
Recursive Non-Linear Estimation of

Discontinuous Flow Fields

Michael J. Black?

Xerox Palo Alto Research Center
3333 Coyote Hill Road, Palo Alto, CA 94304, USA

Abstract. This paper de�nes a temporal continuity constraint that ex-
presses assumptions about the evolution of 2D image velocity, or opti-
cal ow, over a sequence of images. Temporal continuity is exploited to
develop an incremental minimization framework that extends the mini-
mization of a non-convex objective function over time.Within this frame-
work this paper describes an incremental continuation method for recur-
sive non-linear estimation that robustly and adaptively recovers optical
ow with motion discontinuities over an image sequence.

1 Introduction

Many approaches for estimating optical ow have focused on the analysis of
motion between two frames in an image sequence while others have attempted
to deal with spatiotemporal information by processing long sequences in batch
mode. More recently, there has been an interest in incremental approaches which
are more suited to the dynamic nature of motion estimation [4, 9, 11]. This
paper addresses the problem of incrementally estimating optical ow when the
formulation of the problem accounts for motion discontinuities. In this situation
we minimize a non-convex objective function that is changing over time. To do
so, we propose a general incremental minimization framework which is illustrated
by extending a deterministic continuation method over time.

Our goal is to incrementally integrate motion information from new images
with previous optical ow estimates to obtain more accurate information about
the motion in the scene over time. There are some general properties that an
incremental algorithm should have: (i) Anytime Access: motion estimates are
always available; (ii) Temporal Re�nement1 : ow estimates are re�ned over time
as more data is acquired; (iii) Computation Reduction [9]: by exploiting the
information available over time, the amount of computation between any pair
of frames is reduced; (iv) Adaptation: as the motion of the observer and scene
changes over time, the algorithm must adapt to changes in the motion and the
changing image.

? Portions of this work were performed at the NASA Ames Research Center, Yale
University, and the University of Toronto with support from NASA (NGT{50749),
ONR(N00014{91{J{1577), and NSERC.

1 This idea has also been referred to as \quality improvement" [9].
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In the following section we explore the idea of temporal continuity. We then
show how a temporal continuity constraint is added to a robust formulation
of the optical ow problem. Section 4 describes the incremental minimization
framework and an incremental continuation method, called IGNC.2 The algo-
rithm recovers accurate optical ow estimates, preserves motion discontinuities,
requires only a �xed amount of computation between frames, and adapts to
scene changes. Experimental results are presented for natural and synthetic im-
age sequences.

2 Temporal Continuity

The predictable motion of surfaces in the world gives rise to a predictable change
in image velocity over time which we call temporal continuity. This property
is exploited by spatiotemporal-�ltering approaches [1] and epipolar-plane image
analysis [7]. In contrast to these locally batch approaches we are interested in
incrementally processing a sequence of images.

Murray and Buxton [10] extend the standard spatial neighborhood system
of Markov random �eld approaches to include neighbors in both space and time
and they de�ne a crude temporal continuity constraint, ET , that assumes that
the ow at an image location remains constant over time. We take a di�erent
approach in which we treat temporal continuity as a constraint on image velocity,
formulate it to account for violations, and incorporate it into the estimation
problem. For example, consider the simple assumption that the acceleration of a
surface patch is constant over time. Let u(x; y; t) = (u(x; y; t); v(x; y; t)) be the
optical ow at a point (x; y) at a particular instant in time t. We can predict
what the ow will be at the next instant, t+ �t, as follows:

u�(x; y; t) = u(x� u�t; y � v�t; t� �t) +
@

@t
u(x� u�t; y � v�t; t� �t)�t; (1)

where the acceleration is approximated by

@

@t
u(x; y; t) � (u(x; y; t)� u�(x; y; t)); (2)

and where u� is the \predicted" ow �eld. This equation corresponds to warping
the ow �eld by our current estimate of the ow.

3 Estimating Piecewise-Smooth Flow

We formulate the problem of recovering the optical ow, us = (us; vs), at every
pixel, s, in the image, as the minimization of an objective function, E, composed
of a data conservation constraint, ED, a spatial coherence constraint, ES , and a
temporal continuity constraint, ET :

E(us;u
�
s ) = �DED(us) + �SES(us) + �TET (us;u

�
s ); (3)

2 IGNC stands for Incremental Graduated Non-Convexity.
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where the �i control the relative importance of the terms.
To illustrate we adopt a robust gradient-based formulation of the optical

ow problem [5] where the data conservation, spatial coherence, and temporal
continuity constraints are de�ned as

ED(u) = �D(Ixu+ Iyv + It; �D); (4)

ES(us) =
X
n2Gs

�S(us � un; �S) +
X
n2Gs

�S(vs � vn; �S); (5)

ET (u;u
�) = �T (u� u�; �T ) + �T (v � v�; �T ): (6)

where the �� are robust estimators, the �� are continuation parameters described
below, and Gs is the set of nearest neighbors of s. The data term is the standard
optical ow constraint equation where Ix, Iy , and It are the partial derivatives
of the image sequence with respect to both spatial dimensions and time, and the
spatial term, ES , implies a �rst-order smoothness assumption. The temporal
term, ET , insures that the estimate, u, is close to the prediction, u�.

