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From the outside it may not be apparent that Brown
University has a large, interdisciplinary, and vibrant
computer vision community. Despite being a small
school (5,674 undergraduate and 1,343 graduate stu-
dents), Brown has a tightly knit community of vision
researchers in various departments. This can be partly
seen in this special issue which has contributions from
researchers in the Division of Applied Mathematics,
the Department of Computer Science, the Division
of Engineering, and the Department of Cognitive and
Linguistic Sciences. What we find amazing and won-
derful about Brown is the high degree of interaction
among researchers from these different disciplines.

We hope the papers in this special issue give some
glimpse into the computational vision research at
Brown. Any collection of this type is only a snapshot
at an instant in time and cannot hope to capture the
full diversity of work going on here. While there is
a broad range of vision research at Brown, our focus
here is specifically on conveying a sense of the breadth
and depth of computational vision research at Brown.
Towards that end, we briefly summarize some of the
current research efforts that are not represented by ar-
ticles in this issue and provide some references for the
interested reader.

The Division of Applied Mathematics

Elie Bienenstock (Bienenstock et al., 1997;
Bienenstock and Doursat, 1994; Geman et al., 1992;
Malsburg and Bienenstock, 1987) studies the “com-
positional” nature of vision and object recognition.
Compositionality refers to the ability of natural-and

some artificial—vision systems to represent objects as
hierarchies of reusable parts. For example, a face is
made of eyes, nose, mouth, and each of these is made of
simpler constituents. Constituents can come together
in an image only if they obey specific relational rules.
The compositionality principle has implications for
both computational and biological systems. In the
brain for example, there must be a mechanism for
rapidly and reversibly binding otherwise uncorrelated
spatio-temporal patterns of neural activity.

Stuart Geman (Geman and Geman, 1984; Geman
et al., 1990, 1993, 2002; Kunsch et al., 1995) also stud-
ies compositionality. Compositional hierarchies can be
viewed as parse trees derived under formal grammars.
This sets up an equivalence between parsing and scene
analysis, and it suggests the use of probabilistic gram-
mars for representing the relative likelihoods of differ-
ent aggregations of parts and objects. Since the well-
studied context-free grammars are inadequate, it is
important to craft distributions for more general gram-
mars and to specify feasible algorithms for the infer-
ence of these grammars. One natural way to implement
compositional hierarchies in biological vision systems
would be to exploit fine-temporal structure of neu-
ronal spike trains. Statistical methods are being devised
to systematically search for fine-temporal structure in
multi-unit neural recordings.

David Mumford studies vision from a broad range
of perspectives (Mumford and Gidas, 2001; Lee et al.,
2003; Mumford, 2002, 2003; Lee and Mumford, to
appear). His focus has been on constructing probabilis-
tic models for the “variables of vision.” This includes
capturing the statistics of natural and range images and
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modeling occlusion and local image structure. His work
also explores the concept of similarity between two
shapes which is fundamental to object recognition. Fi-
nally, he is exploring how our understanding of com-
puter vision corresponds to perceptual processes in the
human brain.

Basilis Gidas’s current research in computer vision
includes: (i) Simultaneous tracking and recognition of
moving objects on the basis of video images; the work
explores hierarchical/syntactic (context-free-grammar
type) object representations and Monte Carlo type fil-
ters; (ii) design of scale-invariant, non-Gaussian, 2-D
stochastic models for image generation and processing.
His past work includes estimation of topographic maps
(“shape from shading”), tomographic reconstruction,
texture modeling and segmentation, multiscale Monte
Carlo simulation and optimization algorithms for im-
age processing tasks (Gidas et al., 2000, 2002; Gidas
and Mumford, 2001; Gidas and Geman, 1991; Gidas,
1989).

Ulf Grenander is the originator of Pattern Theory
whose aim is to analyze from a statistical point of
view the patterns in images and other signals. This is
an area of strength for Brown where numerous other
researches actively use this approach. He is a pio-
neer of the notion of computational atlases where the
anatomy is digitally represented as patterns observed
in 3D medical image datasets, e.g., from CT, MR, and
PET (Grenander and Miller, 1998; Bakircioglu et al.,
1998; Miller et al., 1993). The goal is to facilitate au-
tomatic recognition and component measurement of
anatomical structures in these images. Another current
interest is Automatic Target Recognition (Grenander
and Srivastava, 2001; Grenander et al., 1998) where the
research primarily involves developing jump-diffusion
algorithms for pattern inference based on knowledge
about vehicle dynamics and the physics of sensors.
As another example of how computer vision can be
studied from the pattern theory perspective, shape
can be modeled as templates deformed by Lie group
transformations.

