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Abstract. Many computer vision, signal processing and statistical problems can be posed as problems of learning
low dimensional linear or multi-linear models. These models have been widely used for the representation of
shape, appearance, motion, etc., in computer vision applications. Methods for learning linear models can be seen
as a special case of subspace fitting. One draw-back of previous learning methods is that they are based on least
squares estimation techniques and hence fail to account for “outliers” which are common in realistic training sets.
We review previous approaches for making linear learning methods robust to outliers and present a new method
that uses an intra-sample outlier process to account for pixel outliers. We develop the theory of Robust Subspace
Learning (RSL) for linear models within a continuous optimization framework based on robust M-estimation. The
framework applies to a variety of linear learning problems in computer vision including eigen-analysis and structure
from motion. Several synthetic and natural examples are used to develop and illustrate the theory and applications
of robust subspace learning in computer vision.
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1. Introduction

Automated learning of low-dimensional linear or
multi-linear models from training data has become a
standard paradigm in computer vision. A variety of
linear learning models and techniques such as Princi-
pal Component Analysis (PCA) (Diamantaras, 1996;
Neudecker and Magnus, 1999; Jolliffe, 1986; Mardia
et al., 1979; Turk and Pentland, 1991), Factor Analysis
(FA) (Everitt, 1984; Mardia et al., 1979), Autoregres-
sive analysis (AR) (Blake and Isard, 1998), and Singu-
lar Value Decomposition (SVD) (Golub and Van Loan,
1989), have been widely used for the representation
of high dimensional data such as appearance, shape,

motion, temporal dynamics, etc. These approaches dif-
fer in their noise assumptions, the use of prior infor-
mation, and the underlying statistical models, but all of
them are directly or indirectly related to linear or bi-
linear regression. Learning linear models such as these
can be posed as a problem of alternated least squares
(ALS) estimation which is sometimes referred to as
criss-cross regression (Gabriel and Zamir, 1979). In
this paper we develop a robust formulation of this es-
timation processes that can be exploited to improve
the robustness of linear learning methods to statistical
outliers.

In particular, PCA is a popular technique for pa-
rameterizing shape, appearance, and motion (Black
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et al., 1997; Cootes et al., 1998; Moghaddam and
Pentland, 1997; Murase and Nayar, 1995; Turk and
Pentland, 1991). Learned PCA representations have
proven useful for solving problems such as face and
object recognition, tracking, detection, and background
modeling (Black and Jepson, 1998; Cootes et al., 1998;
Moghaddam and Pentland, 1997; Murase and Nayar,
1995; Oliver et al., 1999). Typically, the training data
for PCA is pre-processed in some way (e.g. faces are
aligned (Moghaddam and Pentland, 1997)) or is gener-
ated by some other vision algorithm (e.g. optical flow
is computed from training data (Black et al., 1997)). As
automated learning methods are applied to more realis-
tic problems, and the amount of training data increases,
it becomes impractical to manually verify that all the
data is “good”. In general, training data may contain
undesirable artifacts due to occlusion (e.g. a hand in
front of a face), illumination (e.g. specular reflections),
image noise (e.g. from scanning archival data), or errors
from the underlying data generation method (e.g. in-
correct optical flow vectors). We view these artifacts as
statistical “outliers” (Rousseeuw and Leroy, 1987) and
develop a theory of Robust Subspace Learning (RSL)
for PCA that can be used to construct low-dimensional
linear-subspace representations from noisy data. PCA
provides a simple domain in which to motivate, de-
velop, and illustrate the approach. We then show how
this general framework can be extended to a variety of
linear, or multi-linear, learning problems.

It is commonly known that traditional PCA con-
structs the rank k subspace approximation to zero-
mean training data that is optimal in a least-squares
sense (Diamantaras, 1996; Eckardt and Young, 1936;
Golub and Van Loan, 1989; Jolliffe, 1986). It is also
commonly known that least-squares techniques are not
robust in the sense that outlying measurements can ar-
bitrarily skew the solution from the desired solution
(Hampel et al., 1986; Huber, 1981). In the vision com-
munity, previous attempts to make PCA robust (Xu and
Yuille, 1995) have treated entire data samples (i.e. im-
ages) as outliers. This approach is appropriate when
entire data samples are contaminated as illustrated in
Fig. 1 (middle). As argued above, the more common
case in computer vision applications involves intra-
sample outliers that affect some, but not all, of the
pixels in a data sample (Fig. 1 (bottom)).

