.
Reliable tracking requires a general model of human ap-

pearance in images that captures the range of variability
in appearance and that is somewhat invariant to changes
in clothing, lighting, and background. Motivated by [10],
probability distributions for various filter responses are con-
structed. The approach is illustrated in Figure 1. Given a
database of images containing people we manually deter-
mine the “ground truth” corresponding to limb boundaries
and limb axes for the torso, head, upper and lower arms and
upper and lower legs. Discrete probability distributions cor-
responding to edge and ridge filter responses on the marked
boundaries and axes respectively are learned from the data.

We also collect ground truth data of limb motions be-
tween two frames and learn the distribution of temporal im-
age differences between corresponding pixels. In the same
spirit, we could learn probabilistic models of skin color [25]
or other texture cues.

The above distributions characterize the appearance of
the “foreground” object. For reliable people tracking we
must learn the prior distribution of filter responses in gen-
eral scenes. We show that the likelihood of observing the
filter responses for an image is proportional to the ratio be-
tween the likelihood that the foreground image pixels are
explained by the foreground object and the likelihood that

1
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they are explained by some general background (cf. [17]):

p(all cues j fgrnd; bgrnd) = C
p(fgrnd cues j fgrnd)

p(fgrnd cues j bgrnd)
:

This ratio is highest when the foreground (person) model
projects to an image region that is unlikely to have been
generated by some general scene but is well explained by
the statistics of people. This ratio also implies that there is
no advantage to the foreground model explaining data that
is equally well explained as background. It is important to
note that the “background model” here is completely gen-
eral and, unlike the common background subtraction tech-
niques, is not tied to a specific, known, scene.

Using these ideas, we extend previous work on per-
son tracking by combining multiple image cues, by using
learned probabilistic models of object appearance, and by
taking into account a probabilistic model of general scenes
in the above likelihood ratio. Experimental results suggest
that a combination of cues provides a rich likelihood model
that results in more reliable and computationally efficient
tracking than can be achieved with individual cues. We
present the results for the 3D tracking of human limbs in
monocular image sequences in the presence of clutter, un-
known backgrounds, self occlusion, and camera motion.

2 Related Work
Recent work on learning the low-order spatial statistics of
natural scenes shows promise for problems in segmenta-
tion, graphics, and image compression [6, 10, 11, 14, 20,
26]. Here we extend this analysis in a number of directions.
First, most previous work has considered the statistics of
filter responses corresponding to first derivatives of the im-
age function. Here we also examine filters corresponding to
“ridges” [13] and show that, like edge filters, the distribu-
tion of responses is invariant across scale for general scenes.
In addition to ridges and edges, motion is an important
cue for tracking people. Previous tracking approaches have
made simplifying assumptions about the noise in tempo-
ral image derivatives. The typical brightness constancy as-
sumption assumes that this noise is Gaussian [21] while the
actual distributions learned here for hand-registered train-
ing data show that it is actually highly non-Gaussian.

Our modeling of the image statistics of people versus
backgrounds is similar in spirit to the work of Konishi
et al. [10]. Given images where humans have manually
marked what they think of as “edges,” Konishi et al. learn a
distributionpon corresponding to the probability of a filter
response for these edge locations. In our case, we model
the filter responses at the boundary of a limbregardlessof
whether an actual edge is visible in the scene or not. An
edge may or may not be visible at a limb boundary depend-
ing on the clothing and contrast between the limb and the
background. Thus we can think of thepon distribution of

Konishi et al. [10] as agenericfeature distribution while
here we learn anobject-specificdistribution for people.

Konishi et al. [10] also computed the distributionpo� cor-
responding to the filter responses away from edges and used
the log of the likelihood ratio betweenpon andpo� for edge
detection. We add additional background models for the
statistics of ridges and temporal differences and exploit the
ratio between the probability of foreground (person) filter
responses and background responses for tracking. Finally,
the absolute contrast between foreground and background
is less important for detecting people than the orientation of
the features (edges or ridges) and hence we perform local
contrast normalization prior to filtering.

We exploit the above work on learned image statistics
to track people in cluttered scenes with a moving camera.
Recent Bayesian probabilistic formulations of the tracking
problem [1, 4, 8, 16, 18] use particle filtering methods [7, 8]
as we do here. Cham and Rehg [1] use a fixed template to
represent the appearance of each limb. Deutscher et al. [4]
assume large foreground-background contrast and multiple
cameras. In our previous work [18] we used image mo-
tion as the cue for Bayesian tracking of 3D human models
in monocular sequences. The approach used a robust like-
lihood model for temporal image differences. While this
approach could deal with more complex imaging environ-
ments than [1, 4], like all optical flow tracking methods, it
was prone to “drift”.

