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Abstract

While the problem of tracking 3D human motion has
been widely studied, most approaches have assumed that
the person is isolated and not interacting with the environ-
ment. Environmental constraints, however, can greatly con-
strain and simplify the tracking problem. The most stud-
ied constraints involve gravity and contact with the ground
plane. We go further to consider interaction with objects in
the environment. In many cases, tracking rigid environmen-
tal objects is simpler than tracking high-dimensional hu-
man motion. When a human is in contact with objects in the
world, their poses constrain the pose of body, essentially re-
moving degrees of freedom. Thus what would appear to be
a harder problem, combining object and human tracking, is
actually simpler. We use a standard formulation of the body
tracking problem but add an explicit model of contact with
objects. We find that constraints from the world make it pos-
sible to track complex articulated human motion in 3D from
a monocular camera.

1. Introduction

An overwhelming majority of human activities are in-
teractive in the sense that they relate to the scene around
the human. For example, people are supported by the floor,
chairs, ladders, etc., they avoid obstacles, and they push,
pull and grasp objects. This suggests that tracking and
recognition of human motion from images would benefit
from employing contextual information about the scene in-
cluding the objects in it as well as other humans. Despite
this, visual analysis of human activity has rarely taken scene
context into account [16]. Algorithms for 3D human track-
ing, in particular, often view the human body in isolation,
ignoring even the common interactions with the ground
plane. We argue that, not only is it important to model inter-
actions between humans and objects, but it makes tracking
human motion easier.

Without loss of generality, we focus on the case of
monocular tracking of a human interacting with a single

Figure 1. Contact with objects of known pose constrains the space
of possible body poses. (a) Unconstrained. (b) One hand con-
strained. (c) Both hands constrained. This figure shows the prin-
ciples behind our approach, using a 2D model for visibility. The
actual model used in the experiments is defined in 3D.

rigid object in the scene. 3D human tracking — especially
from a single view — is understood to be a difficult prob-
lem due to the high-dimensional, non-rigid, and articulated
structure of the human body. Object detection and tracking,
in contrast is often much simpler. Recent advances in ob-
ject recognition show that, for wide classes of rigid objects,
reliable detectors can be built. Moreover, for known rigid
objects, good solutions exist for real-time pose estimation
and tracking. If objects can be detected and tracked, we
argue that this can simplify the human tracking problem.
Specifically we consider what happens when a human
holds a rigid object in their hand. If the pose of the object
can be determined, along with some details of the grasp,
then the object pose can constrain the pose of the hand. This
constraint then propagates along the kinematic body tree to
limit the possible range of body poses. The idea is summa-
rized in Figure 1. The key insight is that we treat objects as
“extra body parts” that may, or may not, be attached to the
body at a given time. When attached, the pose of the object
and the relative degrees of freedom between the object and
the human hand constrain the possible body poses.
Consider the problem of estimating the ulnar-radial ro-
tation of the forearm in video; often this degree of freedom
is poorly constrained by image observations. If the person
now grasps a baseball bat, the pose of the bat greatly con-
strains the possible forearm rotation. Unlike previous mod-
els, our state space includes, not only the joints of the body,



but contact relationships between body parts and scene ob-
jects. Of course different types of contact are possible in-
cluding various types of attachment which imply different
kinematic constraints. Here we focus on two simple cases:
1) contact proximity, in which one or both hands are at-
tached to an object, constraining their distance from it but
not the relative orientation; 2) interpenetration, in which the
body is constrained to not pass through other known objects.
Our implementation extends a standard kinematic 3D body
tracker using annealed particle filtering for optimization [8].

We demonstrate that information about object pose and
contact can be incorporated in a kinematic tree body tracker
and that doing so improves the accuracy of body tracking
in challenging situations. The key observation is that object
tracking is often easier than body tracking. By explicitly
formulating body-object contact relationships in the state
space, we can infer contact and constrain the body kinemat-
ics. Viewed another way, grasped objects can be thought
of as “natural markers” that can be tracked to simplify the
body pose estimation problem. We test our method in the
case of single-view 3D reconstruction of complex articu-
lated human motion without priors.