Figure 2 presents a simple example to illustrate the
effect of intra-sample outliers. The first row of Fig. 2(a)
shows the mean and the first four principal components
for the 100 image training set of Fig. 1 (top). The second

Figure 1. Illustrative training set and different types of outliers.
Top: A few images from the original training set of 100 images.
Middle: Training set with sample outliers. Bottom: Training set with
intra-sample outliers.

row shows the bases recovered using PCA for the train-
ing set in Fig. 1 (bottom) which contains intra-sample
outliers. Notice that the outliers have affected all the ba-
sis images. By accounting for intra-sample outliers, the
Robust Principal Component Analysis (RPCA) method
described here constructs the linear basis shown in
Fig. 2 (bottom) in which the influence of outliers is
reduced and the recovered bases are visually similar to
those produced with traditional PCA on data without
outliers.

Figure 2(b) shows the effect of outliers on the re-
construction of images using the learned linear sub-
spaces. The first row shows noiseless images that were
not present in the training set of faces. The middle
row shows the reconstruction obtained by projecting
each face onto the PCA basis images learned with the
corrupted training data. This projection operation cor-
responds a least-squares estimate of the linear recon-
struction coefficients and, hence, is influenced by the
outlying data in the training set. The “mottled” ap-
pearance of the least squares method is not present
when using the robust technique (bottom) and the Mean
Squared Reconstruction Error (MSRE, defined below)
is reduced.

In the following section we review previous work
in the statistics, neural-networks, and vision commu-
nities that has addressed the robustness of subspace
methods. In particular, we describe the method of Xu



A Framework for Robust Subspace Learning 119

Figure 2. (a) Effect of intra-sample outliers on learned basis images. Top: Standard PCA applied to noise-free data. Middle: Standard PCA
applied to the training set corrupted with intra-sample outliers. Bottom: Robust PCA applied to corrupted training data. (b) Reconstruction results
using subspaces constructed from noisy training data. Top: Original, noiseless, test images. Middle: Least-squares reconstruction of images with
standard PCA basis (MSRE 19.35). Bottom: Reconstructed images using RPCA basis (MSRE 16.54).

and Yuille (1995) in detail and quantitatively compare it
with our method and standard PCA. We show how lin-
ear (and multi-linear in general) methods can be mod-
ified by the introduction of an outlier process (Black
and Rangarajan, 1996; Geiger and Pereira, 1991) that
can account for outliers at the pixel level. A robust
M-estimation method is derived and details of the al-
gorithm, its complexity, and its convergence properties
are described. Like all M-estimation methods, the ro-
bust subspace learning (RSL) formulation has an inher-
ent scale parameter that determines what is considered
an outlier. We present a method for estimating this pa-
rameter from the data resulting in a fully automatic
learning method. Synthetic experiments are used to il-
lustrate how different robust approaches treat outliers
and to quantitatively evaluate the method. Results on
natural images show how the method can be used to
robustly learn a subspace of illumination variation for
background modeling.

2. Previous Work

A full review of linear learning methods and appli-
cations in computer vision is beyond the scope of
this paper. For concreteness we focus on principal
component analysis and then show how the robust
methods generalize to other linear learning methods.
For illustrative purposes and without loss of general-
ity, we will use examples of learning models of im-
ages. The advantage of considering PCA for this task
is that it is widely applicable and there has already

been work in the vision community on improving its
robustness.

