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Abstract. Detection, tracking, segmentation and pose estimation of
people in monocular images are widely studied. Two-dimensional mod-
els of the human body are extensively used, however, they are typically
fairly crude, representing the body either as a rough outline or in terms of
articulated geometric primitives. We describe a new 2D model of the hu-
man body contour that combines an underlying naked body with a low-
dimensional clothing model. The naked body is represented as a Contour
Person that can take on a wide variety of poses and body shapes. Cloth-
ing is represented as a deformation from the underlying body contour.
This deformation is learned from training examples using principal com-
ponent analysis to produce eigen clothing. We find that the statistics of
clothing deformations are skewed and we model the a priori probability
of these deformations using a Beta distribution. The resulting generative
model captures realistic human forms in monocular images and is used
to infer 2D body shape and pose under clothing. We also use the coef-
ficients of the eigen clothing to recognize different categories of clothing
on dressed people. The method is evaluated quantitatively on synthetic
and real images and achieves better accuracy than previous methods for
estimating body shape under clothing.

1 Introduction

Two-dimensional models of the human body are widely used in computer vision
tasks such as pose estimation, segmentation, pedestrian detection and tracking.
Such 2D models offer representational and computational simplicity and are
often preferred over 3D models for applications involving monocular images and
video. These models typically represent the shape of the human body coarsely,
for example as a collection of articulated rectangular patches [1–4]. None of
these methods explicitly models how clothing influences human shape. Here we
propose a new fully generative 2D model that decomposes human body shape
into two components: 1) the shape of the naked body and 2) the shape of clothing
relative to the underlying body. The naked body shape is represented by a 2D
articulated Contour Person (CP) [5] model that is learned from examples. The
CP model realistically represents the human form but does not model clothing.
Given training examples of people in clothing with known 2D body shape, we



2 P. Guan, O. Freifeld, and M. J. Black

Fig. 1. Samples from the Dressed Contour Person model. Different body
shapes and poses (blue) are dressed in different types of eigen clothing (red).

compute how clothing deviates from the naked body to learn a low-dimensional
model of this deformation. We call the resulting generative model the Dressed
Contour Person (DCP) and samples from this model are shown in Fig. 1.

The DCP model can be used just like previous models for person detection,
tracking, etc. yet it has several benefits. The key idea is to separate the model-
ing of the underlying body from its clothed appearance. By explicitly modeling
clothing we infer the most likely naked body shape from images of clothed people.
We also solve for the pose of the underlying body, which is useful for applica-
tions in human motion understanding. The learned model accurately captures
the contours of clothed people making it more appropriate for tracking and seg-
mentation. Finally, the model supports new applications such as the recognition
of different types of clothing from images of dressed people.

There are several novel properties of the DCP model. First we define eigen
clothing to model deformation from an underlying 2D body contour. Given train-
ing samples of clothed body contours, where the naked shape of the person is
known, we align the naked contour with the clothing contour to compute the de-
formation. The eigen-clothing model is learned using principal component anal-
ysis (PCA) applied to these deformations. A given CP model is then “clothed”
by defining a set of linear coefficients that produce a deformation from the naked
contour. This is illustrated in Fig. 1.

There is one problem, however, with this approach. As others have noted,
clothing generally makes the body larger [6, 7]. A standard eigen-model of cloth-
ing could generate “negative clothing” by varying the linear coefficients outside
the range of the training samples. While non-negative matrix factorization could
be used to learn the clothing model, we show that a simple prior on the eigen
coefficients addresses the issue. In particular, we show that the eigen coefficients
describing clothing deformations are not Gaussian and we model them using
Beta distributions that capture their asymmetric nature.

We also demonstrate the estimation of a person’s 2D body shape under cloth-
ing from a single image. Previous work on estimating body shape under clothing
has either used multiple images [6] or laser range scan data [7]. These previous
approaches also did not actually model clothing but rather tried to ignore it.
Both of the above methods try to fit a naked body that lies inside the measure-
ments (images or range scans) while strongly penalizing shapes that are “larger”
than the observations. We show that there is a real advantage to a principled
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statistical model of clothing. Specifically we show accuracy in estimating naked
body shape that exceeds that of Bălan and Black [6], while only using one un-
calibrated image as opposed to four calibrated views.