2. Related Work

Tracking and reconstruction of articulated human motion
in 3D is a challenging problem that has been investigated
thoroughly during the last decade [I, 2, 7, 8, 17, 19, 21,

, 24]. Given the difficulty of tracking high-dimensional
body structure, present methods all impose limitations to
constrain the optimization, either in their assumptions about
image appearance (e.g. static background), the imaging en-
vironment (e.g. multiple calibrated cameras), the range of
allowed motions, or in the number of degrees of freedom
in the human body model. Here we explore different con-
straints from objects in the environment.

Common to almost all human tracking methods is that
the human is considered in isolation. There has been work
on using human movement to recognize objects (e.g. [9])
but less on using object recognition to constrain the in-
terpretation of human movement. Notable exceptions are
methods that exploit human-scene context for recognition
of human activity involving objects [10, 12, 15, 13]. There,
the human and the scene are related on a semantic level, in
that the object type constrains the activity and vice versa.

Several methods have explored human interactions with
the environment and how these affect human appearance
and movement. Bandouch and Beetz [3] model occlusion of
the human from complex objects in the scene. Others focus
on contact with the ground plane [26, 27] and constraints
on human motion from the spatial layout of the scene [14].
Yamamoto and Yagishita [26] in particular propose an in-
cremental 3D body tracking method that also constrains the
position, velocity and acceleration of the body using scene

constraints. They consider several highly constrained sit-
uations, such as constraining human arm motion given the
known trajectory of a door knob and the assumption of con-
tact, or tracking a skier with constraints on foot position,
orientation and velocity relative to the known ski slope. We
go beyond their work to actually track the movement of an
object in the scene and to infer the contact relationships be-
tween the human and the object. These are critical steps for
making more general scene constraints practical.

Dynamical models of human activity have also been used
to incorporate interactions of the body with the world (again
mostly the ground plane) [5, 6, 25]. The approach of Von-
drak et al. [25] is promising because they exploit a dynam-
ics simulator that acts as a prior on human movement. If
environmental structure is available, this general approach
can simulate interactions between the body and the world.
Our approach differs in that we focus on constraining kine-
matics rather than dynamics.

We propose to aid human tracking by taking objects in
the human’s hands into regard. A first step in this direction
is taken by Urtasun et al. [23] who address the special case
of tracking a golfer’s hands by robustly tracking the club
through the swing. They note, as do we, that the problem
of rigid-object motion reconstruction is vastly easier than
that of reconstructing human motion. Their work focuses
on the case of monocular tracking of a stylized movement
for which they have a strong model. Specifically they use
the position of the golf club to constrain the temporal loca-
tion of the pose over the swing movement. A similar idea is
exploited by Gupta et al. [1 1] who employ contextual con-
straints in motion reconstruction, such as the speed and di-
rection of a ball in tennis forehand reconstruction, or the
height of a chair in reconstruction of a sitting action.

The difference between both these approaches and our
method is in the way the contextual object information is
exploited. While they employ the object observations in
a discriminative manner, we explicitly take object pose into
account in a generative model of human pose. They also ex-
ploit strong prior models of temporal movement and model
how the external environment interacts with these models.
In contrast, we forgo the temporal prior; this allows us to
track previously unseen movements.

Similarly to us, Rosenhahn er al. [18] model known
kinematic constraints from objects in the world. They use
a region-based tracker which allows for a compact analytic
formulation of the constraints; we instead use a numerical
method. The advantage of our kinematic chain tracker is
its lower number of degrees of freedom, which allows for
tracking with less image information.

3. Articulated Tracking

To study the effect of object constraints we use a simple,
standard and well understood tracking framework which we



then modify. The observations, of course, apply to more
sophisticated tracking frameworks as well.

