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Abstract

We extend the work of Black and Yacoob on the track-
ing and recognition of human facial expressions using
parameterized models of optical flow to deal with the
articulated motion of humanlimbs. We definea” card-
board person model” in which a person’s limbs are
represented by a set of connected planar patches. The
parameterized image motion of these patches is con-
strained to enforce arti cul ated motion and is sol ved for
directly using a robust estimation technique. The re-
covered motion parameters provide a rich and concise
description of the activity that can be used for recog-
nition. We propose a method for performing view-
based recognition of human activities from the optical
flow parameters that extends previous methodsto cope
withthecyclical nature of human motion. Weillustrate
the method with exampl es of tracking human legs over
long image sequences.

1 Introduction

In this paper we extend the work of Black and Yacoob [5]
on tracking and recognition of human facia expressionsto
the problem of tracking and recognizing the articul ated mo-
tion of human limbs. We make the assumption that a person
can berepresented by a set of connected planar patches: the
cardboard person mode illustrated in Figure 1. In the case
of faces, Black and Yacoob [5] showed that a planar model
could well approximatethe motion of ahuman head and that
it providesa concise description of the optical flow withina
region. This motion can be estimated robustly and it can be
used for recognition.

To extend the approach in [5] to track articulated human
motion we approximate the [imbs as planar regions and re-
cover themotionsof these planeswhileconstrai ning themo-
tion of the connected patches to be the same at the points of
articulation. To recognize articulated motion we will need
to know the relative motion of each of thelimbs. Given the
computed motionsof thethigh and calf, for example, wecan
solve for the relative motion of the calf with respect to the
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Figure 1: The cardboard person model. Thelimbs of a per-
son are represented by planar patches.

thigh. We posit that thisrelative image motion of the limbs
is sufficient for recognition of human activity.

Thetracking of human motion using these parameterized
flow modelsis more challenging than the previouswork on
facia motion tracking. In the case of human limbs, the mo-
tion between frames can be very large with respect to the
size of the image region, the deformations of clothing as a
person moves make tracking difficult, and the human body
is frequently self-occluding and self-shadowing. Addition-
ally, facial motion recognition need only work over a rel-
atively narrow range of views while we should be able to
recognize human activitiesfrom awider set of views (front,
back, side, etc.). These differences between facial motion
and general articulated human motion will require usto ex-
tend the previous methods in a number of ways. In thispa-
per we focus on the problem of tracking the limbs of a per-
son using articulated planar patches. At theend of the paper
we analyze the performance of the current approach, discuss
how it might be extended, and present some thoughtson the
future of the method.

2 Previous Research

Many approachesto tracking the movement of humanshave
focused on detecting and tracking the edges of the figure
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in the images. These methods typically attempt to match
the projection of a detailed articulated 3D body mode to
the edge data [9, 10, 16]. A number of authors have ex-
tended active contour models to model articulated motion
[6, 12, 13, 20]. For example, Baumberg and Hogg [2] track
the outline of a moving body using a modal-based flexible
shape model which captures the considerable outline vari-
ations in the human silhouette during movement. Stick-
figure models of humans have also been matched to image
data[1, 14]. These methodsaretypically only applied to hu-
mans viewed from the side.

The above methods do not explicitly useimage motionto
track and recognize activity. Pentland and Horowitz [15],
however, describe the fitting of a 3D physically-based ar-
ticulated model to optical flow data. Parts of a person are
described as superquadrics with constraints on the articu-
lated motion of the parts. In contrast, Wang et al. [19] use
a 3D articulated model of ahuman leg to constrain the opti-
cal flow and they recover the motion of the articulated parts
directly from changing image brightness without first com-
puting flow.

The approaches above typically require 3D models of
the body. Furthermore, edges often play the central rolein
tracking and motion estimation. In this paper, we propose
a parametrized motion model for tracking body parts. This
model shiftsthefocusof tracking fromedgestotheintensity
pattern created by each body part in the image plane. The
tracking employs a 2D model-based approach for enforcing
inter-part motion consistency for recovery thus simplifying
the tracking and reducing the computations. We further de-
velop an approach for viewer-based motion recognition of
human activity and provide preliminary results.