Finally we introduce a new problem of clothing category recognition. We
show that the eigen coefficients of clothing deformations are distinctive and can
be used to recognize different categories of clothing such as long pants, skirts,
short pants, sleeveless tops, etc. Clothing category recognition could be useful
for person identification, image search and various retail clothing applications.

In summary, the key contributions of this paper include: 1) the first model
of 2D eigen clothing; 2) a full generative 2D model of dressed body shape that is
based on an underlying naked model with clothing deformation; 3) the inference
of 2D body shape under clothing that uses an explicit model of clothing; 4) shape
under clothing in a single image; 5) avoiding “negative clothing” by modeling
the skewed statistics of the eigen-clothing coefficients; 6) the first shape-based
recognition of clothing categories on dressed humans.

2 Related Work

Very little work in computer vision has focused on modeling humans in clothing.
What work there is focuses on modeling 3D human shape under clothing without
actually modeling the clothing itself. Bălan and Black [6] present a system based
on the 3D SCAPE [8] body model that uses multiple camera views to infer the
body shape. They make the assumption that the estimated body shape belongs
to a parametric family of 3D shapes that are learned from training bodies. They
fit the body to image silhouettes and penalize estimated body shapes that extend
beyond the silhouette more heavily than those that are fully inside. This models
the assumption that body shape should lie inside the visual hull defined by the
clothed body. In essence their method attempts to be robust to clothing by
ignoring it. More recently, Hasler et al. [7] take a similar approach to fitting a
3D body to laser range scans of dressed humans. Rosenhahn et al. [9] model
clothing explicitly on a 3D mesh but do so for the purpose of tracking, not body
shape estimation. Our approach differs from the above by focusing on 2D models
and explicitly modeling clothing deformations on the body using eigen clothing.

The vast majority of work on modeling clothing has focused on the recovery
of 3D mesh models of the clothing itself (e.g. [10]). We know of no work on
modeling eigen clothing or 2D clothing deformation models. Of course other
types of 2D deformable shape models (e.g. active shape models [15]) have been
widely used in vision applications and a review is beyond our scope.

Almost all work on 2D person detection and pose estimation implicitly as-
sumes the people are clothed (though [11] is a notable counterexample). Despite
this, few authors have looked at using clothing in the process [12] or at actually
using a model of the clothing. Recent work by Bourdev and Malik [13] learns
body part detectors that include upper and lower clothing regions. They do not
model the clothing shape or body shape underneath and do not actually recog-
nize different types of clothing. One recent paper does try to recognize clothing
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types for Internet retail applications [14]. The garments, however, are assumed
to lie in a plane and are hence not actually on a human body.

3 The Contour Person Model

We start with a Contour Person (CP) model [5], which is a low-dimensional,
realistic, parameterized generative model of 2D human shape and pose. The CP
model is learned from examples created by 2D projections of multiple shapes
and poses generated from a 3D body model such as SCAPE [8]. The CP model
is based on a template, T , corresponding to a reference contour that can be de-
formed into a new pose and shape. This deformation is parameterized and factors
the changes of a person’s 2D shape due to pose, body shape, and the parameters
of the viewing camera. This factorization allows different causes of the shape
change to be modelled separately. Let BT (Θ) = (x1, y1, x2, y2, . . . xN , yN )T

denote the parametric form of the CP, where N is the number of contour points
and Θ is a vector of parameters that controls the deformation with respect to T .
The CP model represents a wide range of 2D body shapes and poses, but only
does so for naked bodies. Examples of such body contours, BT (Θ), are shown in
blue in Fig. 1. See Freifeld et al. [5] for mathematical details.