Particle filtering methods represent a complex posterior
probability distribution with a discrete set of samples. Each
sample corresponds to a possible set of model parameters,
�, or poses of the body in our case. For each pose we can
predict where in the image we expect to see limbs and then
check whether the image filter responses support the hy-
pothesis. This is in contrast to tracking approaches that first
extract edges and then match the model to them [4, 8].

Reliable tracking requires multiple spatial and temporal
image cues. While many systems combine cues such as
motion, color, or stereo for person detection and tracking
[3, 24], the formulation and combination of these cues is of-
ten ad hoc. Additionally, the appearance of people changes
in complex ways and previous approaches have used highly
simplified noise models. In contrast, the learned models
here account for the variation observed in training data.
These edge, ridge, and motion models are then combined
in a Bayesian framework.

Similar in spirit is the tracking work of Sullivan et
al. [22, 23] who model the distributions of filter responses
for a general background and a particular foreground where
the foreground is represented by a generalized template.
Given these, they determine if an image patch is back-
ground, foreground, or on the boundary by matching the
distribution of filter responses in the patch with a learned
mixture model of background and foreground filter re-
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sponses. Our work differs in several ways: We model the
ratio between the likelihoods for model foreground points
being foreground and background, rather than evaluating
the likelihood for model background and foreground in
evenly distributed locations in the image. We use several
different filter responses, and we use steerable filters [5] in-
stead of isotropic ones. Furthermore, our objects (human
limbs) are, in the general case, too varied in appearance to
be modeled by generalized templates.

3 Learning Human and Scene Models
A human is modeled as a 3-dimensional articulated assem-
bly of truncated cones. The model parameters,�, consist
of the relative angles between the limbs (cones) and their
angular velocities along with the global position and rota-
tion of the assembly and its translational and angular ve-
locity [18]. In general we may also have background pa-
rameters� that describe, for example, the affine motion of
the background. For this paper we treat the background im-
age structure and motion as unknown and leave the explicit
estimation of the background parameters for future work.

The model parameters,� determinefxfg, the set of im-
age locations corresponding to the foreground (person). Let
the set of background pixels befxbg = fxg�fxfg, where
fxg is the set of all pixels.1 Letp(f j �) be the likelihood of
observing filter responsesf given the parameters,�, of the
foreground object. Given appropriately sampled setsfxg,
fxbg, andfxfg we treat the filter responses at all pixels as
independent and write the likelihood as

p(f j �) =
Y

x2fxbg

po�(f(x))
Y

x2fxfg

pon(f(x;�)) =

Q
x2fxg po�(f(x))Q
x2fxfg

po�(f(x))

Y
x2fxfg

pon(f(x;�))

sincefxbg = fxg � fxfg. po� represents the probability
of observing the filter responsef(x) given that pixelx is
in the background, whilepon represents the probability of
observingf(x;�) given thatx is in the foreground and the
model parameters are�.

Note
Q
x2fxg po�(f(x)) is independent of�. We call

this constant term�1 and simplify the likelihood as

p(f j �) = �1
Y

x2fxfg

pon(f(x;�))

po�(f(x))
: (1)

This is the normalized ratio of the probability that the fore-
ground pixels are explained by the person model versus that
they are explained by a generic background model.

1The spatial and temporal statistics of neighboring pixels are unlikely
to be independent [23]. We therefore approximate the setfxfg with a
randomly sampled subset to approximate pixel independence. The number
of samples in the foreground is always the same and covers the visible parts
of the human model.

The filter responses,f , are computed from a set of filters
that are chosen to capture the spatial and temporal appear-
ance of people and natural scenes. In particular, the filter re-
sponses include edge responsesfe, ridge responsesfr and
the motion responsesfm, so thatf = [fe; fr; fm].

Responses are computed at several different image
scales. For this purpose, a Gaussian image pyramid is con-
structed. The lowest level,0, is the original image, while
pyramid level� is obtained from� � 1 by convolving with
a Gaussian filter of standard deviation 1 and subsampling.