The human is modeled as an assembly of connected trun-
cated cones representing different limbs. The articulated
pose of the human model at time ¢ is defined by 40 parame-
ters, a;; these include pose with respect to a global coordi-
nate system, and 34 Euler angles defining the relative pose
of the limbs. From o, it is possible to derive Ttg l, the trans-
formation matrix from the global coordinate system to the
local coordinate system of each limb [. This makes it possi-
ble to determine the position of all surface points on the hu-
man model in the global coordinate system as p¢ = T9'p'.

3D articulated human tracking is a problem of time-
incremental search in a very high-dimensional state space
So. It is well studied (Section 2), and several differ-
ent methods exist. We here use annealed particle filtering
(APF) [8], which searches for the mode of a probability
density function over pose o given the history of image
observations D1, represented as:

p(a | Di)
P(Dt | Oét)/ p(at \ at71)p(at71 \D1:t71)d0tt (@)

Sa

The posterior model p(a;—1 |D1.4—1) is crudely repre-
sented by a collection of N samples, or particles a}_;, each
with a weight w{_,. At a given timestep, N new particles
are sampled from the previous weighted set using Monte
Carlo sampling to produce a new set of unweighted parti-
cles {&! ,}N . Each particle is then propagated in time
by sampling from the temporal update model p(c; | &),
producing a new unweighted set {c!}¥ ;. Each particle is
then evaluated against the observed data Dy, to compute a
weight using the likelihood model w! = p(D; | al). The
weights are normalized to sum to 1.

In each timestep, the APF weights and resamples the
posterior distribution A times using smoothed versions of
the likelihood distribution, in a simulated annealing manner
(hence the name). This is further described below.

3.1. Temporal Update Model

p(ay | @g—1) is defined using a zero-order linear motion
model with Gaussian noise with covariance C:

a=a;1+v,v~N0OC). 2)

The covariance matrix C' is learned from the motion cap-
ture data in the HumanEva dataset [20], containing a range
of different human motions. In the model there are no de-
pendencies between different angles, i.e., C' is diagonal.
There is a trade-off between tracking robustness and
generality of the tracker. This temporal update model is
very general, and allows for previously unobserved motion
types, in contrast to action-specific motion models learned

t

(a) Dy (b) ﬁ(at) (¢) D¢, D(exy) difference

Figure 2. Image likelihood. (a) Observed human silhouette. (b)

Silhouette renAdered using the state a. (c) Silhouette diffAerence:

o = T(DtUD(at)),t:DtmD(Clt), :th(Dt ﬂD(at)),
= D(a¢) — (Dt N D(a)). Best viewed in color.

from training data, e.g. [23]. However, it does not guide the
tracking to any large degree.

3.2. Image Likelihood Model

The image observation D, consists of the human silhou-
ette in a single image at time ¢. In the generative likelihood
model p(D; | o), this is compared to a silhouette D(cx;)
rendered by projecting all body parts onto the image plane
(Figure 2). The likelihood of a certain D; given o is

—Bal _\Dtﬂl?(ﬂt)l)
Wep X E ID;UD (o)

3)

where 51 > (2 > ... > (34 are the smoothing parameters
at different annealing levels a. During each timestep, the
filter goes through all A levels in turn with Monte Carlo
resampling between each level.

It should be noted that monocular tracking with an artic-
ulated 3D model and a general temporal update model like
the one above, using silhouette information only, is a highly
under-determined problem. In this paper, we do not study
the performance of this tracker per se, but rather how the
performance of a weakly constrained general tracker can be
improved by including object contact information.

4. Human-Object Contact in Tracking

If the human holds an object in their hands, it will affect
the image likelihood estimation since the human model can
not explain all parts of the observed silhouette (Section 3.2).
However, if the object instead is explicitly represented, it
can be used to help the tracking. Object pose information
can be employed in two different manners: 1) By explaining
non-human foreground areas in the likelihood estimation;
2) By constraining the human body pose estimation during
temporal update.