The CP model may contain internal or occluded portions of the body contour.
However, here our clothing training data consists only of silhouettes with no
internal structure. Consequently, we restrict the poses we consider and define
BT (Θ) to be a CP model corresponding to a bounding body contour without
holes. In future work, we will generalize the DCP model to take advantage of
the ability of the CP to accommodate self occlusions.

4 Clothing Model

We directly model the deformation from a naked body contour to a clothed body
by virtually “dressing” the naked contour with clothing. We start with a training
set (described below) of clothing outlines and corresponding naked body outlines
underneath. The CP model is first fit to the naked body outline to obtain a CP
representation. For each point on the CP, we compute the corresponding point
on the clothing outline (described below) and learn a point displacement model
using PCA [15]. We further learn a prior over the PCA coefficients using a Beta
distribution to prevent infeasible displacements (i.e. “negative clothing”).

The DCP model can be thought of as having two “layers” that decouple the
modeling of body pose and shape from the modeling of clothing. The first layer
generates a naked body deformation from the template contour and the second
layer models clothing deformation from this deformed naked contour. The first
layer is the CP model, which is compositional in nature and based on deforma-
tions of line segments (see [5]). The second layer, described here, is simpler and
is based directly on displacements of contour points. The layered representation
is desirable because it allows constraints to be imposed independently on the
body and the clothing.
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4.1 Data sets

Our method requires training contours of people in clothing for which we know
the true underlying naked body shape. We describe two such training sets below.
Synthetic data set. Synthetic data provides ground truth body shapes that
enable accurate quantitative evaluation. We use 3D body meshes generated from
the CAESAR database (SAE International) of laser range scans and dress these
bodies in simulated clothing (Fig. 2). We used 60 male and 100 female bodies
spanning a variety of heights and weights and use commercial software (OptiTex
International, Israel) to generate realistic virtual clothing. The clothing simula-
tion produces a secondary 3D mesh that lies on top of the underlying body mesh
by construction. Given a particular camera view, we project the body mesh into
the image to extract the body outline and do the same for the combined body
and clothing meshes. This provides a pair of training outlines.

For the synthetic dataset we restrict the clothing to a single type (Army
Physical Training Uniforms) but in different sizes, as appropriate for the body
model. While narrow, this dataset provides nearly perfect training data and
ground truth for evaluation.
Real data set. To model real people in real clothing we use the dataset de-
scribed by Bălan and Black in [6] (Fig. 2) which contains images of 6 subjects
(3 males, 3 females) captured by 4 cameras in two conditions: 1) the “naked
condition” in which the subjects wear tight fitting clothing; 2) the “clothed
condition” in which they wear different types of “street” clothing. The dataset
contains four synchronously captured images of each subject, in each condition,
in a fixed set of 11 postures. For each posture the subjects are dressed in 6-10
different sets of clothing (trials). Overall there are 47 trials with a total of 235
unique combinations of people, clothing and poses.

For each image of a dressed person, we use standard background subtraction
[6] to estimate the clothed body silhouette and extract the outline. To obtain the
underlying naked body contours, we fit a 3D parametric body model using the 4
camera views in the naked condition [6]. We take this estimated 3D body shape
to be the true body shape. We then hold this body shape fixed while estimating
the 3D pose of the body in every clothing trial using the method of [6] which is
robust to clothing and uses 4 camera views.

The process produces a 3D body of the “true” shape, in the correct pose, for
every trial. We project the outline of this 3D body into a selected camera view
to produce a training 2D body contour. We then pair this with the segmented
clothed body in that view. Note that the fitting of the 3D body to the image
data is not perfect and, in some cases, the body contour actually lies outside
the clothing contour. This does not cause significant problems and this dataset
provides a level of realism and variability not found in the synthetic dataset.