Our formulation here is based on the techniques of
robust M-estimation developed in the statistics commu-
nity (Hampel et al., 1986; Huber, 1981). The goal is to
recover the solution (i.e. the learned model) that best fits
the majority of the data and to detect and downweight
“outlying” data. Loosely, the term “outlier” refers to
data that does not conform to the assumed statistical
model. A “robust” estimation method is one that can
tolerate some percentage of outlying data without hav-
ing the solution arbitrarily skewed. In computer vision
applications, outliers are typically not “noise” in a tra-
ditional sense but rather are violations of highly simpli-
fied models of the the world; for example, the presence
of specular reflections when one assumes Lambertian
reflectance or the violation of the brightness con-
stancy assumption at motion boundaries (Black and
Anandan, 1996). For a review of robust statistical
methods in computer vision see Meer et al. (1991,
2000).

Note that there are two issues of robustness that must
be addressed here. First, given the principal compo-
nents, Black and Jepson (1998) addressed the issue of
robustly recovering the coefficients of a linear combi-
nation of basis vectors that reconstructs an input image
(this step is what is commonly known as inference in
the machine learning community). They did not address
the general problem of robustly learning the principal
components in the first place. Here we address the more
general problem which involves learning both the ba-
sis vectors and linear coefficients robustly. Preliminary
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results of this work have been presented in De la Torre
and Black (2001).

2.1. Energy Functions and PCA

PCA is a statistical technique that is useful for di-
mensionality reduction. Let D = [d1d2 . . . dn] =
[d1d2 . . . dd ]T be a matrix D ∈ �d×n ,1 where each col-
umn di is a data sample (or image), n is the number of
training images, and d is the number of pixels in each
image. Previous formulations assume the data is zero
mean. In the least-squares case, this can be achieved by
subtracting the mean of the entire data set from each
column di . In the case of standard PCA we will con-
sider the data be zero mean. For robust formulations,
the “robust mean” must be explicitly estimated along
with the principal components as described below.

Let the first k principal components of D be B =
[b1 . . . , bk] ∈ �d×k . The columns of B are the direc-
tions of maximum variation within the data. The prin-
cipal components maximize maxB

∑n
i=1 ‖BT di‖2

2 =
tr(BT ΓB), with the constraint BT B = I, where
Γ= DDT = ∑

i di dT
i is the covariance matrix. The

columns of B form an orthonormal basis that spans
the principal subspace. If the effective rank of D is
much less than d , then we can approximate the column
space of D with k � d principal components. The
data di can be approximated as a linear combination
of the principal components as drec

i = BBT di where
BT di = ci are the linear coefficients obtained by pro-
jecting the training data onto the principal subspace;
that is, C = [c1c2 . . . cn] = BT D.

A method for calculating the principal components
which is widely used in the statistics and neural network
community (Baldi and Hornik, 1989; Diamantaras,
1996; Eckardt and Young, 1936; Oja, 1982; Sanger,
1989) formulates PCA as the least-squares estimation
of the basis images B that minimize:

Epca(B) =
n∑

i=1

epca(ei )

=
n∑

i=1

‖di − BBT di‖2
2

=
n∑

i=1

d∑
p=1

(
dpi −

k∑
j=1

bpj c ji

)2

(1)

where c ji = ∑d
t=1 bt j dti , BT B = I, ‖ · ‖2 denotes the

l2 norm, ei = di − BBT di is the reconstruction error

vector, and epca(ei ) = eT
i ei is the reconstruction error

of di .
Alternatively, we can make the linear coefficients

explicit variables and minimize

Epca2
(B, C) =

n∑
i=1

‖di − Bci‖2
2. (2)

One approach for estimating both the bases, B, and co-
efficients, C, uses criss-cross regression (Gabriel and
Zamir, 1979), and it can be seen as a particular case of
the Expectation Maximization (EM) algorithm used in
Probabilistic PCA (PPCA) (Roweis, 1997; Tipping and
Bishop, 1999). PPCA assumes that the data is generated
from a noisy random process and it defines a proper
likelihood model. However, if the noise becomes in-
finitesimal and equal in all the directions PPCA be-
comes equivalent to standard PCA. In that case, the
EM algorithm can be reduced to the following coupled
equations (Roweis, 1997):

BT BC = BT D (“E”-step), (3)

BCCT = DCT (“M”-step). (4)

The algorithm alternates between solving for the linear
coefficients C (“Expectation” step) and solving for the
basis B (“Maximization” step). Although Eqs. (3) and
(4) have a “closed-form” solution in terms of an eigen-
equation (the bases B are eigenvectors of the covariance
matrix DDT (Fukunaga, 1990; Jolliffe, 1986; Mardia
et al., 1979), for high dimensional data the EM ap-
proach can be more efficient in space and time (Roweis,
1997; Tipping and Bishop, 1999). A more complex
noise model is used in factor analysis, which assumes
diagonal noise (epi ∼ N (0, σ 2

p), ∀p, i) and that the co-
efficients c are Gaussian distributed with unit variance
(c ∼ N (0, I)) (Mardia et al., 1979).