Donald McClure is interested in problems that ben-
efit from the use of temporal as well as spatial infor-
mation for the analysis of image sequences. Examples
include the detection and removal of defects from mo-
tion pictures, resolution conversion, image stabilization
and region-based decomposition of image sequences
for more effective motion image compression (Geman
et al., 1992, 1993; Geman and McClure, 1987;
Kutliroff, 2002)

The Department of Computer Science

Michael Black’s research focuses on motion estima-
tion and motion understanding in video sequences. In
particular, his work on optical flow addresses the de-
tection of occlusion boundaries and the estimation of
image motion in layers using robust statistical meth-
ods and probabilistic models (Black and Fleet, 2000;
Black and Anandan 1996). Understanding the motion
of the human body is of special interest but is made
challenging by the variability of human appearance,
the high dimensionality of articulated body models,
and the complexity of human motion. His work on this
topic exploits learning methods and probabilistic in-
ference techniques to model the motion of the face and
body, their appearance, how they change due to mo-
tion, and to track deformable face or articulated body
models in image sequences (Black and Yacoob, 1997;
Black and Jepson, 1998; Black et al., 2000).

Thomas Hofmann’s research focuses on the theoret-
ical foundations of learning with applications to com-
puter vision and pattern recognition in addition to natu-
ral language learning and data mining (Andrews et al.,
2003; Hofmann, 2001; Puzicha et al., 1999; Hofmann
et al., 1998). Like many researchers at Brown with an
interest in computational vision, his focus is on statis-
tical and information theoretic techniques.

David Laidlaw works primarily in the areas of scien-
tific visualization, computational modeling, and com-
puter graphics. His vision-related focus is on devel-
oping tools to facilitate scientific understanding of
medical imaging data and results of simulations (van
Dam et al., 2002). He has worked on geometric model
extraction from MR data (Andrews and Laidlaw, 2002),
classification of MR data using Bayesian modeling of
partial volume mixing (Cooper et al., 2002), and tools
for visually interacting with multi-valued volume data.
To develop applications for his vision-related tools, he
collaborates widely with researchers in many other dis-
ciplines (Grimm et al., 2002).

The Division of Engineering

David Cooper (Cooper et al., 2001; Kang et al., 2001;
Tarel and Cooper, 2000; Blane et al., 2000; Barzohar
and Cooper, 1996) has been a pioneer of applying
the Bayesian approach to computer vision. His re-
cent research focuses on: (i) Automatic extraction of
3D geometrically, algebraically, stochastically mod-
eled structure and semantically meaningful geometry
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from unordered sets of 3D data points or from images
from multiple cameras. (ii) Applications to archaeo-
logical site data, which includes: Reconstruction of
3D ceramic pot models by automatically assembling
laser scans of the many small pot sherds; Indexing into
databases of extracted 3D geometric representations;
Semi-automatic site reconstruction for VR viewing.
(iii) Using 3D sketching and user-controlled interpo-
lation for high precision, user-intuitive, sculpting in a
VR environment. (iv) 3D geometric learning; indexing
into image and video databases.

Benjamin Kimia’s work focuses on shape represen-
tation, object recognition, and perceptual grouping.
Robust recognition in the presence of numerous
sources of variability requires an explicit topology for
shape, constructed by formally studying the transitions
of the shock graph (with Giblin, this volume), which
is a variant of the medial axis (with Tek, this volume).
Recognition is based on a metric of dissimilarity which
is the cost of the least action deformation path. Com-
putations are made practical by defining equivalence
classes and developing an edit-distance approach to
shock graph matching. Other research interests include
perceptual grouping using shock graphs, exploring the
viability of this framework from psychophysics and
neurophysiology perspectives, medical imaging, and
digital archaeology (Kimia et al., 1992; Sebastian et al.,
2003; Siddiqi et al., 2001; Sebastian et al., 2003; Kimia,
2003).

Joseph Mundy is working in the area of video pro-
cessing and analysis with particular emphasis on object
recognition and modeling. A current research theme is
the concept of active models which combine the ac-
tivities of modeling and recognition. In this approach,
the object model acts as a recognition agent and re-
fines its recognition strategy as more sensor informa-
tion is accrued. The object representation combines
both 3-d geometric and illumination scattering models
(Mundy, 1995, 1998; Rothwell et al., 1993; Mundy and
Zisserman, 1992)

Gabriel Taubin’s main research interests include:
Computer Vision, Applied Computational Geometry,
Computer Graphics, Geometric Modeling, and 3D
Photography (Taubin, 2002; Balmelli et al., 2002;
Bernardini et al., 2002; Taubin et al., 1998; Taubin and
Rossignac, 1998). For the last few years his main line of
research has been on the development of efficient, sim-
ple, and mathematically sound algorithms to operate
on 3D objects represented as polygonal meshes, with
an emphasis on Web-based applications. This work has

spanned several areas such as: 3D capturing and sur-
face reconstruction, modeling, compression, progres-
sive transmission, and display of polygonal meshes,
and mesh signal processing.