4.2 Correspondence

Given the naked and clothed outlines defined above, we need to know the corre-
spondence between them. Defining the correspondence between the naked outline
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Fig. 2. Example training data. Left: Pairs of synthetic 3D bodies, unclothed and
clothed. Projecting the silhouette contours of these pairs produces training contours.
Right: Training contours derived from multi-camera data (see text); the estimated
ground truth 3D body is shown as a translucent overlay.

and the clothing outline is nontrivial and how it is done is important. Baum-
berg and Hogg, for example, model the outline of pedestrians (in clothing) using
PCA [17]. In their work, correspondence is simply computed by parameterizing
all training contours with a fixed number of evenly sampled points. Incorrect
correspondence (i.e. sliding of points along the contour) results in eigen shapes
that are not representative of the true deformations of the contours.

Instead, we start with the trained parametric CP representation BT (Θ) and
optimize it to fit the 2D naked body that minimizes the difference between the
CP silhouette and the naked body silhouette. This gives a CP representation of
the naked body that consists of N = 1120 points. We then densely sample M
points on clothing outline, where M >> N and select the N clothing contour
points that best correspond to the CP points. During matching, the relative
order of the points is maintained to guarantee the coherence of the match. Let
the CP contour be represented by a list of points P = {p1, p2, ..., pN} and let the
sampled clothing outline be represented by Q = {q1, q2, ..., qM}. We pick a subset
of N points G = {qk1 , qk2 , ..., qkN

} from Q that minimizes
∑N

i=1 ‖pi − qki
‖2 over

the indices ki such that the ordering, kr < ks, is preserved for 1 ≤ r < s ≤ N .
We use the dynamic programming method proposed in [18]. Example alignments
are shown in Fig. 3.

4.3 Point displacement model

We convert the point list G to a vector Ĝ = (x1, y1, x2, y2, . . . , xN , yN )T and
now we have BT (Θ) for the naked body contour and Ĝ for clothing contour,
both of which have N corresponding points. The clothing displacement for a
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Fig. 3. Correspondence between body and clothing contours. In each pair:
the left image shows the sample points of the body contour in blue and the densely
sampled clothing contour in red. The right image shows the final sub-sampled clothing
contour with a few matching points highlighted as larger dots. Nearby dots illustrate
corresponding points (in some cases they are on top of each other).

(a) mean (b) PC1 (c) PC2 (d) PC4

Fig. 4. Eigen clothing. The blue contour is always the same naked shape. The red
contour shows the mean clothing contour (a) and ±3 std from the mean for several
principal components (b)-(d).

particular training example, i is then defined by δi = Ĝi − BT (Θi). We collect
the training displacements into a matrix and perform PCA. We take the first 8
principal components accounting for around 90% of the variance to define the
eigen-clothing model. Figure 4 shows the mean and first few clothing eigenvectors
for the real data set. This illustrates how the principal components can account
for various garments such as long pants, skirts, baggy shirts, etc. Note that
simply varying the principal components can produce “negative clothing” that
extends inside the blue body contour. We address this in the following section.

Using this model we generate new body shapes in new types of clothing by
first sampling CP parameters Θ to create a naked body contour BT (Θ) and then
using the following equation to generate a clothed body

C(Θ, η) = BT (Θ) + ∆mean +
Nη∑
i=1

ηi · ∆i (1)

where Nη is the number of eigenvectors used, the ηi’s are coefficients, ∆mean is
the mean clothing displacement, and ∆i is the ith eigen-clothing vector.
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4.4 Prior on point displacement

Although the PCA model captures clothing deformation, it allows point displace-
ments in both inward and outward directions, which violates our assumption that
clothing only makes the body appear bigger. This assumption is confirmed by
examining the statistics of the linear eigen coefficients in the training data. Fig-
ure 5 shows several such distributions, which may be skewed or symmetric. In
particular we find that coefficients for the principal components that capture
the most variance are typically positively or negatively skewed while coefficients
for the lower-variance components tend to be more normally distributed. The
first few eigenvectors capture the gross clothing displacements, which are always
away from the body. Of course clothing also exhibits many fine details and folds
and these are captured by the lower variance eigenvectors. These “detail” eigen-
vectors modify the main clothing contour both positively and negatively (e.g.
out and in) and hence tend to have more symmetric statistics.