These Principal Component Analysis techniques
have been extended to cope with the problem of miss-
ing data which occurs frequently in vision applications.
Shum et al. (1995) solve the PCA problem with known
missing data by minimizing an energy function similar
to (2) using a weighted least squares technique that ig-
nores the missing data. The method is used to model a
sequence of range images with occlusion and noise and
is similar to the method of Gabriel and Zamir (1979) de-
scribed below. Also, Tenenbaum and Freeman (2000)
and Yuille et al. (1999) use a similar trick to model
missing data. Rao (1999) proposed a Kalman filter ap-
proach for learning the bases B and the coefficients C
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in an incremental fashion. The observation process as-
sumes Gaussian noise and corresponds the error Epca2

above. While Rao does not use a robust learning method
for estimating the B and C that minimize Epca2

, like
Black and Jepson (1998) he does suggest a robust rule
for estimating the coefficients C once the bases B have
been learned.

2.2. Previous Robust Approaches

The above methods for estimating the principal com-
ponents are not robust to outliers that are common
in training data and that can arbitrarily bias the so-
lution (Campbell, 1980; Jolliffe, 1986; Rousseeuw and
Leroy, 1987; Ruymagaart, 1981; Xu and Yuille, 1995)
(e.g. Fig. 1). This happens because the energy func-
tions (or the covariance matrix) are derived from a
least-squares (L2 norm) framework. While the robust-
ness of PCA methods in computer vision has received
little attention, the problem has been studied in the
statistics (Campbell, 1980; Huber, 1981; Jolliffe, 1986;
Ruymagaart, 1981) and neural networks (Karhunen
and Joutsensalo, 1995; Xu and Yuille, 1995; Yang and
Wang, 1999) literature, and several algorithms have
been proposed.

One approach replaces the standard estimation of
the covariance matrix, Γ, with a robust estimator of the
covariance matrix, Γ∗ (Campbell, 1980; Huber, 1981;
Ruymagaart, 1981). This formulation weights the mean
and the outer products which form the covariance ma-
trix. Calculating the eigenvalues and eigenvectors of
this robust covariance matrix gives eigenvalues that are
robust to sample outliers. The mean and the robust co-
variance matrix can be calculated as:

µ =
∑n

i=1 w1
(
M2

i

)
di∑n

i=1 w1
(
M2

i

) , (5)

Γ∗ =
∑n

i=1 w2
(
M2

i

)
(di − µ)(di − µ)T∑n

i=1 w2
(
M2

i

) − 1
, (6)

where w1(M2
i ) and w2(M2

i ) are scalar weights, which
are a function of the Mahalanobis distance M2

i =
(di −µ)Γ∗−1

(di −µ) andΓ∗ is iteratively estimated. Nu-
merous possible weight functions have been proposed
(e.g. Huber’s weighting coefficients (Huber, 1981) or
w2(M2

i ) = (w1 M2
i ))2 (Campbell, 1980)). These ap-

proaches however, weight entire data samples rather
than individual pixels and hence are not appropriate
for many vision applications. Another related approach

would be to robustly estimate each element of the co-
variance matrix. This is not guaranteed to result in a
positive definite matrix (Campbell, 1980). These meth-
ods, based on robust estimation of the full covariance
matrix, are computationally impractical for high di-
mensional data such as images (note that just comput-
ing the covariance matrix requires O(nd2) operations)
and in some practical applications it is difficult to gather
sufficient training data to guarantee that the covariance
matrix is full rank.