We assume that the responses from the different filters
are independent for a given pixel locationx. Furthermore,
the responses for edge and motion at different image levels
� are considered independent.2 The response for ridges is
only observed at one scale, depending on the size of the
limb (this is discussed further in section 3.2).

Thus, the likelihood can be written as

p(f j �) = p(fe j �) p(fr j �) p(fm j �) =

�1

sY
�=0

0
@ Y
x2fxeg

peon(fe(x;�; �))

peo�(fe(x; �))
�

Y
x2fxmg

pmon(fm(x;�; �))

pmo�(fm(x; �))

1
A �

Y
x2fxrg

pron(fr(x;�; �(�))

pro�(fr(x; �(�)))
(2)

wheres = 3 corresponds to four levels in the pyramid, the
edge point setfxeg � fxfg contains sampled pixel loca-
tions on the model edges (i.e. on the borders of the limbs),
and the motion and ridge point setsfxmg and fxrg are
equal tofxfg.3

The individual likelihood distributionspzon and pzo�
(wherez = e; r;m) are non-Gaussian and are learned from
training data. This training set consists of approximately
150 images and short sequences of people, in which the
outline of torso, head, upper and lower arms and legs are
marked manually. Examples of marked training images are
given in Figure 2. The marked edges serve as ground truth
for the learning of edge responses on and off actual limb
edges. The area spanned by the two edges is computed from
the marked edges an is used for learning of ridge responses
on the limbs. The area spanned by the two edges is also
warped between consecutive frames in sequences. The dis-
tribution of temporal differences between the warped image
pairs is then learned.

2This is a very crude assumption as edge responses are highly cor-
related across scale. Further work needs to be done to model these
correlations.

3The point setsfxmg andfxrg need not be equal tofxfg. For ex-
ample, it could be beneficial to exclude points near the edges from these
sets. Note that the cardinality of these sets defines an implicit weighting
of the likelihood terms of each cue.
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Figure 2:Example images from the training set with limb edges
manually marked.

Figure 3: Left: Horizontal gradient image. Right: Contrast-
normalized horizontal gradient image, used for learning.

3.1 Edge Cue
The edge responsefe is a function of [fx; fy], the first
derivatives of the image brightness function in the horizon-
tal and vertical directions. Edges are modeled in terms of
these filter responses at the four finest levels� = 0; 1; 2; 3
in the image pyramid.

More specifically, the image response for an edge of ori-
entation� at pyramid level� is formulated as the image
gradient perpendicular to the edge orientation:

fe(x; �; �) = sin � fx(x; �) � cos � fy(x; �) (3)

where fx(x; �) and fy(x; �) are the image gradients at
pyramid level� and image positionx.

For our purposes, the most interesting property of an
edge or a ridge is not its absolute contrast, but rather the
scale and orientation of the feature. Therefore, before com-
puting image derivatives at a locationx = [x; y], we per-
form local contrast normalization using a hyperbolic tan-
gent nonlinearity [19]. Regions with high contrast will be
normalized to a contrast of 1, while areas of low contrast are
normalized to contrast of 0 (Figure 3). The resulting filter
responses then depend more on orientation than on contrast.

Our experiments indicate that the edge response is in-
dependent of scale [19]. We therefore build a scale-
independent empirical edge likelihood distribution using
filter responses from multiple scales.
Foreground. For each of the images in the training set
(Figure 2), the edge orientation�l of each limbl is com-
puted from the manually marked edges. For all pyramid
levels, locationsx are sampled on the marked edge, with
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Figure 4: Edge filter responses. Left: Log likelihood for back-
ground,peo�(fe), and thigh,peon(fe j thigh). Right: Log ratio

between distributions,log( p
e
on

(fe j thigh)

pe
off

(fe)
).

� = �l. For each limb,l, a separate histogram is con-
structed, of steered edge responsesfe(x; �l; �) [5], for the
sampled foreground edge locations. The normalized his-
togram for each limbl representspeon(fe j l), the probability
function of edge responsefe conditioned on limbl, given
that the limb projects to an actual limb. Given an observed
responsefe(x; �l; �), the likelihood of observing this re-
sponse in the foreground (on limbl) is peon(fe(x; �l; �) j l).