Based on the observation of natural clothing statistics, we learn a prior on
the PCA coefficients to penalize infeasible clothing displacements. We make the
assumption that the eigenvectors are independent (not necessarily true since the
data is not Gaussian) and independently model a prior on each coefficient using
a Beta distribution. The Beta distribution is defined on [0, 1] and is characterized
by two parameters α and β that can be varied to capture a range of distributions
including positively skewed, negatively skewed and symmetric shapes:

Beta(x;α, β) =
Γ (α + β)
Γ (α)Γ (β)

xα−1(1 − x)β−1. (2)

Given L training body/clothing pairs, and the associated clothing displace-
ments, we project each displacement onto the PCA space to obtain coefficient
ηl

m for instance l, (l ∈ [1, L]), on eigenvector m. We normalize η1
m, η2

m, ..., ηL
m

to [0, 1] to obtain η̃1
m, η̃2

m, ..., η̃L
m and fit these with the Beta distribution. The

probability of observing a normalized coefficient x̃m for the mth eigenvector is
given by Beta(x̃m, αm, βm), where αm and βm are the estimated parameters of
the Beta distribution. If we observe a coefficient during testing that is out of the
scope of the training coefficients, we threshold it to be between the minimal and
maximal value in the training set and normalize it to compute its prior proba-
bility. If thresholded, however, we still use the original value to reconstruct the
shape. Figure 5 shows how the Beta function can represent a variety of differently
shaped distributions of clothing displacement coefficients.

4.5 Inference

The inference problem is to estimate the latent variables Θ and η by only observ-
ing a single image of a person in clothing. We define a likelihood function in terms
of silhouette overlap. We adopt a generative approach in which C(Θ, η), the
clothed body (Eq. 1), defines an estimated silhouette, Se(C(Θ, η)), and compare
it with the observed image silhouette So. We follow [6] and define the asymmet-

ric distance between silhouettes Sr and St as d(Sr, St) =
∑

i,j Sr
i,jHi,j(S

t)∑
Sr

i,j
, where
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(a) PC1 (b) PC2 (c) PC8

Fig. 5. The statistics of clothing displacements. Example histograms and Beta
distribution fits to linear eigen-clothing coefficients. Note the skew that results from
the fact that clothing generally makes the body appear larger.

Sr
i,j is a pixel inside silhouette Sr and Hi,j(St) is a distance function which is

zero if pixel (i, j) is inside St and is the distance to the closest point on the
boundary of St if it is outside.

We then define the data term as the following symmetric data error function

Edata(Θ, η) = d(Se(C(Θ, η)), So) + d(So, Se(C(Θ, η))). (3)

The first part of Eq. 3 penalizes the regions of the synthesized clothing instance
Se(C(Θ, η)) that fall outside the observed clothing silhouette So, and the second
part makes Se(C(Θ, η)) explain So as much as possible.

Edata alone is not sufficient to estimate Θ and η correctly, because there are
ambiguities in estimating smaller bodies with larger clothing and larger bodies
with smaller clothing. As was mentioned in Sec. 4.4, we use the Beta prior
to penalize unlikely displacements. Recall that η̃m represents the normalized
coefficient for the mth basis. The prior term is defined as

Eprior(η) = −
∑
m

log(Beta(η̃m, αm, βm)). (4)

The final energy function we minimize is

E(Θ, η) = Edata(Θ, η) + λEprior(η) (5)

where λ indicates the importance of the prior. Problems with “negative clothing”
and clothing that is unusually large are avoided due to the prior. Optimization
is performed using MATLAB’s fminsearch function.