William Wolovich’s primary research areas are: (i)
Object Modeling/Measurement, where a new conic-
line decomposition of algebraic curves has been devel-
oped. This decomposition can be used to analyze the
boundaries of free-form objects, to define canonical
curves for object recognition, and to obtain geomet-
ric invariants for object identification and classifica-
tion. (ii) Geometric Design, where new methods have
been developed for blending multiple two-dimensional
profile curves to produce three-dimensional sweep sur-
faces that are easy to model, measure and modify. (iii)
Motion Modeling and Control, where motion signature
surfaces can be created to analyze databases containing
normal and abnormal motion for multiple applications,
such as the diagnosis of ergonomic injuries.

The Department of Cognitive
and Linguistic Sciences

Fulvio Domini studies how the human visual system
can exploit the 2D flow of image features to recover
structure and motion. In particular he is concerned with
mathematical models of how different cues are com-
bined by the brain to interpret a moving scene. In psy-
chophysical experiments, he has shown (i) the visual
system relies on properties of the optic flow that are
not necessarily sufficient for deriving the projected ob-
ject and its 3D motion; (ii) the derivation of the 3D
structure and motion is based primarily on a heuristic
(rather than a veridical mathematical) analysis of the
optic flow (Domini et al., 1997, 1998, 2002; Domini
and Caudek, 1999; Domini and Braunstein, 1998).

Michael Tarr’s research focuses on behavioral and
computational approaches to object recognition and
visual perception (Tarr and Cheng, 2003; Tarr and
Warren, 2002; Gauthier et al., 2002; Tarr and Gauthier,
2000; Tarr et al., 1998). He is interested in perceptual
expertise as a model of plasticity in the visual system
(and as an explanation for putatively “face-specific”
phenomena), the degree to which surface properties
such as color or luminance are intrinsic to object vi-
sion, and how different kinds of visual information are
recruited for tasks such as object recognition or navi-
gation. Earlier work investigated how observers recog-
nize three-dimensional objects from two-dimensional
views.
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Bill Warren’s research focuses on the visual control
of action - in particular, human locomotion and naviga-
tion (Duchon et al., 1998; Li and Warren, 2000; Warren
et al., 2001; Duchon and Warren, 2002; Kearns et al.,
2002). Using virtual reality techniques, his research
team investigates problems such as the perception of
optic flow, the visual control of steering and obsta-
cle avoidance, and path integration and spatial knowl-
edge used in navigation. This VR technology allows
researchers to manipulate visual information during
active walking, and to measure their ongoing behav-
ior. The ultimate aim of this research is to understand
how adaptive behavior emerges from the dynamic in-
teraction of an organism and its environment.

The Brain Science Program

While our focus here is primarily on researchers study-
ing computational vision, it should be clear that many
of us are inspired by biological vision or directly work
on neural models of vision. The departments above
are all part of a broader Brain Science Program where
we have many other colleagues who study vision from
other perspectives. At Brown, research into the cogni-
tive, computational, and neural mechanisms of vision
is diverse and interdisciplinary. We cite just a few ex-
amples below to give a flavor of this breadth.

David Sheinberg in the Department of Neuro-
science studies the neural mechanisms of natural vision
(Sheinberg and Logothetis, 1997, 2001, 2002). Michael
Paradiso, also in Neuroscience, studies how neurons
code visual information and how the communica-
tion and cooperation of these neurons underlies visual
perception (Paradiso, 2002; Macevoy and Paradiso,
2001; Rossi and Paradiso, 1999). Both Sheinberg and
Paradiso conduct perception experiments during which
the activity of brain cells is recorded. David Berson
studies retinal ganglion cells, how the different types
of these cells respond to visual stimuli, and what infor-
mation they send to the rest of the brain.

In the Department of Psychology Leslie Welch stud-
ies the human visual psychophysics of motion percep-
tion, binocular vision, and spatial vision. Her work also
addresses issues of perceptual learning in the visual
system (Festa and Welch, 1997; Welch et al., 1997;
Matthews and Welch, 1997).

In the Department of Physics Nathan Intrator stud-
ies biological vision as well as image pattern recog-
nition and classification (Blais et al., 1998; Edelman
and Intrator, 2000; Intrator and Edelman, 1997). His

work on early vision includes nonlinear feature ex-
traction and dimensionality reduction (Intrator and
Edelman, 1997). His work focuses on neural models
of vision, receptive field formation in natural environ-
ments, learning in early visual cortex, and learning in
network models of vision.

Conclusion

We hope you enjoy this issue and will take the oppor-
tunity to explore the work of our colleagues in more
depth. If you would like to learn more about compu-
tational vision at Brown please see the following web
sites:

http://www.vision.brown.edu/
http://www.dam.brown.edu/ptg
http://www.cs.brown.edu
http://www.lems.brown.edu/vision
http://www.cog.brown.edu
http://www.brainscience.brown.edu
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