3 Motion Estimation of a Rigid Object

The image motion of arigid planar patch of the scene can
be described by the following eight-parameter model:

u(z,y) = ao+aiz+ay+ agx® + azry, 1
v(z,y) az + asx + asy + aszry + azy®, (2

where a = [ao, a1, a9, as, as, as, as, a7] denotes the
vector of parameters to be estimated, and u(x,a) =
[u(z,y), v(z,y)]? are the horizontal and vertical compo-
nentsof theflow at image pointx = (x, ). Thecoordinates
(z,y) are defined with respect to a particular point. Here
thisistaken to be the center of the patch but could be taken
to be at apoint of articulation.

Theassumption of brightnessconstancy for agiven patch
and the planar motion model gives rise to the optical flow
constraint equation

VI ux,a;)+1; =0, Vx €R, 3

where a; denotesthe planar mode for patch s, R denotes
the pointsin patch s, I istheimage brightnessfunction and

Divergence

Deformation

Figure2: Divergence (a; + as), deformation (ay — as), curl
(—az + a4), imageyaw (as) and image pitch (a7).

t representstime. VI = [I,;, I, ], and the subscripts indi-
cates partial derivatives of image brightnesswith respect to
the spatial dimensionsand time at the point x.

We use this congtraint equation in the next section to
solve for the motions of the patches. These parameters will
be used to interpret the motion within each region. Vari-
ous, low-leve, interpretationsof the motion parameters are
shown in Figure 2.

4 Estimating Articulated Motion

For an articulated object, we assume that each patchis con-
nected to only one preceding patch and onefollowing patch,
that is, the patches construct achain structure (see Figure 3).
For example, a“thigh” patch may be connected to a preced-
ing “torso” patch and afollowing “calf” patch. Each patch
isrepresented by itsfour corners. Our approach isto simul-
taneoudly estimate the motions, a;, of al the patches. We
minimize the total energy of the following equation to esti-
mate the motions of each patch (from 0 to n)

E = ZE_ZZ (VI-u(x,a5)+ L,0) (4

s=0xeR;

where we take p to be an error norm with a redescending
influence function.

Equation 4 may beill-conditioned due to the lack of suf-
ficient brightnessvariation withinthe patch. The articul ated
natureof thepatches providesan additional constraint onthe
solution. Thisarticulation constraint is added to Equation
4 asfollows

E= Z (Pt 2 2 linxa) = uxa)[), )

x€EA;



Proc. Second Int. Conf. on Automatic Face and Gesture Recognition, 1996, (© |EEE96 3

Ry

|
|
|
1
{ / g
|
|

{o IDD}/{:L

the set of articulated
points for region 1
Figure 3: The “chain” structure of a three-segment articu-
lated object.

where|R ;| isthenumber of pixelsinpatch s, A controlsrel-
ativeimportance of thetwoterms, A, istheset of articul ated
pointsfor patch s, a’ isthe planar motion of the patch which
is connected to patch s at the articulated point x, and || - ||
stands for the norm function. The use of a quadratic func-
tion for the spatial coherence term indicates that no outlier
isallowed.

Instead of using a constraint on the image velocity at the
arti culation points, we can make use of thedistance between
apar of points. Assuming x’ is the corresponding image
point of the articulated point x, and x’ belongsto the patch
connected to patch s at point x (see Figure 3), Equation 5
can be modified as

"1
E= Z(WES—M > [x+u(x, a,)—x'—u(x’,a’)||*)
s=0 s XEA;
(6)

This formulation has the advantage that the pair of artic-
ulated points, x and x’, will dways be closeto each other at
any time. The second energy term (the “smoothness’ term)
in Equation 6 can a so be considered asaspring forceenergy
term between two points (Figure 3).

We minimize Equation 6 using the simple gradient de-
scent scheme with a continuation method [4, 7]. Thisin-
volves in taking derivatives of the equation with respect to
each of the planar motion parameters. At each step, we
takeintoaccount both the optical flow constraintswithinthe
patch and the motion parameters of the connected patches.