5 Results

We consider two novel applications of the proposed method. The first is the
estimation of 2D body shape under clothing given a single image of a clothed
person. The second is the recognition of different clothing categories by clas-
sifying the estimated clothing deformation parameters. We evaluate our model
on three tasks: body shape estimation from synthetic data, body shape estima-
tion from real data, and clothing type classification from real data. We compare
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(a) male (b) compared to GT (c) female (d) compared to GT

Fig. 6. Synthetic data results. For each pair of images, the DCP result is on the left
and NM result is on the right. The first pair shows an estimated body silhouette (red)
overlaid on the clothing silhouette (green); overlapped regions are yellow. The second
pair shows the estimated body (red) overlaid on the ground truth (GT) body (green).
The third and fourth pairs show the same but for a female. NM typically overestimates
the size of the body.

the results of the first two tasks with approaches that do not explicitly model
clothing deformation.
Body estimation under clothing from synthetic data. We use the syn-
thetic dataset of 60 males and 100 females, in and out of synthetic clothing, as
described above. We randomly select 30 males and 50 females as the training
set and the remaining 80 bodies as the test set. A gender-specific CP model is
learned for males and females separately while a gender-neutral eigen model is
learned for clothing deformations. We estimate the underlying bodies for the test
samples using the Dressed Contour Person (DCP) and measure the estimation
error as

err(SEST , SGT ) =

∑
i,j |SEST

i,j − SGT
i,j |

2
∑

i,j SGT
i,j

(6)

where SEST is a silhouette corresponding to the estimated naked body contour
and SGT is the ground truth underlying naked body silhouette. The results
of DCP are also compared with a naive method (NM) in which we simply fit
the CP model to the image observations of clothed people. As in [6], the NM
attempts account for clothing by penalizing contours more if the estimated body
silhouette falls outside of the clothing observation than if it does not fully explain
the clothing observation. The average estimation errors obtained with NM for
males and females are 0.0456 and 0.0472 respectively while DCP achieves 0.0316
and 0.0308. Our DCP model improves accuracies over NM by 30% (male) and
35% (female) relatively. While the synthetic dataset has only one clothing type,
the bodies span a wide range of shapes. The results show a principled advantage
to modeling clothing deformation compared with ignoring clothing. Figure 6
shows some representative results from the test set.
Body estimation under clothing from real data. Figure 7 shows 8 different
poses from the real dataset (Sec. 4.1). For each pose there are 47 examples
having unique combinations of subjects and clothing types. Since the number of
body/clothing pairs is limited in each pose, we use a leave-one-out strategy where
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Table 1. Comparison on real data: DCP, NM, and NP3D methods (see text)

Method, AEE Pose1 Pose2 Pose3 Pose4 Pose5 Pose6 Pose7 Pose8 Average

DCP 0.0372 0.0525 0.0508 0.0437 0.0433 0.0451 0.0503 0.0668 0.0487
NP3D 0.0411 0.0628 0.0562 0.0484 0.0494 0.046 0.0472 0.0723 0.0529
NM 0.0865 0.0912 0.0846 0.0835 0.0877 0.0921 0.0902 0.1184 0.0918

Significance (p-value)

DCP vs NP3D 0.38 0.13 0.34 0.46 0.36 0.89 0.66 0.54 0.07
DCP vs NM 6.4e-7 4.9e-4 2.1e-4 2.1e-4 6.7e-8 1.0e-5 1.0e-6 2.3e-4 9.9e-17

we estimate the body of instance i using the eigen-clothing model learned from
all remaining 46 instances excluding i. We use DCP to estimate the underlying
body shape for a total of 47 ∗ 8 = 376 instances (Fig. 7) and compare the results
with two other methods: 1) NM described in the previous experiment; and 2)
“Naked People estimation in 3D”(NP3D) proposed in [6]. Since DCP and NM
are 2D methods using a 2D CP model, they only use one camera view. NP3D,
however, estimates a 3D body model from four camera views [6]. To compare with
NP3D we project the estimated body from NP3D into the image corresponding
to the camera view used by our method.