Alternatively, Xu and Yuille (1995) have proposed
an algorithm that generalizes the energy function (1),
by introducing additional binary variables that are zero
when a data sample (image) is considered an outlier.
They minimize

Exu(B, V) =
n∑

i=1

[
Vi‖di − BBTdi‖2

2 + η(1 − Vi )
]

=
n∑

i=1

[
Vi

(
d∑

p=1

(
dpi −

k∑
j=1

bpj ci j

)2)

+ η(1 − Vi )

]
(7)

where ci j = ∑d
t=1 bt j dti . Each Vi in V = [V1, V2, . . . ,

Vn] is a binary random variable. If Vi = 1 the sample
di is taken into consideration, otherwise it is equivalent
to discarding di as an outlier. The second term in (7)
is a penalty term, or prior, that discourages the trivial
solution where all Vi are zero. Given B, if the energy,
epca(ei ) = ‖di − BBTdi‖2

2 is smaller than a threshold
η, then the algorithm prefers to set Vi = 1 considering
the sample di as an inlier and 0 if it is greater than or
equal to η.

Minimization of (7) involves a combination of dis-
crete and continuous optimization problems and Xu
and Yuille (1995) derive a mean field approximation
to the problem which, after marginalizing the binary
variables, can be solved by minimizing:

Exu(B) = −
n∑

i=1

1

T
fxu(ei , T, η) (8)

where ei = di − BBT di and where fxu(ei , T, η) =
log(1 + e−T (epca(ei )−η)) is a function that is related to
robust statistical estimators (Black and Rangarajan,
1996). The T can be varied as an annealing parameter
in an attempt to avoid local minima.

The above techniques are of limited application in
computer vision problems as they reject entire images
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as outliers. In vision applications, outliers typically cor-
respond to small groups of pixels and we seek a method
that is robust to this type of outlier yet does not reject the
“good” pixels in the data samples. Gabriel and Zamir
(1979) give a partial solution. They propose a weighted
Singular Value Decomposition (SVD) technique that
can be used to construct the principal subspace. In their
approach, they minimize:

Egz(B, C) =
n∑

i=1

d∑
p=1

wpi (dpi − (bp)T ci )
2 (9)

where, recall, bp is a column vector containing the el-
ements of the p-th row of B. This effectively puts a
weight, wpi on every pixel in the training data. In re-
lated work, Greenacre (1984) gives a partial solution to
the problem of factorizing matrices with known weight-
ing data by introducing Generalized Singular Value De-
composition (GSVD). This approach applies when the
known weights in (9) are separable; that is, one weight
for each row and one for each column: wpi = wpwi .
The basic idea is to first “whiten” the data using the
weights, perform SVD, and then un-whiten the bases
(for a similar idea, see Irani and Anandan, 2000). The
benefit of this approach is that it takes advantage of
efficient implementations of the SVD algorithm. The
disadvantages are that the weights must somehow al-
ready be known and that individual pixel outliers are
not allowed.

In the general robust case, where the weights are un-
known and there may be a different weight at every
pixel in every training image, there is no such solu-
tion that leverages SVD (Gabriel and Zamir, 1979;
Greenacre, 1984) and one must solve the minimization
problem with “criss-cross regressions” which involve
iteratively computing dyadic (rank 1) fits using weight-
ed least squares. The approach alternates between solv-
ing for bp or ci while the other is fixed; this is similar to
the EM approach (Roweis, 1997; Tipping and Bishop,
1999) but without a probabilistic interpretation.

In this spirit, Gabriel and Odorof (1984) note how
the quadratic formulation in (1) is not robust to out-
liers and propose making the rank 1 fitting process
in (9) robust. They propose a number of methods to
make the criss-cross regressions robust but they apply
the approach to very low-dimensional data and their
optimization methods do not scale well to very high-
dimensional data such as images. In related work,
Croux and Filzmoser (1998) use a similar idea to con-
struct a robust matrix factorization based on a weighted

L1 norm. In the context of neural networks, Cichocki
et al. (1993) have proposed a sequential method for
computing principal components robustifying Eq. (1).
Also, recently Skocaj et al. (2002) proposed a Robust
PCA algorithm similar in spirit to the work presented
here, but they treat outliers as missing data and add a
term to encourage their spatial coherence. In the fol-
lowing section, we develop these approaches further
and give a complete solution that estimates all the pa-
rameters of interest, we connect the method with robust
M-estimation techniques and unify previous results.

