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Abstract

This paper describes a framework for constructing a lin-
ear subspace model of image appearance for complex ar-
ticulated 3D figures such as humans and other animals. A
commercial motion capture system provides 3D data that is
aligned with images of subjects performing various activi-
ties. Portions of a limb’s image appearance are seen from
multiple views and for multiple subjects. From these par-
tial views, weighted principal component analysis is used
to construct a linear subspace representation of the “un-
wrapped” image appearance of each limb. The linear sub-
spaces provide a generative model of the object appearance
that is exploited in a Bayesian particle filtering tracking sys-
tem. Results of tracking single limbs and walking humans
are presented.

1 Introduction

The automatic detection and tracking of 3D articulated
figures such as humans and other biological creatures in
monocular video sequences is a challenging problem with
applications in many domains, including human computer
interaction, video database search, surveillance, computer
graphics, and the scientific analysis of animal behavior. The
solution to this problem requires matching a 3D model to
image data, but in a monocular image sequence this match-
ing problem is underconstrained. Additionally, models of
3D articulated figures are inherently non-linear and exhibit
complex temporal dynamics. To cope with these challenges
we work within a Bayesian framework where we repre-
sent a probability distribution over the parameters of the 3D
model. This framework allows us to exploit recent advances
in stochastic search and particle filtering for probabilistic
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Figure 1. An image from a sequence of a
subject dancing, and the corresponding 3D
ground truth. For each view, the 3D model is
projected into the image, and for each limb,
patterns and weights are registered. A lin-
ear basis is constructed from this data using
weighted principal component analysis.

tracking [8, 9] which are robust to singularities and ambi-
guities in the image appearance. Our approach requires a
generative modelof the object’s appearance, the likelihood
of observing the image given the model, and a prior distri-
bution over model parameters. In this paper we focus on
developing a framework for constructing generative models
for the appearance of articulated 3D figures.

Focusing on human figures, we model the body as a col-
lection of articulated cylinders with an associated image
representation. Consider, for example, the image shown in
Figure 1. A commercial motion capture system is used to
gather the “ground truth” 3D motion of the figure. This is
used to derive the positions of a 3D cylindrical model of
the figure in each image frame. Given the parameters of the
camera we can then project each cylinder or limb into the
image. The image texture for a particular view of a limb can
thus be associated with the cylindrical model. As a person
moves we may see their limbs from a variety of views. This



can be repeated for multiple subjects, and from this collec-
tion of “training views” we build a model for the appearance
of a limb.

In general such an appearance model may be quite com-
plex. Humans, for example, wear clothing of highly varied
color and pattern. Animals, on the other hand, typically ex-
hibit a limited range of variation in marking and coloration
characteristic to the species. Humans too, in certain do-
mains, exhibit limited variability in appearance; for exam-
ple, sports teams use uniforms with a limited range of pat-
terns. Thus, while in general we may require a non-linear
generative model of appearance, we develop the framework
here in the context of a linear (eigenspace) model.

Linear subspace methods have been used extensively for
constructing appearance models of faces [4, 11, 19] as well
as more varied objects [14]. Our problem differs from previ-
ous approaches in that we wish to “unwrap” the texture from
a roughly cylindrical object and construct a linear basis that
represents the full unwrapped appearance. For any given
subject, however, we may not see every view of every limb
and hence the training set will always be incomplete. Thus,
we require a method for constructing a linear subspace rep-
resentation that takes into account missing data. The vis-
ibility of each limb surface is represented by weight maps
similar to the cylinder confidence map used by La Cascia
and Sclaroff [11]. We exploit the weight maps to perform
weighted principal component analysis. The mathematical
details of this approach are described and related to recent
work in machine learning.

We illustrate how the model can be used to track an arm,
as well as a whole walking person in the presence of self
occlusion. We define a generative model of image appear-
ance and the likelihood of observing the image given our
model. We then briefly outline a temporal prior model for
a walking person. A particle filtering method for tracking
the person is outlined [3, 9] and results are shown. The fo-
cus of this paper is on the framework and mathematics for
constructing such models while details of the probabilistic
tracking method are described in [17].