The log likelihood,log(peon), for the thigh is shown in
Figure 4 (similar distributions are obtained for the other
limbs).
Background. The background edge distribution is learn-
ed from a large set of general images with and without peo-
ple. A normalized histogram of responsesfe(x; �; �) is cre-
ated by sampling image locationsx and orientations� uni-
formly at all pyramid levels�. This givespeo�(fe), the prob-
ability distribution over edge responses, given that we look
at locations and orientations thatdo not correspond tothe
edges of human limbs. According to this distribution, the
likelihood of observing a certain edge responsefe(x; �; �)
in the background ispeo�(fe(x; �; �)). Figure 4 shows the
logarithm of this distribution.

The background is more likely than the limb edge to have
low contrast and hence the background distribution has a
higher peak near 0. Large filter responses are also less likely
than for limbs, which means that the background distribu-
tion has very low values when the response approaches 1.
Therefore, if a large filter response is observed, the cor-
responding image location will have higher probability of
originating from a limb boundary, and the log ratio (Fig-
ure 4) between foreground and background likelihood will
be larger than 0. If the response is low, the probability of
the pixel belonging to the background is high, and the ratio
will be smaller than 0. Note that the distributions here have
different shapes than those learned by others [10, 11, 26]
due, in part, to the effects of contrast normalization.

3.2 Ridge Cue
In the same spirit as with edge cues, we use the second
derivatives of the image in the direction of the model ridge
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Figure 5:Ridge filter responses. Left: Log likelihoods for back-
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for comparing real-world and model ridges. The filter re-
sponse used isfr, a function of[fxx; fxy; fyy], the second
derivatives of the brightness function in the horizontal and
vertical directions.

A ridge is an elongated structure in the image. Follow-
ing Lindeberg [13], we define ridge response as the second
gradient perpendicular to the ridge (jf��j), minus the sec-
ond gradient parallel to the ridge (jf(���

2
)(���

2
)j). This

will suppress other non-elongated maxima in the image
(“blobs”). More specifically, the image response for a ridge
of orientation�, at pyramid level� is formulated as

fr(x; �; �) = j sin2 � fxx(x; �) + cos2 � fyy(x; �) �

2 sin � cos � fxy(x; �)j �

j cos2 � fxx(x; �) + sin2 � fyy(x; �) +

2 sin � cos � fxy(x; �)j : (4)

Since ridges are highly scale-dependent [13] we do not
expect a strong filter response at scales other than the one
corresponding to the width of the limb in the image [19]. In
training, we therefore only consider scales corresponding
to the distance between the manually marked edges of the
limb. For background training however, all four scales are
considered as before.

We observe [19] that, as for edges, the distributions are
independent of image scale, and hence a scale-independent
empirical distribution is learned from responses at all levels.
Foreground. For each of the images in the training set
(Figure 2), the scale�l and direction�l of each limbl are
computed from the manually marked edges. We sample
locationsx on the limb foreground, with� = �l and� = �l.
A discrete probability function,pron(fr j l) is constructed as
for edges (Figure 5).
Background. As with edges, an empirical distribution of
ridge responses,fr(x; �; �), in the background is learned
for randomly sampled orientations, scales and image loca-
tions in the training set. The normalized distribution repre-
sentspo�(fr), the probability distribution over ridge filter
responses of locations off human limbs (Figure 5).

While the background distribution looks similar to the
edge response distribution, the foreground distributions is
asymmetric about zero. Negative responses, corresponding
to ridges orthogonal to the predicted orientation�, are un-
likely to come from limbs and, hence, the larger the filter
response, the more likely it is to come from the foreground.
This is reflected in the likelihood ratio (Figure 5).

3.3 Motion Cue
A measure of how well the model parameters,�, fit the im-
age data at timet is how well they predict the appearance
of the human and the background given their appearance in
the previous time step. In other words, we want to mea-
sure the error in predicting the image at timet based on the
parameters� and the image at timet � 1. The motion re-
sponse at timet, fm;t, is the pixel difference between the
unfiltered imageIt, and the imageIt�1, warped according
to the body parameters�t.

The 3D motion of the human model defines the 2D mo-
tion in the foreground portion,fxfg, of the image. Thus,
the pixelxt�1 in fxf;t�1g at timet� 1 maps to some pixel
locationxt in fxf;tg if the limb surface point correspond-
ing to both these image points is non-occluded at timet� 1
and t. The pixel correspondences can be computed from
�t.

Given two positionsxt�1 andxt, corresponding to the
same limb surface location, the motion response at timet

and pyramid level� is formulated as

fm;t(xt�1;xt; �) = It(xt; �)� It�1(xt�1; �) (5)

Note that this response function is only valid for positions
xt on the foreground (limb area). Also note that the stan-
dard brightness constancy assumption for optical flow as-
sumes that these temporal differences are modeled by a
Gaussian distribution [21].