The underlying assumption here is that the grasped ob-
jectis easier to track. This is true in general, since the object
has fewer degrees of freedom (6 if rigid), and most often
is easier to model visually thanks to straight edges, known
texture etc. We do not further consider the object tracking
problem here, concentrating instead on how the object pose
can help the human tracking.



4.1. Human-Object Likelihood

As with the human tracking, (rigid) object tracking gives
at each timestep ¢ the transformation matrix 77’ from the
global coordinate system to the local object coordinate sys-
tem. This makes it possible to determine the global position
of object surface points as t{ = T7°t°. The object sur-
face can thus be projected onto the image plane, rendering
a silhouette D (o, T7°) jointly with the human model. This
enhanced silhouette estimate can be employed in the human
tracker likelihood model, Eq (3).

4.2. Human-Object Contact Constraints

Although it is possible to model contact with objects in
the world at all points on the human, we currently con-
sider hand-object contact (grasping) only. We furthermore
limit ourselves to one elongated object. It is quite straight-
forward to extend the reasoning to two or more objects.

With one elongated object, the possible human-object
contact states are 1) no object contact, 2) left hand-object
contact, 3) right hand-object contact, 4) both hands-object
contact. This can be encoded with two extra dimensions in
the state c;: left hand contact point A; and right hand con-
tact point p;, each with the values NaN in case of no contact.
The parameter A\;_; is propagated as:

if )\t—l = NaN
\ — 2z, hand — object dist < Ty
7\ NaN, otherwise
else

N — NaN, W/ prob Pletgo @
¢ A1+ v, v~ N(0,0), otherwise

where 2 is the Z coordinate of the contact point in the ob-
ject coordinate system, pietg, 1S the probability of letting go
of the stick, o is a standard deviation describing how fast
the hands can slide along the object, and T is a threshold.
We discuss below how the hand-object distance is found.
The parameter p;_1 is propagated similarly.

Assume now that the human is holding the object in the
left hand. A point on the human’s left hand is then in contact
with a point on the surface of the object. If the object pose
is known, this poses a kinematic constraint on the human
model. The angles that fulfill the kinematic constraint lie
on a 15D manifold in the 18D space spanned by the human
torso and arm angles together with the position of contact
on the object surface. This can be encoded in the tempo-
ral update model so that angles are only propagated on this
manifold:

oy = K:(at—hTtgoaV) (5)

where K is a non-linear function encoding the kinematic
constraint, and v is a noise term.

We take a rejection-sampling-based approach to solving
for the kinematic constraint. We define an error for the left
side as

By = | T — T8 (©6)

where T/ s the global to left hand transformation, t'* the
point of object contact in the left hand coordinate system,
and t¢ = [0,0, 22, 1]7 the point of left hand contact in the
object coordinate system. For each particle &Ll, all an-
gles are propagated by random sampling according to Eq
(2). Until the error EY < T, the sample « is rejected
and a new one drawn from the temporal model. This cor-
responds to rejecting those samples that move too far away
from the kinematic constraint manifold in the state space.
An analogous error, F,, is defined for the right side. The
kinematic constraints arising from right arm-object contact
are accounted for in the same manner.

In addition to the kinematic constraints imposed by
known grasping points, constraints are also introduced from
the assumption that the object can not pass trough the hu-
man limbs, and vice versa. Object-body intersections are
easily computed. The inter-penetration constraint is imple-
mented in the same manner as the kinematic constraints; by
rejecting and resampling the particles that do not obey it.

5. Experiments

The method is implemented in Matlab and evaluated on
calibrated monocular image sequences of two different hu-
mans holding a stick, performing motions of varying com-
plexity.! The performance of the human tracker, taking
stick 3D pose into account, is evaluated against a baseline
consisting of the same human tracker but with no object
context. In all experiments the number of particles was
N = 100. The human model is initialized with the true
pose and true hand-object contact state in the first frame of
each sequence.