Each of these constraints embodies a set of assumptions about the scene, the
motion, and the imaging process. These assumptions are often violated in real
scenes and the measurements made by the constraints can be viewed in a statis-
tical context as outliers. To reduce the e�ect of these outlying measurements we
adopt the robust estimation framework of [3, 5] in which the standard constraints
are formulated in terms of robust estimation [8]. We choose the �� to be robust
estimators; in this case the Lorentzian estimator:

�(x; �) = log

�
1 +

1

2

�x
�

�2�
;  (x; �) =

2x

2�2 + x2
: (7)

The  {function is the derivative of the estimator and can be used to characterize
the \inuence" of outliers. In the case of the Lorentzian, the inuence of outliers
tends to zero. This robust estimation formulation results in a computationally
expensive non-convex minimization problem.

3.1 Global Optimization

Localminimization ofE is performedusing SimultaneousOver-Relaxation (SOR)
(see [3] for details of the approach). We focus here on the problem of �nding a
globally optimal solution when the function is non-convex. The general idea is to
take the non-convex objective function and construct a convex approximation.
In the case of the Lorentzian estimator, this can be achieved by making the
continuation parameters (�D, �S , �T ) su�ciently large (see [3] for details). This
approximation is then readily minimized using a local technique like SOR. Suc-
cessively better approximations of the true objective function are constructed
by gradually lowering the values of the ��. Each successive approximation is
minimized starting from the solution of the previous approximation. Figure 1
shows the Lorentzian estimator (Figure 1a, b) and its  -function (Figure 1c) for
various values of �.
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Fig. 1. Graduated Non-Convexity. Figures a, b show �(x; �) for various values of
�. Figure c shows the  {functions for three values of �.

Incremental Minimization:
u;u�  initially 0 everywhere
T initial value at every site
n �xed, small number of iterations
for each image

;; re�nement
for n iterations

u minimize(E;u;u�;T) ; peform n iterations beginning at u�

T(x; y) f(T(x; y)) ; update the control parameter
end

;; prediction
u u+ (u� u�) ; constant acceleration assumption
u�(x; y) u(x� u; y � v) ; warp ow by current ow
T(x; y) T(x� u; y � v) ; warp control parameter
;; adaptation
if location (x; y) is occluded or disoccluded then

T(x; y) initial value
u;u�  [0; 0]

end if

end.

Fig. 2. Incremental Minimization algorithm.

4 Recursive Non-Linear Estimation

The traditional recursive estimation techniques for incremental estimation (eg.
[11]) are ill-suited to the robust estimation task. Here the problem is to minimize
a non-convex objective function that is changing over time and to do so, we
develop an new incremental minimization framework that performs recursive
non-linear estimation. The basic algorithm is summarized in Figure 2.

At any instant in time, the algorithm has a current estimate of the ow �eld
u and a control parameter T at each pixel. When a new image is acquired, the
constraints are applied to yield a new objective function E and the estimate is
re�ned, beginning with the prediction u� as an initial estimate, by performing
a �xed number of iterations (usually between 1 and 10) of some continuation
method, where an iteration here corresponds to updating all ow vectors in the
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image.
The assumption of temporal continuity is exploited to predict what the ow

�eld and the control parameter will be at the next instant in time. In areas of
the image that are undergoing signi�cant change, the values of T(x; y) must be
reset. This can be done by detecting occlusion and disocclusion boundaries in the
ow and reinitializing T in these locations [4]. In our current implementation we
reset T when we detect a violation of any of the three constraints (ie. whenever
a measurement is treated as an outlier). Thus, unlike standard continuation
methods, for incremental estimation we allow the continuation parameter to
vary spatially; this will permit the algorithm to adapt to scene changes. After
prediction, a new image is acquired and the process is repeated.

