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APPENDIX A

We do not have explicit energy expressions for all the
different variants of RGA, but in this appendix we consider

the energy optimized by TGA(50%, 1) with unit weights.

As this algorithm relies on trimmed spherical averages, we
first consider these.

A.1

In Euclidean spaces, the per-pixel trimmed average can
be written as the solution to the following minimization
problem

Trimmed Averages on SP~!
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where the trimming weights t,4 € {0,1} denote which
elements are “trimmed away” and which are kept. For P%
trimming we have
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Note that ¢ is the same for all dimensions. The well-known
solution to this problem is
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where & € RL has elements
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In the main paper, we consider extrinsic trimmed averages
on the unit sphere. These can be similarly defined as

M Trim,SD-1 (wi:n)
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This constrained optimization problem has a simple closed-
form solution:

Lemma 2. Let u,, € SP~! and let the trimming weights
tna be fixed, then Eq. 37 has solution
1
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where ig = Y

1 tndUna is the Euclidean trimmed average
of the ung..

Proof: The results follows by straight-forward compu-
tations: We seek the minima of
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subject to the constraint ||| = 1. We write the constraints
using a Lagrange-multiplier
F(m,A) = f(1) + Ag(p), where (40)
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We evaluate derivatives as
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Setting of/aus = 0 gives

We evaluate A by setting 8f/ox = O:
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Combining Eq. 48 and 51 gives
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The unknown sign is determined by evaluating f at both
choices and picking the smaller option. O

The per-pixel trimmed spherical average, thus, has the
closed-form solution given by the per-pixel trimmed Eu-
clidean average projected onto the sphere. In the case of
50% trimming, the per-pixel trimmed average coincides
with the per-pixel median, and it follows that
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can be solved by the per-pixel median projected onto the
unit-sphere.

A.2 The Energy Optimized by TGA(50%, 1)

Intuitively, TGA(50%, 1) should find the “median subspace”
spanned by the data. Indeed it optimizes the energy
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which can be intepreted as a pixel-wise median subspace.
At every step, the TGA algorithm updates the representa-
tives u,, of the equivalence class [u,], to a,u,, for some
element of the antipodal group a,, € {£1}. To obtain a
convergence guarantee, we assume that the selection of the
signs «,, are made to optimize the chordal L; distance to
the current mean estimate, that is!
D
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Lemma 3. Then, with probability 1, TGA(50%,1) con-
verges to a local minimum of Eq. 54 in finite time.
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Proof: We shall show that, with probability 1, there
exists M € Ny such that a,, = 1 for all n in every iteration
after the M iteration of the algorithm. Moreover, the value
of the energy function
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1. In practical implementations we pick v, to optimize the Lo distance
rather than the L1 as this can be done highly efficiently.
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decreases strictly for steps 1 to (M —

N D N D
ZZ|anund — pd| < ZZ|und — L

1), that is

(57)
n=1d=1 n=1d=1
for every iteration up to M.
In the *" iteration, with probability 1, we have
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for every n = 1...N, because the set on which
it | =1 g — pal = Y02y 32014 [tna — pral has mea-
sure 0.

Now, we could have «,, = 1 for all n, in which case
the algorithm has converged and ¢ > M. Otherwise, there
exists some n for which a,, = —1 gives
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in which case the energy in Eq. 56 will decrease strictly in
the *" iteration.

The fact that M exists and the TGA algorithm converges
in a finite number of steps follows from the fact that there
are only finitely many ways to change the sign of w;.y,
each giving a fixed value of the energy function (56), so
there cannot be an infinite sequence of strictly decreasing
values.

As a very small perturbation of the data points will
not lead to a change in the signs «,,, the algorithm must
moreover converge to a local optimum. O
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