Since the stick is thin in comparison to the limbs, the
silhouette likelihood measure (Figure 2a) is not greatly af-
fected by the stick. The effects on the likelihood of incorpo-
rating the object in the rendered silhouette (Figure 2b) are
therefore not evaluated here. The likelihood is in all cases
computed without taking the stick into consideration. In-
stead, the experiments evaluate how taking grasped objects
into account increases the accuracy and robustness of track-
ing complex human motion.

In the experiments, the rigid object is also tracked using
an APF as described in Section 3. The object (a stick) is
modeled as one cylinder with 6 degrees of freedom. Since
object tracking is not the focus of this paper we use all 8
camera views and 500 particles to obtain accurate object
pose. The same silhouette likelihood is used as is used for

IThe proportions of the human limbs in the cylindrical model vary
slightly between different subjects.
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the human body. As discussed in the Conclusions, we are
currently developing a more sophisticated object tracking.

The probability of letting go of the stick with either hand
iS Pletgo = 0.01. According to Eq (4), this means that 1% of
the particles in each resampling are released from the kine-
matic constraints for each hand. If those hypotheses corre-
spond to reality, i.e., if the human has let go of the object
with that hand, the hypothesized hand positions are free to
move away from the object. If they move to the new ac-
tual hand position, and receive a higher likelihood weight,
they will be more likely to survive resampling than particles
that still encode hand-object contact. Similarly, according
to Eq (4), particles that have hand positions closer to the
object than T = 100mm will be tied to the object. If this
assumption is true, i.e., if the human has grasped the ob-
ject, those hypothes will move with the object and receive a
higher likelihood weight than particles that move randomly.

Tracking accuracy is evaluated in terms of negative log
likelihood of the estimated pose oy in 7 image views not

used for tracking. Thus, the reconstruction error for oy is

1 27: Do D¥(ov)|

= — = 7
§ Dy UD"(a) @

u=1
where DY is the observed silhouette in unseen view u, and
D*(ay) is the silhouette in view u generated from .
Image data was captured using 8 Point Grey Grasshopper
cameras (GRAS-20S4C), hardware synchronized at either
15 or 30 fps (4D View Solutions, France). One of the image
views was used for monocular human tracking, while the
others were used for evaluation of the tracking performance.
Image resolution was 1624x1224 pixels. Calibration was
performed using the Matlab Calibration Toolbox [4].

5.1. Global Pose

In this experiment, we use a sequence showing a human
walking, carrying a stick in their right hand. Figure 3 shows
the tracking result with and without object context.”

2For videos of all results see www.csc.kth.se/~hedvig/cvprl0.html
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After 20 frames, the tracking error (Figure 3c), when ob-
ject context is used, is about half of the error in the base-
line case (no object context). Visual inspection of some of
the unseen views (Figure 3a,b,d,e, lower views) shows the
global position and vertical orientation if the torso is better
estimated when object context is used; the 3D object pose
helps disambiguate the human-camera distance estimate.

However, the estimate of leg pose relative to the torso is
not greatly improved by object context; the left/right ambi-
guity in the silhouette (Figure 3d,e, upper views) causes a
mix-up of the left and right legs in the 3D model, both with
and without object context. One way to address this prob-
lem (apart from an action specific motion model, a more
elaborate likelihood model, or a more detailed body model)
is to include information of contact between the feet and the
ground surface [26, 27].

The probability of hand-object contact is correctly esti-
mated (Figure 3f), apart from a deviation in frame 47 due to
failure in the object tracking.

5.2. Modeling Grasping and Letting Go

The sequence used in this experiment depicts a human
holding a stick in their right hand (frame 1), grasping the
stick with their left hand (frame 11), then moving the stick
to the right (frame 31). Figure 4 shows the tracking result.

Firstly it can be noted that the hand-object contact is
modeled correctly (Figure 4f), with a lag of approximately
1 frame when the left hand grasps the stick in frame 11.