A number of algorithms can be implemented using this general framework. In
previous work we have described an Incremental Stochastic Minimization (ISM)
algorithm [4] in which the minimization is achieved through simulated annealing.
Unlike stochastic minimization techniques, continuation methods, such as Grad-
uated Non-Convexity (GNC) [6], provide a deterministic minimization strategy
for non-convex optimization problems. One bene�t of these deterministic ap-
proaches is that the coarse approximations provide useful descriptions of the
ow �eld.

5 Experimental Results

SRI Tree Sequence: The �rst experiment illustrates the dynamic nature of
the algorithm by showing the evolution of the horizontal component of the op-
tical ow over time. The SRI tree sequence3 contains 63 images in which the
camera is translating in a direction parallel to the image plane. The maximum
displacement between frames is approximately 2 pixels, thus a two-level image
pyramid was used. The images were Laplacian �ltered and the weights used for
this experiment were: (�D = 10:0, �S = 1:0, �T = 0:1). The continuation param-
eters had the following ranges: �D 2 [5:0; 0:5], �S 2 [0:5; 0:01], �T 2 [2:5; 0:15].
These continuation parameters started at the highest value and were reduced
by a factor of 0.8 per frame down to the minimum value with only 5 iterations
of the method per frame. The results at every tenth frame (starting at frame
32) are shown in Figure 3. At Frame 34 the spatial discontinuities are not yet
enforced and the ow is smoothed across the branches of the tree. By Frame
44 the ow becomes more piecewise smooth and this character is maintained
throughout the rest of the sequence.

Yosemite Fly-Through: The Yosemite y-through image sequence4 consists
of 15 synthetic images for which the largest displacement is approximately 4
pixels. For this sequence a three-level pyramid was used and the images were
Laplacian �ltered. We took the weights �D = �T = 1:0 and �S = 4:0 to give a

3 Provided by Bob Bolles and Harlyn Baker.
4 This sequence was generated by Lynn Quam.
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Image 32 Flow 34 Flow 44

Flow 54 Flow 64 Flow 74

Flow 84 Flow 94 Image 95

Fig. 3. The SRI Tree Sequence. The horizontal component of the ow at every
tenth image is shown. Bright areas are moving faster to the right than dark areas.
Discontinuities in ow are gradually introduced over time.

higher weight to the spatial smoothness constraint. The values for the continu-
ation parameters �D, �S, and �T were all taken to be the same with an initial
value of 4:0 and a minimum value of 1:0. These parameters were lowered by a
factor of 0:8 per frame. Ten iterations (at each level of the pyramid) were used
per frame. Figure 4 shows the ow �eld computed at the end of the sequence.

Since the sequence is synthetic, we can quantify the accuracy of the results
using the angular error measure of Barron et al. [2]. Table 1 lists the results of a
number of algorithms applied to this sequence. The �rst set of algorithms in the
table produce dense ow �elds and generally have large average angular errors.
The second set of algorithms produce lower average errors but do not provide ow
estimates everywhere. The robust formulation results are for a two frame robust
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Image 0 Image 14

Actual Flow Recovered Flow

Fig. 4. Yosemite Sequence. The �rst and last images in the sequence are shown above.
The �nal ow �eld recovered at the end of the sequence is shown beside the actual ow
�eld.

estimation problem [5] which is identical to the formulation presented here but
without temporal continuity.5 The incremental version (IGNC) achieves better
results than the two-frame algorithm and produces errors in the range of the most
accurate approaches, but still gives dense estimates. The table on the right shows
that the majority of ow vectors have angular errors less than three degrees.

6 Conclusions

We have addressed the problem of incrementally estimating optical ow over a
sequence of images in the case where the robust formulation of the optical ow
problem results in a computationally expensive non-convex minimization prob-
lem. We have developed a framework for solving these problems over time and

5 Flow errors were not computed in the sky area, because, unlike the Barron et al.

images which contained clouds, our images were cloudless.
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Technique Average Standard Density
Error Deviation

Horn and Schunck 32:43� 30:28� 100%

Anandan 15:84� 13:46� 100%

Singh 13:16� 12:07� 100%

Fleet and Jepson 4:17� 11:28� 34:1%

Weber and Malik [12] 3:42� 5:35� 45:2%

Robust Formulation [5] 4:47� 3:90� 100%

IGNC 3:52� 3:25� 100%

% ow vectors with error:

< 1� 13:3%

< 2� 38:3%

< 3� 56:5%

< 5� 79:5%

< 10� 96:5%

Table 1. Comparison of various optical ow algorithms (adapted from [2]).

have shown how a deterministic continuation method can be made incremental
within this framework. The result is an algorithm which uses a �xed amount of
computation per frame, incrementally improves the motion estimates over time,
and adapts to scene changes.
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