3. Robust Principal Component
Analysis (RPCA)

In this section we extend previous work on robust PCA
methods by adding an intra-sample outlier process mo-
tivated by the necessity of dealing with the type of out-
liers that typically occur in image data.

The previous approach of Xu and Yuille (Eq. (8))
suffers from three main problems: First, a single “bad”
pixel value can make an image lie far enough from the
subspace that the entire sample is treated as an outlier
(i.e. Vi = 0) and has no influence on the estimate of
B. Second, Xu and Yuille use a least squares projec-
tion of the data di for computing the distance to the
subspace; that is, the coefficients that reconstruct the
data di are ci = BT di . These reconstruction coeffi-
cients can be arbitrarily biased by an outlier. Finally, a
binary outlier process is used which either completely
rejects or includes a sample. Below we introduce a
more general analogue outlier process that has compu-
tational advantages and provides a connection to robust
M-estimation.

To address these issues we reformulate (7) as

Erpca(B, C,µ, L) =
n∑

i=1

d∑
p=1

[
L pi

(
ẽ2

pi

σ 2
p

)
+ P(L pi )

]

(10)

where 0 ≤ L pi ≤ 1 is now an analog outlier process
that depends on both images and pixel locations and
P(L pi ) is a penalty function. The error ẽ pi = dpi −
µp − ∑k

j=1 bpj c ji and σ = [σ1σ2 . . . σd ]T specifies a
“scale” parameter for each of the d pixel locations.

Observe that we explicitly solve for the mean µ in
the estimation process. In the least-squares formula-
tion the mean can be computed in closed form and can
be subtracted from each column of the data matrix D.
In the robust case, outliers are defined with respect to
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Figure 3. Original training images. The second one is the log of original image.

the error in the reconstructed images which include
the mean. The mean can no longer be computed by
performing a “deflation”2 procedure, instead it is esti-
mated (robustly) analogously to the other bases.

Also, recall that PCA assumes an isotropic noise
model. In the formulation here we allow the noise to
vary for every row (pixel) of the data (epi ∼ N (0, σ 2

p)).
Exploiting the relationship between outlier pro-

cesses and the robust statistics (Black and Rangarajan,
1996), minimizing (10) is equivalent to minimizing the
following robust energy function:

Erpca(B, C,µ,σ)

=
n∑

i=1

erpca(di − µ − Bci ,σ)

=
n∑

i=1

d∑
p=1

ρ

(
dpi − µp −

k∑
j=1

bpj c ji , σp

)
(11)

for a particular class of robust ρ-functions (Black and
Rangarajan, 1996). We define the robust magnitude of
a vector x, as the sum of the robust error values for each
component; that is, erpca(x,σ) = ∑d

p=1 ρ(x p, σp),
where x = [x1x2 . . . xd ]T . Throughout the paper, we
use the Geman-McClure (1987) error function given by
ρ(x, σp) = x2

x2+σ 2
p
, where σp is a “scale” parameter that

controls the convexity of the robust function and is used
for deterministic annealing in the optimization process.
This robust ρ-function corresponds to the penalty term
P(L pi ) = (

√
L pi − 1)2 in (10) (Black and Rangarajan,

1996). Many other choices can work well (Black and
Rangarajan, 1996) but the Geman-McClure function
has been used widely and has been shown to work well.
Additionally, unlike some other ρ-functions, it is twice
differentiable which is useful for optimization meth-
ods based on gradient descent. Details of the method
are described below.

Note that while there are robust methods such as
RANSAC and Least Median Squares (Meer et al.,
1991; Rousseeuw and Leroy, 1987)) that are theoret-
ically more robust than M-estimation, it is not clear

how to apply these methods efficiently to high dimen-
sional problems such as the robust estimation of basis
images.