2 Related Work

There has been a great deal of work on tracking hu-
man heads and bodies in image sequences using models
of both shape and appearance (for an overview, see [5]).
Methods for full body tracking typically use sparse cues
such as background difference images, color (e.g. [20]) or
edges [6, 7]. Bregler and Malik [2] tracked a human in 3D
using model based motion cues. Motion or optical flow
gives rich information, but can cause the tracking model
to “drift off” the target. The use of templates [3] avoids
this problem, but template tracking is sensitive to changes
in view and illumination.

Multiple camera views are often employed to reduce am-
biguity and problems due to self occlusion [2, 6]. Although
Goncalveset al.[7] presented accurate results in tracking an
arm in 3D using only one view, there has been little progress
in 3D monocular tracking of a whole human body.

Linear subspace methods have been used extensively for
modeling, tracking and recognition of faces (e.g. [19]). Ed-
wardset al. [4] modeled the shape and greylevel variation
of faces independently using principal component analy-
sis (PCA). From this face model they were able to track
and identify a face over an image sequence with changes
in pose, illumination and expression. Many face tracking
and recognition methods model the face as a textured planar
surface. In contrast, La Cascia and Sclaroff [11] modeled
the head as a cylinder, thus enabling more accurate tracking
over wider changes in viewing direction. Given an initial
face position, they projected the first image onto the cylin-
der, creating a cylindrical template used for tracking in sub-
sequent frames. A confidence map was also derived which
takes into account the pixel density on the cylindrical tem-
plate. We use this approach for gathering training data (see
Section 3).

Murase and Nayar [14] applied linear subspace methods
to objects viewed from multiple orientations. All views of
an object were normalized and a single linear subspace was
constructed as was the manifold relating the orientation of
the view and the coefficients of the model. Black and Jep-
son [1] used a similar technique to learn appearance mod-
els of cylindrical objects but, rather than using a training
set with a large number of views, they used a small num-
ber of views, and modeled the object as a point in the view
eigenspace, plus a linear spatial transformation of the view-
based model. Our approach here is quite different. Instead
of representing a cylindrical object by a number of views,
we wish to “unwrap” the image texture and construct a lin-
ear basis in which the basis images represent the full ap-
pearance of the object independent of view.

Recently, Cham and Rehg [3] presented a particle filter-
ing approach for human tracking in 2D. Our method is sim-
ilar, although in 3D. While this increases the dimensionality
of the search space, we exploit temporal models of the hu-
man motion to constrain the solution to lower dimensional
subspaces. In related work, Leventon and Freeman [12]
learn a model of short human motion segments from 3D
motion capture data. This model is exploited in the proba-
bilistic estimation of 3D human motion given tracking re-
sults from a 2D stick-figure model. Here we explore a more
constrained temporal model by focusing on human walking
and using an approach based on Yacoob and Black’s use of
“eigencurves” for recognizing human activities [21].



3 Training Data

To construct a generative model from training data we
extract example limb patterns from image sequences. Lo-
cating the limb positions in the sequences requires correlat-
ing the 3D motion capture data with the image data. Below
we describe the 3D person and camera models used to com-
pute the transformation from the image space to a limb sur-
face space in which we can represent the limb appearance.

3.1 Coordinate Transformations

The person is modeled as a composite of rigid circu-
lar cylinders. Each cylinder is connected to one or several
other cylinders with a joint having 1 to 3 degrees of free-
dom (DOF) represented as Euler angles. The spatial con-
figuration of the person model is determined by the global
translationt and global rotation rotationr of the cylinder
representing the torso of the person model, and the rela-
tive Euler angles� between the different cylinders of the
model. In total, the model consists of 10 cylinders whose
configuration is defined by 25 DOF including the angles at
the shoulders, elbows, hips and knees. Hands and feet are
not modeled.

A cylinder, or limb, is represented with a radiusR,
a lengthL and a homogeneous transformation matrixTl

which describes the transformation from the global coor-
dinate system to the limb’s local coordinate system.Tl is
derived fromt, r and those angles in� relating to limbs
connecting limbl and the torso. The local coordinate sys-
tem is Cartesian with theZ axis directed along the principal
axis of the limb (see Figure 2).