For the experimentsin this paper wetake p to be

l,Z
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which is the robust error norm used in [4]. As the magni-
tudes of residuals V1 - u(x, a,;) + I; grow beyond a point,

pla, o) =

their influence on the solution begins to decrease and the
value of p(-) approaches a constant.

Thevaue o isasca e parameter, which effectsthe point at
which the influence of outliers beginsto decrease. In order
to automatically estimate thevalue of o, we assume that the
residual s can be modeled by a mixture of two Gaussian dis-
tributions. one isto model the object, the other isto model
the outliers. Since 1—55; is the median value of the abso-
lute values of a one-dimensiona normal distribution [17],
the robust estimation of & from residuals can be defined as:

Test = 1.4826 mediany|VI -u(x, a,) + I (8)

Equation 6 is minimized using continuation method that
beginswith alarge o and lowersit gradually [4, 7]. We de-
fineo, = 0.5, that is, the o a iteration ¢ isequa to o,
which is computed from Equation 8 given current motion
estimate a;. Thise; isadjusted so that

ot € I_rfo-t—la rso't—lj N I_O'mina O'maxJa

wherer; and r, arethefastest and theslowest annealing rate
respectively, and o1 = omq.. The effect of thisprocedure
is that initially almost no data are rejected as outliers then
gradualy theinfluence of outliersis reduced. The value of
Omaz 18 10V/3, and 0., 1S 2v/3. The annedling rate r, is
0.97, and r; is 0.9. These parameters remain fixed for the
experimentsin this paper.

To cope with large motions, a coarse-to-fine strategy is
used in which the motionis estimated at a coarse level then,
at the next finer lever, theimage at time¢ + 1 iswarped to-
wardstheimage at timet using the current motion estimate.
The motion parameters are refined at thislevel and the pro-
cess continues until the finest level.

4.1 Computing therelative motions

The planar motionsestimated from the Equation 6 are abso-
lute motions. In order to recognize articulated motion, we
need to recover the motions of limbs which are relative to
their preceding (parent) patches. We define

u(x+u(x,a;_1),a,) = u(x,a;) —u(x,a;_1), (9

where a] is the relative motion of patch s, u(x,a;) —
u(x, a,_1) istherelative displacement at point x, and x +
u(x,a,_1) is the new location of point x under motion
a;_1. A planar motion has eight parameters, therefore four
different points of patch s are sufficient to solve a); given
the linear equations 9. In our experiments, we use the four
corners of the patches.

4.2 Tracking thearticulated object

In thefirst frame, we interactively define each patch by its
four corners. For each patch, the first two corners are de-
fined as the articulated points, whose corresponding points
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are the last two corners of its preceding patch. This defini-
tion of articulated points shows that two connected patches
shareonecommon “edge’. Oncethe“chain” structureisde-
fined, the object is automatically tracked theresfter. Track-
ing is achieved by using the articulated motion between
two frames to predict the location of each patch in the next
frame. We updatethelocation of each of the four corners of
each patch by applying its estimated planar motionto it.

5 Experimental Results

In this section we illustrate the performance of the track-
ing a gorithmon several image sequences of lower body hu-
man movement. We focus on “walking” (on atreadmill, for
simplicity) and providethe recovered motion parametersfor
two leg parts during this cyclic activity. Notice that during
“walking” the upper body plays only aminor rolein recog-
nition (it can, however, be appreciated that the movement
of the torso and the arms can be used in determining head-
ing, speed of “walking” and clues regarding the positionsof
lower body parts). Tofacilitatethe use of our gradient-based
flow estimation approach, we use a 99Hz video-camera to
capture afew cycles of “waking”

Each sequence contains 500 to 800 frames. All the pa-
rameters used in the motion estimation algorithm were ex-
actly the sameindl the experiments. In particular, for each
pair of images, 30 iterations of gradient descent were used
at each level, and 3 levels were used in the coarse-to-fine
strategy. The value of A is0.005.