Table 1 shows the Average Estimation Error (AEE) computed by averaging
err(·, ·) (Eq. 6) over the 47 instances for each pose (or over all poses in the
last column). Figure 8 shows details of the fitting results. We find that DCP
has lower error than both NM and NP3D. In the case of NM these differences
are statistically significant (paired t-test, p < 0.05) for all poses and in the
aggregate. While DCP has lower error than NP3D in all but one pose, and lower
error overall, the differences are not significant at the p < 0.05 level. Recall that
NP3D is using significantly more information. These results suggest that using
a learned statistical model of clothing is preferable to simply trying to ignore
clothing [6].

Clothing category recognition. We now ask whether the clothing deforma-
tion coefficients contain enough information about clothing shape to allow the
classification of different types of clothing. Note that this task involves recogniz-
ing clothing on the body as it is worn by real people. We separate upper clothing
and lower clothing and define 7 different categories (as color coded in Fig. 9).

We use a simple nearest neighbor (NN) classifier with Euclidean distances
computed from the coefficients along the first 8 principal components. Since we
have a limited number of clothing instances (47) for each pose, we use a leave-
one-out strategy and assume that we know the categories of all the instances
except the one we are testing. Each instance is then assigned a category for both
upper clothing and lower clothing based on its nearest neighbor. Classification
results are shown in Fig. 9 along with chance performance for this task.
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Fig. 7. Sample DCP results of estimated body shape overlaid on clothing.
The estimated body contour and synthesized clothing contour are depicted by blue
and red outlines respectively. Body shape is the transparent region encompassed by
the body contour. Results are shown for a variety of poses (left to right: 1-8) and
viewing directions.

6 Conclusions

We have presented a new generative model of the 2D human body that combines
an underlying Contour Person representation of the naked body and layers on
top of this a clothing deformation model. This goes beyond previous work to
learn an eigen model of clothing deformation from examples and defines a prior
over possible deformations to prevent “negative clothing”. While previous work
has examined 3D body models captured with multiple cameras or laser range
scanners, we argue that many computer vision applications use 2D body models
and that these applications will benefit from a more realistic generative model
of clothed body shape. By modeling clothing deformations we estimate 2D body
shape more accurately and even out-perform previous multi-camera systems on
estimating shape under clothing. Finally we define a new problem of clothing
category recognition on the human body and show how the coefficients of the
estimated eigen clothing can be used for this purpose. This new dressed person
model is low dimensional and expressive, making it applicable to many problems
including 2D human pose estimation, tracking, detection and segmentation.
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Fig. 8. Comparisons of DCP, NM, and NP3D. For each group of images: the first
3 images (left to right) show overlap of the estimated silhouette (red) and the ground
truth silhouette (green) for DCP, NP3D, and NM (yellow is overlap); the 4th image
shows the body estimated by NM overlaid on a clothing image. NM overestimates body
shape as expected.

Fig. 9. Color coded clothing type. We consider three types of upper clothing: long
sleeves (red), short sleeves (black) and sleeveless tops (blue) and four types of lower
clothing: short pants (green), long pants (magenta), short skirts (coffee), and long skirts
(cyan). Classification results for the 7 clothing types in all 8 poses are shown in the
right figure compared to “Chance”.

Our method does have some limitations. The method assumes there is a
correspondence between body contour points and clothing contour points. When
there is significant limb self occlusion, the clothing silhouette may not contain
features that correspond to that limb. Dealing with significant self occlusion is
future work. Also, here we assume that the rough viewing direction (frontal or
side) and rough pose are known.

There are several directions for future work. First, we plan to model clothing
deformation as a function of human movement. This may require a model more
like the original CP model in which deformations are defined as scaled rotations
of contour line segments [5]. This representation allows the factoring of contour
changes into different deformations that can be composed. Second, we will ex-
plore what we call “eigen separates”; that is, separate eigen models for tops and
bottoms as well as for hair/hats and shoes. Having separate eigen spaces reduces
the amount of training data required to capture a wide range of variations. Fi-
nally we plan to extend these methods to model 3D clothing deformations from
a 3D body model. Again data acquisition for 3D clothed and unclothed training
data is very difficult, and we plan to use realistic physics simulation of clothing.
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