We define the limb surface space to be(�; l) where� 2
[0; 2�) andl 2 [0; L]. The limb surface space corresponds
to cutting the limb open where it crosses the positiveX axis
and unwrapping it so that� = 0 (and2�) at that rotation
(see Figure 2).

The camera is modeled as a pinhole camera, with trans-
formation matrixTc, focal lengthf and image centerc.

We compute the transformation to a pointpc in the im-
age space frompl = [�; l]T in the limb surface space viaPl

in the limb coordinate system andPc = [Xc; Yc; Zc; 1]
T in

the camera coordinate system as:

Pl = [R cos(�); R sin(�); l; 1]T (1)

Pc = TcT
�1
l Pl (2)

pc = c� f
h

Zc
Xc

; Yc
Xc

iT
(3)

3.2 Acquiring the Limb Pattern Images

Given the model parameters, for each limb we can ex-
tract the limb patternL. Patterns for two different views of
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Figure 2. A limb has 1 to 3 rotational DOF. The
surface coordinate system (l; �) of a limb cor-
responds to cutting the cylinder open where it
crosses the positive X axis, and unwrapping
it.

a lower right arm is shown in Figure 3.

Since some parts of the limbs are less visible or not vis-
ible at all, we assign a weight to each pixel in each limb
surface image indicating its visibility. The weights corre-
spond to the inner product of the surface normal at the limb
surface position and the vector from the limb position to the
focal point of the camera. This product is positive if the sur-
face faces the camera, and negative otherwise. Since we are
not interested in surface points facing away from the cam-
era (they are of course not visible) the weight is set to 0 if
the inner product is negative (Figure 3). This weight can
also be interpreted as the density of image pixels per limb
surface area [11].

Given n example views of a limb,j, let Lj =
[Lj

1
L
j
2
::: Ljn] 2 <

d�n, whereLji denotes the image pat-
tern for a particular view,i, of limb j represented as a col-
umn vector of lengthd. For notational simplicity we drop
the limb superscriptj; models of each limb will be con-
structed independently. Analogously, for the weight masks,
letW = [W1 W2 :::Wn] 2 <

d�n be the weight images
of the limb in column form. For notational purposes, we
defineD = [D1 D2 ::: Dn] 2 <d�nd as a matrix where
each sub-matrixDi 2 <d�d is a diagonal matrix with the
weightsWi along the diagonal.

4 Weighted Principal Component Analysis

Principal component analysis (PCA) is a popular statisti-
cal tool for performing dimensionality reduction and mod-
eling structure in data [10]. Given the matrixL we first
compute a matrixA by subtracting the weighted mean

� = (

nX
i=1

Di)
�1

nX
i=1

DiLi;
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Figure 3. Example of training data. In column
1 we see image with model superimposed, in
2 the extracted limb pattern, in 3 the corre-
sponding weight.

from L. PCA provides the orthogonal transformationU
which minimizes:

E(U) =

nX
i=1

jjAi �UU
TAijj

2; (4)

where the columns ofU are thek first eigenvectors of the
covariance matrixAAT . Observe that the matrixU, while
not the only basis that spans the subspace of principal com-
ponents [18, 16], has the numerical advantage of diagonal-
izing the covariance matrixAAT . This means that when
the original data in matrixA has a Gaussian distribution, the
projection of the columns ofA on the basis set,c = UTA,
will give coefficients that are decorellated and Gaussian.
This representation has the advantage of being easy to sam-
ple from.

Unlike traditional PCA, we do not have complete data.
Given the matrix of textures,A, and the continuous mask,
W, the goal is to estimate a linear representation of the im-
age appearance taking into account the observability of the
data (i.e. the mask). While singular value decomposition
is a common technique for computing a low-dimensional
linear model of image data, standard implementations can-
not deal with the varying observability as represented by the
masks.

Consider instead the probabilistic interpretation of PCA
(PPCA) recently proposed independently by Moghaddam
and Pentland [13], Tipping and Bishop [18] and Roweis
[16]. Tipping and Bishop [18] and Roweis [16] derive an
expectation maximization (EM) algorithm for latent vari-
able models, which finds the principal subspace of a set of
observed data vectors, assuming an isotropic noise model.
That is:

A = Bc+ � (5)

where� � N(0; �2I), c � N(0; I) andB is a parameter
matrix which contains thefactor loadings.