Secondly, the hand-object contact constraint improves
the accuracy of the arm pose estimation (Figure 4d,e), as
can be expected. The reconstruction error (Figure 4c) is sig-
nificantly lower when object context is used, partly due to
the improved arm estimate, but also due to the improved es-
timate of global torso position and orientation (Figure 4d,e).

5.3. Complex Motion - “The Stick Trick”

To test the limits of the method, a sequence was captured
of a human performing “the stick trick”. This is a far more
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complex human motion than any of the examples found in
the human tracking literature (Section 2). In fact, only a few
humans can do the stick trick; it is a very awkward motion.

We use the first part of the sequence, showing a human
holding on to the stick with both hands, palms facing for-
ward, starting with the stick behind their back (frame 1),
lifting the stick upward behind the back (frame 11), moving
the stick forward above their head (frame 21), and lowering
the stick in front of the human (frame 31).

In the end of this sequence, the upper arms are twisted
approximately 120° inwards, and the wrists are twisted
an additional 60° inwards, palms facing upward-outward.
Thus, the human wrists and shoulders are twisted far be-
yond what is commonly assumed in articulated human
tracking. Figure 5 shows the tracking result.

As with the two previous experiments, it can be noted
that the hand-object contact probability is correctly esti-
mated, and that object constraints help in estimating the
global position and orientation of the arms and torso.

In this experiment with extreme arm motion, it is obvious

(Figure 5b,e) that the baseline tracker without object contact
constraints is unable to correctly reconstruct the arm pose.
The object-constrained tracker is however able to maintain a
qualitatively correct estimate of arm pose and twist relative
to the torso (Figure 5a,d).

However, the reconstruction error is large both with and
without object constraints, due to erroneous estimates of
torso and head pose. The main reason is most probably
the limitations of the human model, which has far fewer
degrees of freedom than a real human body. This is particu-
larly true for the torso; the very flexible human spine with its
surrounding ribcage, flesh and muscles is modeled using a
single truncated cone with three degrees of freedom relative
to the pelvis. The model hands are also overly simplistic,
modeled by one cylinder with one degree of freedom with
respect to the lower arm. While the hands are not impor-
tant in isolated full-body tracking, the hand model becomes
central when grasping of objects is taken into account. An
important topic for future work is thus to better model the
human body, especially the torso and hands.



6. Conclusions

The key idea presented in this paper is that articulated 3D
tracking of humans can be enhanced by taking into account
knowledge about the pose of objects in the human’s hands.
It is noted that tracking of rigid objects is an easier task than
articulated human tracking; objects in the human’s hands
can then be tracked independently of the human and then
be used as “natural markers,” giving cues about hand pose.

As described in Section 3, we use a standard formula-
tion of human 3D tracking using an annealed particle fil-
ter with a linear temporal update model and a background
difference likelihood. Inferred hand-object contact points
impose kinematic constraints on the human model, which
are encoded in the temporal update model using a rejection-
sampling-based approach, described in Section 4.

Experiments in Section 5 show that the contact con-
straints improve single-view tracking performance for hu-
man motion, both in terms of accuracy (i.e., image distance
from the true pose in other views) and robustness (i.e., the
number of frames before tracking is lost). The kinematic
constraints on the hand naturally help in the reconstruc-
tion of hand and arm pose, but also in reconstructing torso,
pelvis and leg pose.

An important avenue for future work is to replace the
cylindrical articulated human body model with a more flex-
ible model with more of degrees of freedom. An example
of such a model is described in [2]. Moreover, the impact
of object constraints in different types of trackers and pose
estimators will be studied. Future work will also explore
contact relationships between body parts themselves (e.g.
clasping of hands). Different types of grasps and the con-
straints they imply should also be modeled.

More elaborate object tracking methods are also being
implemented, allowing for robust tracking of rigid objects
with more complex shape and appearance.
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