Figures 4, 6, and 8 demonstrate three “waking” se-
quences taken from different view-points. The left column
in each figure shows three input images some frames apart,
theright column showsthetracking of two parts (the“thigh”
and “calf”). Various motion parameters for these sequences
are shown in Figures 5, 7, and 9. The first row in Fig-
ures 5 and 7 shows the horizontal and vertical trandation
(Ieft most graph, dashed lineisthe vertical trandation) and
“curl” (right graph) for the “thigh”. The second row shows
the graphs for the “calf.” In Figure 9 the “curl” graphs are
replaced by the “deformation” and “divergence” and “im-
age pitch”. These graphs are only meant to provide an idea
about the effectiveness of our tracking model and its ability
to capture meaningful parameters of the body movement.

In Figures5 and 7 it is clear that the horizontal transla-
tionand “curl” parameters capture quitewe |l the cyclic mo-
tion of thetwo parts of theleg. Thetrand ation of the“calf”
is relative to that of the “thigh” and therefore it is signifi-
cantly smaller. On the other hand, the rotation (i.e., “curl™)
ismoresignificant at the“calf”. Noticethat Figures5and 7
arequalitatively quite similar despitethe differencein view-
point. In Figure 9 the trandations are smaller than before
but still disclose a cyclic pattern. The “deformation,” “di-
vergence,” and pitch capture thecyclic motion of the“walk-
ing avay” on the treadmill. Notice that the pitch measured

Figure 4: Walking parallel to the imaging plane. Three
frames shown twenty frames apart.

at the two partsis always reversed since when the “thigh”
rotatesin one direction the “calf” is bound to be viewed to
be rotating in a opposite way.

In summary, the reported experiments show that the im-
age motion models are capable of tracking articulated mo-
tion quite accurately over long sequences and recovering a
meaningful set of parametersthat can feed into arecognition
system. For related work see[8].

6 Recognition of Movement

The goa of recognition of human movement encompasses
answering: When does the activity begin and end? What
class does the observed activity most closely resemble?
What isthe period (if cyclical) of the activity?

Seitz and Dyer [18] proposed an approach for determin-
ing whether an observed motion is periodic and computing
itsperiod. Their approach is based on the observation that
the 3D points of an object performing affine-invariant mo-
tion are related by an affine transformation in their 2D mo-
tion projections. Once a period is detected, a matching of a
single cycle of the motion to known motions can, in princi-
pal, providefor the recognition of the activity.
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Figure 5: Motion parameters for waking paralle to the
imaging plane (Figure 4).

Our approach to recognition takes advantage of the econ-
omy of the parameterized motion models in capturing the
range of motions and deformationsof each body part. Inthe
absence of shape cues, we employ a viewer-centered repre-
sentation for recognition. Let C, % () denote the temporal
curve crested by the motion parameter «; of patch : viewed
a anglev (wherej € ay, ..., a7). We make the observation
that thefoll owing transformati on does not change the nature
of the activity represented by C,, "/ (¢)

D) =8« Cl (t 4+ Tp) (10)

where D, " (t) is the transformed curve. This transforma-
tion captures the trandlation, 7;, of the curve and the scal-
ing, S;, in the magnitude of the image-motion measured
for parameter «;. The scaling of the curve allows account-
ing for different distances between the human and the cam-
era (while the viewing angle is kept constant) and accounts

for the physiological variation across humans. Notice that
this transformation does not scale the curve in the tempo-
ra dimension since the nature of the activity changes due
to temporal scaing (e.g., different speeds of “waking” can
be captured by this scaling). This tempora scaling can be
expressed as an affine transformation

D,i(t) = S; % Cli (it + T}) (12)

where«; > 1.0 leadsto alinear speed up of theactivity and
a; < 1.0 leadsto itsslow down.