They showed that the subspace spanned by the principal
components can be computed with the EM algorithm when
the covariance noise becomes infinitesimal and equal in all
the directions; that is,lim�!0 �

2I [16, 18]. In this case the
basis vectors can be computed with least-squares optimiza-
tion, by minimizing the following:

min
B

min
c

nX
i=1

jjAi �Bcijj
2 (6)

with respect to the coefficientsc and the basis vectorsB.
Note that they assume a prior over coefficientsc. This
would represent a smoothness penalty added to the least
square error which acts as a regularization term:

min
B

min
c

nX
i=1

(1=�2)jjAi �Bcijj
2 + cTi ci (7)

but as� ! 0 the smoothness term becomes negligible and
the solution becomes the conventional least-squares solu-
tion.

Incorporating the weights into (6) the optimization
yields:

min
B

min
c

nX
i=1

(Ai �Bci)
TDi(Ai �Bci): (8)

As with EM, we alternate between solving for the coeffi-
cients,ci, and the basis vectorsB. We have lost, however,
the probabilistic interpretation of EM.

The subspace,B, estimated using the above approach is
not guaranteed to produce an orthogonal basis set. As with
PCA, we would like the basis setB to be orthogonal as it
simplifies sampling from the distribution of coefficientsc.
In order to compute the orthogonal principal components,
we do so iteratively. First, we minimize (8) with a single
basis vector inB. Then we subtract fromA the component
in the direction ofB. To this residual we fit the second
basis while imposing orthogonality with respect to the first;
e.g. with Gram-Schmidt orthogonalization. This process
is repeated until there are enough basis vectors to represent
95% of the variance in the training set. For minimizing (8)
we use the Newton-Raphson method. In Figure 4 the mean
and basis vectors representing 95% of the variance in a set
of 12 views of an arm in 3 different shirts are shown.

5 Tracking

The learned limb basesB are exploited to perform 3D ar-
ticulated tracking of people in monocular image sequences.
The Bayesian tracking framework is described only briefly
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Figure 4. Mean and the first five eigenvectors
in a training set of arm views. All images are
normalized to greylevel [0; 255] for visibility.
The horizontal stripes in the eigenimages oc-
cur because each training image is weighted
by its corresponding weight image. Thus, dif-
ferent training images have effects on differ-
ent parts of the eigenimages.

here; a more detailed treatment is presented in [17]. The
pose of the human body is defined by the the rotationr and
translationt of the torso and the relative angles,�, of the
joints (see Section 3.1). Additionally, the linear coefficients
cj , together with the trained linear subspaces of each limb
j, define the image appearance of the limbs. All these pa-
rameters together define agenerative modelfor the human’s
appearance in the image.

The generative model can be seen as a “template gen-
erator”. For a given vector of limb appearance coefficients
c, synthesized patterns similar to those in Figure 3 can be
generated asLtemplate = � + Bc. For a given pose of
the articulated model, we compute the current weight im-
ages from the orientation of the limb surfaces with respect
to the camera viewing angle (see Section 3.2). We also ex-
tract the actual patternsL on the limbs in the current im-
age. Now in analogy to template matching the difference
betweenLtemplate andL, weighted by the computed weight
image, can be computed.

Let the generative model at a specific time instancet be
defined by the set of parameters�t = [rt; tt;�t; ct]

T . Tak-
ing a Bayesian approach, the posterior probability of the
distribution over�t can be written as [9, 17]:

p(�tjIt) = Kt p(Itj�t) p(�tj�t�1) (9)

whereKt is a normalization constant independent of�t and
It is the image at timet.

In the subsequent sections, the different parts of (9) will
be discussed. First we describe how the likelihoodp(Itj�t)

is defined, then how the probability distribution over� is
propagated over time.

5.1 Likelihood

The likelihood of a configuration of the generative model
is a measure of how well the image data fits the model. In
other words, we want to compare the limb patterns accord-
ing to the coefficientsc in the generative model with the
actual patterns in the image.