3.1. Quantitative Comparison

In order to better understand how PCA and the method
of Xu and Yuille are influenced by intra-sample out-
liers, we consider the contrived example in Fig. 3,
where four face images are shown. The second im-
age is contaminated with one outlying pixel which
has 10 times more energy than the sum of the oth-
ers image pixels. In order to visualize the large range
of pixel magnitudes, we have displayed the log of the
image.

In Fig. 4, the three learned bases given by stan-
dard PCA, Xu and Yuille’s method, and our proposed
method are shown. We force each method to explain the
data using three basis images. Note that the approach
of Xu and Yuille does not solve for the mean, hence, for
a fair comparison we neither solved for nor subtracted

Figure 4. Learned basis images. Top: Traditional PCA. Middle: Xu
and Yuille’s method. Bottom: RPCA.
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Figure 5. Reconstruction from noiseless images. (a) Original images. (b) Noiseless reconstruction using PCA bases. (c) Using Xu and Yuille’s
method. (d) Using RPCA.

the mean for any of the methods. In this case the mean is
approximately recovered as one of the bases. The PCA
bases capture the outlier in the second training image
as the first principal component since it has the most
energy. The other two bases approximately capture the
principal subspace spanning the other three images.
Xu and Yuille’s method, on the other hand, discards
the second image for being far from the subspace and
uses all three bases to represent the three remaining
images. The RPCA method proposed here, constructs
a subspace that takes into account all four images while
ignoring the single outlying pixel. Hence, we recover
three bases to approximate the four images.

In Fig. 5 we project the original images (without out-
liers) onto the three learned basis sets. PCA “wastes”
one of its three basis images on the outlying data and
hence has only two basis images to approximate four
training images. Xu and Yuille’s method ignores all
the useful information in image 2 as the result of a
single outlier and, hence, is unable to reconstruct that
image. Since it uses three basis images to represent the
other three images, it can represent them perfectly. The
RPCA method provides an approximation of all four
images with three basis images. The MSRE (MSRE =
1
n

∑n
i=1 ‖di −µ−Bci‖2

2) is less for RPCA than for the
other methods; the RPCA error is 7.02, while PCA and
Xu and Yuille’s method give errors of 18.59 and 9.02
respectively.

3.2. Computational Issues

In this section, we describe how to robustly compute
the mean and the subspace spanned by the first k princi-
pal components. We do this without imposing orthog-
onality between the bases; this can be imposed later if
needed (Tipping and Bishop, 1999) or with a Gramm-
Schmidt procedure (Sanger, 1989). The section is or-
ganized as follows: Section 3.2.1 will introduce an it-
eratively re-weighted least-squares approach to solve
Eq. (11), this will allow us to relate this method to
previous work and will provide insight into the prob-
lem. Section 3.2.2 examines some special cases of the
problem that admit closed form solutions. Section 3.2.3
derives a continuous optimization formulation that re-
sults in a more efficient algorithm and is particularly
useful for high dimensional image data. Section 3.2.4
shows how to compute the scale parameter, σ , in the
robust function automatically. Finally Section 3.2.5
discusses several practical issues such as initializa-
tion, selection of the number of bases, and criteria for
convergence.

3.2.1. A Weighted Least-Squares Problem. As we
have seen in the previous section, robust problems, in
general, can be posed as the minimization of an energy
function or cost function. While many optimization
methods exist, it is instructive and useful to formulate
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the minimization of Eq. (11) as a weighted least squares
problem and solve it using iteratively reweighted least-
squares (IRLS) (Beaton and Tukey, 1974; Holland and
Welsch, 1977; Li, 1985). In particular, this will pro-
vide insight into the relationships between RPCA and
previous methods. Originally proposed by Beaton and
Turkey (1974) and used widely in statistics (Holland
and Welsch, 1977; Li, 1985) and computer vision (Lai,
2000; Zhang, 1996), IRLS (Beaton and Tukey, 1974;
Holland and Welsch, 1977; Li, 1985) is an approximate
and iterative algorithm for solving robust M-estimation
problems.