The recognition of an activity can be posed as a match-
ing problem between the curve crested by parameter a; over
time and a set of known curves (corresponding to known
activities) that can be subject to the above transformation.
Recognition of an activity for some viewpoint v requires
that asingle affinetransformation should apply to al param-
etersa;, thiscan be posed as aminimization of theerror (un-
der some error norm)

B(v) = Y oD, (1) = (Si + G (ot + T7)), 0] (12)
j€0..7

Recognition over different viewpoints requires finding
the minimum error between al views v, which can be ex-
pressed as

E = mvin Z pLD i (1) — (Si % Cy ' (it +T7)), o] (13)

Recognition over multiple body parts uses the inter-part hi-
erarchy relationships to progressively find the best match.
Asdemonstrated and discussed in Section 5, the motion pa-
rameters are stable over a wide range of viewpoints of the
activity, so that they could be represented by afew princi-
pal directions.



Proc. Second Int. Conf. on Automatic Face and Gesture Recognition, 1996, (© |EEE96 6

Figure 6: Walking 45 degress relative to theimaging plane.

Our formulation requires computing a characteristic
curve C,* for each activity and body part viewed at angle
v. Congtructing this characteristic curve can be achieved by
tracking the patch motions over several subjects and em-
ploying Principal Component Analysis (PCA) to capture
the dominant curve components. Given an observed activ-
ity captured by D' (¢) (notice that the v is dropped since
it is unknown), our algorithm determines the characteristic
curvethat minimizesthe error functiongivenin Equation 13
by empl oying the recently proposed el gentracking approach
[3] on the curves.

We are currently constructing these characteristic curves
for several human activities. Davis [8] has independently
proposed a somewhat similar model for learning and recog-
nition of motion curves from multiple-views.

7 Discussion

The approach described here extends previous work on
facia motion to articulated motion and shows promise
for tracking and recognition of human activities. There
are, however, a number of issues that till need to be ad-
dressed. First, the motion of human limbsin NTSC video
(30 frames/sec) can be very large. For example, human

Thlgh oy w0 T w0 T T w00 w0 0 %o %0 Tioo 10 100 10 w0 w0 10 10 1500

Calf: i ik o AR 0 0 IO T e B M0 w0 w0
Translation Curl

Figure7: Motion parametersfor walking 45 degressrel ative

to theimaging plane (Figure6).

l[imbs often move distances greater than their width between
frames. This causes problems for a hierarchical gradient-
based motion scheme such as the one presented here. To
cope with large motionsof small regionswe will need to de-
velop better methods for long-range motion estimation.

Unlike the human face, people wear clothing over their
l[imbs which deforms as they move. The “motion” of the
deforming clothing between framesis often significant and,
where thereislittletexture on the clothing, may actualy be
the dominant motion within aregion. A purely flow-based
tracker such asthe one here hasno “memory” of what isbe-
ingtracked. Soif itisdeceived by the motion of theclothing
in some frame there is arisk that tracking will be lost. We
are exploring ways of adding atempl ate-styleform of mem-
ory to improve the robustness of the tracking.

Self occlusion is another problem typically not present
with facial motion tracking. Currently we have not ad-
dressed thisissue, preferring to first explore the efficacy of
the parameterized tracking and recognition scheme in the
non-occlusion case. In extending thiswork to cope with oc-
clusion, the template-style methods mentioned above may
be applicable.

8 Conclusion

We have presented amethod for tracking articulated motion
in an image sequence using parameterized models of opti-
ca flow. The method extends previous work on facia mo-
tion tracking [5] to more general animate motion. Unlike
previouswork on recovering human motion, thismethod as-
sumes that the activity can be described by athe motion of
aset of planar patches with constraints between the patches
to enforce articulated motion. No 3D model of thepersonis
required, features such as edges are not used, and the opti-
cal flow isestimated directly using theparameterized model .
An advantage of the 2D parameterized flow models is that
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Figure 8: Walking perpendicular to the imaging plane.

recovered flow parameters can be interprated and used for
recognitionasdescribedin[5]. Previousmethodsfor recog-
nition need to be extended to cope with the cyclica mo-
tion of human activities and we have proposed a method
for performing view-based recognition of human activities
from the optica flow parameters. Our current work is fo-
cused on the automatic segmentation of articulated motion
into parts and the devel opment of robust view-based recog-
nition schemes for articul ate motion.
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