Since the motion in the background is unknown, the
background motion response is defined asfm;t(xt;xt; �),
i.e. the temporal difference between the un-warped images
at timet�1 andt. By training on both stationary and mov-
ing sequences, this probability distribution models errors
originating from moving texture as well as camera noise.

Temporal pixel differences are generally lower at coarse
spatial scales since the effects of noise and aliasing are di-
minished. Therefore, unlike edge and ridge responses, tem-
poral differences are not invariant to scale and we learn sep-
arate distributions for different image scales [19].

Note that it is not possible to pre-compute the ratio be-
tween the foreground and background likelihood distribu-
tions. This is because the filter responses are based on
the underlying motion models which are different for fore-
ground and background. Therefore, it is necessary to index
into both the foreground and background distributions sep-
arately, and then take the ratio between the two likelihoods
obtained.
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Figure 6: Motion responses. Learned log likelihoods for
foreground pixel differences given known optical flow between
two consecutive frames Left: Log likelihood for the thigh,
log(pmon(fm j thigh; �)) at image levels� = 0; 1; 2; 3. Right: Log
likelihood for the background,log(pmo�(fm j �)), at image levels
� = 0; 1; 2; 3. Note that we can not take the ratio between these
distributions, since the responsefm is computed from different
pixel differences in the background and on the limbs, originating
from different motion models.

Foreground. Given training sequences, approximately
35 pairs of consecutive frames are used to learn the dis-
tributions of temporal foreground differences. Foreground
locationsxt are sampled randomly, and the corresponding
locationsxt�1 in the frame before are computed fromxt

and the marked edges. The differences at all image levels�,
fm;t(xt�1;xt; �), are collected into histograms separately
for each limbl and each image scale�. The normalized
histograms representpmon(fm j l; �).

Given a certain observed responsefm;t(xt�1;xt; �), the
likelihood of observing this response in the foreground (on
limb l and level�) is pmon(fm;t(xt�1;xt; �) j l; �). The log
likelihood,log(pmon), for the thigh is shown in Figure 6.
Background. Consecutive frames from sequences con-
taining moving objects and either a static or moving cam-
era are used as training data for the background distri-
butions. Locationsxt are sampled, and histograms of
fm;t(xt;xt; �) are computed, one for each scale�. The
normalized histograms representp(fm j �), the probabil-
ity distribution over temporal differences in general back-
grounds (Figure 6).

4 Bayesian Tracking
Human tracking is formulated as an inference problem [12].
We adopt a Bayesian formulation and estimate the param-
eters of the body model over time using particle filter-
ing [7, 8]. We briefly sketch the method here; for details
the reader is referred to [18].

At each time instantt, the configuration of the human
model is given by�t. Prior knowledge about the dynamics
of the human body is used to generate hypotheses about the
configuration at timet given the configuration at the previ-
ous time instant. The hypotheses are then compared with
the sequence of filter images up to timet, ~ft. By Bayes’
rule, the posterior probability of the model parameters,�,

given~ft, p(�t j
~ft) =

�2 p(ft j �t)

Z
p(�t j �t�1)p(�t�1 j

~ft�1)d�t�1 (6)

where�2 is a normalizing constant that does not depend on
the state variables.

The posterior distributionp(�t j
~ft) is modeled using a

large number of samples where samples correspond to pos-
sible poses of the body,�it, and their normalized likelihood.
We employ between103 and104 samples to represent the
posterior distribution.

The posterior distribution can be propagated and updated
over time using Equation (6) [7, 8]. This is done by draw-
ing samples�i

t�1 according to their posterior probability at
time t � 1. These samples are then propagated in time by
sampling from the temporal priorp(�t j �t�1), which is ei-
ther an activity dependent model (e.g. walking motion [18])
or a general model of smooth motion where all angles in the
body are assumed independent. Details of the human mo-
tion models are described in [15, 18].

The posterior distribution is extremely peaked (i.e. the
difference between the smallest and largest likelihood is
very large) and thus, only a few of the samples from the
posterior will be selected multiple times. Sampling from
a broader distribution would result in more stable tracking,
since more samples survive in each time step. Hence, in-
stead of drawing samples from the posterior at timet � 1,
we sample from a proposal distribution that is a smoothed
(approximate) version of the posterior. Using importance
sampling [9], the samples are reweighted by a factor rep-
resenting the probability that this particle could have been
generated by the true posterior at timet� 1, divided by the
probability with which it was generated by the smoothed
posterior at timet� 1.