Given an imageIt the parameters in�t are used to ex-
tract the mean-subtracted limb patternsA = L � � and
weight matricesD in the same way as described in Sec-
tion 3. We define the likelihood in terms of the distance be-
tween the observed image patternsA and the generated pat-
terns given by the limb appearance coefficientsc, weighted
byD:

p(Itj�t) =

mY
j=1

pj (10)

pj =

(
poccluded if O j

1p
2��

e�
(Aj

�B
j
c
j)TDj(Aj

�B
j
c
j)

2�2trDj if :O j

wherem is the number of limbs,Oj is true if limb j is
occluded by other limbs,poccluded is the probability of oc-
clusion,� is the standard deviation of the Mahalanobis dis-
tance between the estimated and actual limb patterns, as-
sumed equal for all limbs, andBj is the learned basis for
limb j.

5.2 Temporal Model

The temporal model defines the probability of observ-
ing the body in a certain pose with a particular appearance
given its pose and appearance at the previous time instant.
This temporal prior can help constrain the distribution over
model parameters to regions of the parameter space that are
likely to contain the solution. In this paper, we examine
two temporal models: a linear model of smooth motion and
a model specific to walking [17]. In the smooth motion
model, the parametersr, t, � andc are propagated in time
independent of each other:

p(ttjtt�1) = G(tt � tt�1;�t) (11)

p(rtjrt�1) = G(rt � rt�1;�r) (12)

p(�tj�t�1) = G(�t ��t�1;��) (13)

p(ctjct�1) = G(ct � ct�1;�c) (14)

whereG(x; �) is a zero-mean Gaussian with standard de-
viation � evaluated atx. �t, �r and�� are empirically
determined and�c = "� where" is a small number and�



are the eigenvalues corresponding to the basisB. All pa-
rameters are initiated manually exceptc which is initiated
asp(c0) = G(c0;�).

However, in the walking model, dependencies between
angles are learned from examples. A commercial motion
capture system is used to gather a number of example walk-
ing cycles from different individuals. After normalization
of the walking cycles with respect to time, each cyclei is
represented by a vectorVi consisting of the cycles of all
joint angles� concatenated.

The mean�V of the vectorsVi is computed and sub-
tracted from the vectors. Then, multivariate principal com-
ponent analysis [15, 21] is used to learn a basis for walking
cycles. The 5 largest eigenmodesBV representing 95% of
the variance in the training set are selected. The evolution
in time of the relative joint angles� is then determined by
the eigencoefficientsc� and some parameter�� determin-
ing phase in the walking cycle. In each time instant,� can
be computed as� = (�V +BV c�)[��]. Thus, over time,
we only need to propagatec� and��, which have fewer
dimensions than� and vary in more predictable ways.

The parameters determining� are propagated in time as:

p(c�;tjc�;t�1) = G(c�;t � c�;t�1;�c�) (15)

p(��;tj��;t�1) = G(��;t � ��;t�1; ��) (16)

where�� is empirically determined and, in analogy with
�c, �c� = "V �V . The phase parameter�� is initiated
manually andc� is initiated asp(c�;0) = G(c�;0;�V ).

5.3 Propagation in Time

The mapping from the parameters� of the generative
model to the image positions of the limbs is nonlinear and
the potentially complex image structure of human clothing
results in matching ambiguities. Thus, the likelihood distri-
bution cannot be computed in closed form over the param-
eter space�t. However, it is easy to evaluate the likelihood
for a particular value of�t. Therefore, instead of computing
the posterior distribution analytically at each time step, we
chose to use a sampling technique to represent the posterior
distribution and propagate it in time [9, 17].

We represent the distribution over�t as aN samples,
whereN is a large number (see Figure 5). For propagating
the distribution in time, we use the Condensation [9] algo-
rithm which is a particle filtering technique.

At each time step, a new set of samples are drawn from
the posterior distribution in the previous time step. The new
distribution is propagated in time according to one of the
temporal models described above. Then, the likelihood of
each sample is evaluated. This gives an approximation of
the current posterior distribution.

Figure 5. Illustration of a sampled distribu-
tion: 10 samples from a posterior distribution
over �t for an arm, projected into the image
coordinate system.