For each sample�i
t in the propagated distribution, the

likelihood is evaluated. A set of pointsfxi
f;tg is randomly

chosen from the model foreground, and the likelihood ra-
tio between each point being foreground and background
(Equation (2)) is computed. For the edge and motion cues,
this is performed at several scales.

Since all configuration parameters in� are sampled to-
gether rather than hierarchically, occluded areas are auto-
matically computed and removed from consideration in the
likelihood evaluation.

5 Tracking Results
The performance of the likelihood model using the learned
distributions was tested for different tracking tasks. A gen-
eral smooth motion model was used [18]. The test se-
quences contained clutter, no special clothing, and no spe-
cial backgrounds. The experiments use monocular gray-
scale sequences with both static and moving cameras. With
5000 samples and all cues, the Java implementation takes
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Figure 7:Tracking an arm, moving camera, 5000 samples, with different cues. The columns show frames 0, 10, 20, 30, 40 and 50 of the
sequence. In each frame, the expected value of from the posterior distribution over� is projected into the image. Row 1: Only flow cue.
Row 2: Only edge cue. Row 3: Only ridge cue. Row 4: All cues.

approximately 7 minutes per frame on a 400 MHz Pentium
III processor.

We first show how the tracking benefits from combining
different image cues. Figure 7 shows four different tracking
results for the same sequence. The model is initialized with
a Gaussian distribution around a manually selected set of
start parameters�. Camera translation during the sequence
causes motion of both the foreground and the background.

The first row shows tracking results using only the mo-
tion cue. As shown in [18] motion is an effective cue for
tracking, however, in this example, the 3D structure is in-
correctly estimated due to drift. The edge cue (row 2), does
not suffer from the drift problem, but the edge information
at the boundaries of the arm is very sparse and the model
is caught in local maxima. The ridge cue is even less con-
straining (row 3) and the model has too little information to
track the arm properly.

Row 4 shows the tracking result using all three cues to-
gether. We see that the tracking is qualitatively more accu-
rate than when using any of the three cues separately. While
the use of more samples would improve the performance of
the individual cues, the benefit of the combined likelihood
model is that it constrains the posterior and allows the num-
ber of samples to be reduced.

Next, we show an example of tracking two arms (Fig-
ure 8). In this example, the right arm is partly occluded
by the left arm. Since each sample represents a generative

prediction of the limbs in the scene, it is straightforward to
predict occluded regions. The likelihood computations are
then performed only on the visible surface points.

6 Conclusions
The two main contributions of this paper are the learning of
image statistics of people and scenes, in terms of motion,
edge, and ridge filter responses, and the application of these
models to tracking of humans in cluttered environments. By
modeling the likelihood of observing a human in terms of
a foreground-background ratio we are able to track human
limbs in scenes with both clutter and a moving camera.

The edge and ridge cues provide fairly sparse informa-
tion about the limb appearance. To capture richer informa-
tion, the likelihood model could be extended to represent
statistical models of color and texture. One approach is to
match distributions on the human using the Bhattacharyya
distance [2].

We also would like a more explicit background model.
Modeling the motion of the background would substan-
tially constrain the tracking of the foreground. We are cur-
rently exploring the estimation of background motion using
global, parametric, models such as affine or planar motion.
We will need to learn background motion distributions for
stabilized sequences of this form.

While the Bayesian formulation provides a framework
for combining different cues, the issue of their relative
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Figure 8:Tracking two crossing arms, 3000 samples. The images show the expected value of the posterior distribution in frame 0, 20, 40,
60, 80 and 100 of the sequence.

weighting requires further investigation. The issue is re-
lated to the spatial dependance of filter responses and here
the weighting is implicitly determined by the number of
samples chosen for each cue.

While preliminary, our experimental results suggest that
learned models of object-specific and general image statis-
tics can be exploited for Bayesian tracking. In contrast to
the situation in the speech recognition community, data col-
lection with ground truth remains a significant hurdle for
learning in applications such as people tracking. We be-
lieve that building on the careful analysis of image statistics
currently under way in the literature [10, 11, 14, 20, 26] will
lead to more robust algorithms. Towards that end, training
data and ground truth used here can be downloaded from
http://www.nada.kth.se/˜hedvig/data.html .
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