6 Results

In order to test the concept of modeling surface structure
on cylindrical objects, we implemented the particle filtering
algorithm for one arm with a general smooth motion prior,
and for the whole body with a walking prior described in
Section 5.

6.1 Tracking of Arm

To test the performance of the likelihood measure, we
used a model of one cylinder to track a lower arm, using
a smooth motion prior. An arm eigenspace was learned
from 12 different views of the arm, with 3 different shirts.
The result of the tracking can be seen in Figure 6. Dis-
tortions in the actual arm pattern compared to the trained
pattern are mostly due to wrinkles on the shirt (making it
non-cylindrical).

6.2 Tracking of Walking Subject

In this experiment we only modeled the appearance of
one subject. Therefore, the likelihood measure (10) was
simplified to:

p(Itj�t) =

mY
l=1

pj (17)

pj =

(
poccluded if O j

1p
2��

e�
A
jT
D
j
A
j

2�2trDj if :O j



Frame 0 Frame 10 Frame 20 Frame 30 Frame 40

Image with
�mean

super-
imposed

Extracted
limb pattern
for �max

Pattern
estimate
�+Bc for
�max

Weight for
�max

Figure 6. Tracking of a lower arm moving back and forth. In row 1 the image I is shown, with the
weighted mean of the posterior distribution �mean = 1

N

PN

i=1 �ip(Ij�i) superimposed. Row 2 shows
the extracted limb pattern L for the sample �max with the largest likelihood. Row 3 shows the pattern
�+Bc for �max , while the weight image for �max is shown in row 4.

This means that we do not take the parameterscj into re-
gard. Instead, the likelihoodpj depends on the distance to
the learned mean limb image�j . This is equivalent to the
use of a cylindrical template.

The limb appearances were learned from a number of
views of a subject dancing, and then used for tracking the
same subject walking in another sequence, using the walk-
ing temporal model. The height of the figure in the images
is approximately 50 pixels, making the resolution very low.
In Figure 7 we see parts of the sequence with the weighted
mean�mean = 1

N

PN

i=1 �ip(Ij�i) superimposed.

7 Summary and Discussion

We present a framework for modeling of the appearance
of 3D articulated figures composed of cylindrical elements.
Given 3D motion capture data of a person moving, corre-

lated with image data, we can construct a linear basis for the
appearance of the person’s limbs using weighted linear sub-
space analysis. This approach has the advantage that non-
random missing data is explicitly taken into account in the
learning of the basis. Thus, we are able to learn a generative
model of the appearance of all surfaces on the figure regard-
less of viewing direction, in contrast to the view-dependent
approaches such as template matching.

Modeling an articulated figure as a composite of cylin-
ders is of course limiting since most biological creatures
have a reformable structure, and show variability in size and
shape. This variability over time and population needs to be
modeled as well as the variability in appearance. Instead of
cylinders we could use eigenshapes, superquadrics or other
high dimensional structures. However, there is a tradeoff
between spatial accuracy of the generative model and effi-
ciency in the filtering algorithm. When possible, a simpler
model is preferred.



Figure 7. Tracking of a walking subject. The 7 images are frame 0, 5, 10, 15, 20, 25 and 30 of the
sequence. Overlaid on the images are the weighted means of the posterior probability distribution.

One drawback of using a linear subspace to model the
appearance of humans is that the patterns of modern cloth-
ing vary in complex ways. Animals, however, often show
characteristic patterns specific to the species. Given 3D mo-
tion capture data for several individuals of a species, a gen-
erative appearance model could be learned for that species.
Reliable tracking of animals has several interesting appli-
cations, such as behavior analysis. To represent the com-
plexity of human clothing will require more sophisticated,
non-linear, generative texture models.

This work represents a preliminary step towards build-
ing generative models of human appearance. Such models
may have applications in tracking as shown here as well as
in computer graphics. A great deal remains to be done how-
ever to construct representations and learning methods for
more complex image textures. In our current work we are
extending the Bayesian tracking framework with more re-
alistic likelihood models, better temporal models of human
motion, the incorporation of additional image cues, and re-
finements to the tracking algorithm.
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