We define the residual error in matrix notation as,
Ẽ = D −µ1T

n − BC. Then, for a given σ, a matrix
W ∈ �d×n can be defined such that it contains pos-
itive weights for each pixel and each image. W is cal-
culated for each iteration as a function of the previous
residuals ẽ pi = dpi − µp − ∑k

j=1 bpj c ji and it is re-
lated to the “influence” (Hampel, 1986) of pixels on
the solution. Each element, wpi , of W will be equal to
wpi = ψ(ẽ pi , σp)/ẽ pi , where ψ(ẽ pi , σp) = ∂ρ(ẽ pi ,σp)

∂ ẽ pi
=

2ẽ pi σ
2
p

(ẽ2
pi +σ 2

p )2 for the Geman-McClure ρ-function. As in
previous work on W-estimators (Beaton and Tukey,
1974; Holland and Welsch, 1977; Li, 1985), robust M-
estimation with a ρ-function like the one here, can be
solved using IRLS. For an iteration of IRLS, Eq. (11),
can be transformed into a weighted least-squares prob-
lem and rewritten as:

E(B, C,µ, W)wpca

=
n∑

i=1

(di − µ − Bci )
T Wi (di − µ − Bci ) (12)

=
d∑

p=1

(dp − µd1n − CT bp)T

× Wp(dp − µd1n − CT bp) (13)

where the Wi ∈ �d×d = diag(wi ) are diagonal matri-
ces containing the positive weighting coefficients for
the data sample di , and recall that wi is the i th column
of W. Wp ∈ �n×n = diag(wp) are diagonal matrices
containing the weighting factors for the pth pixel over
the whole training set. Note the symmetry of (12) and
(13) where, recall, di represents the i th column of the
data matrix D and dp is a column vector which con-
tains the pth row. Observe that (12) and (13) have non-
unique solutions since, for any linear invertible trans-
formation matrix R, BRR−1C would give the same
solution (i.e. the reconstruction from the subspace will

be the same). This ambiguity can be solved by impos-
ing the constraint of orthogonality between the bases
BT B = I (e.g. with Graham-Schmidt orthogonaliza-
tion). There are, however, many computer vision ap-
plications (e.g. subspace methods for recognition) in
which the important measurement is the distance from
the subspace and the particular axes of the subspace are
irrelevant.

In order to find a solution to E(B, C, µ, W)wpca, we
differentiate (12) w.r.t. ci and µ and differentiate (13)
w.r.t. bp to find necessary, but not sufficient conditions
for the minimum. From these conditions, we derive the
following coupled system of equations,

µ =
(

n∑
i=1

W−1
i

)
n∑

i=1

Wi (di − Bci ), (14)

(BT Wi B)ci = BT Wi (di − µ) ∀ i = 1 . . . n, (15)

(CW j CT )b j = CW j (d j − µd1n) ∀ j = 1 . . . d.

(16)

Giving these updates of the parameters, an approxi-
mate algorithm for minimizing Eq. (11) can employ a
two step method that minimizes Ewpca(B, C,µ) using
Alternated Least Squares (ALS) (or criss-cross regres-
sions (Gabriel and Zamir, 1979)).

Summarizing, the whole IRLS procedure works as
follows, first an initial basis B(0) and a set of coeffi-
cients C(0) are given,3 then the initial error, Ẽ(0), can be
calculated along with the σ parameters (as described
below). Then the weighting matrix W(1) can be com-
puted and it will be used to successively alternate be-
tween minimizing with respect to c(1)

i and (b j )(1) ∀i, j
and µ(1) in closed form using Eqs. (14)–(16). Once
c(1)

i , (b j )(1),µ(1) have converged, we recomputed the
error, Ẽ(1) and calculate the weighting matrix, W(2),
then we proceed in the same manner until convergence
of the algorithm. Also, during this process we anneal
σ. At this point it is worth noting that there are sev-
eral possible ways to update the parameters more effi-
ciently, rather than a closed form solution, see for in-
stance (Beaton and Tukey, 1974; Holland and Welsch,
1977; Li, 1985).

3.2.2. Two Special Cases. In the general case (with
arbitrary weighting matrices) is not clear that there
exists a closed form solution in terms of a weighted
covariance matrix. For instance, consider the sim-
ple scenario in which the mean is zero, µ= 0, the
weights W are known, and our goal is to compute just
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the first weighted eigenvector and coefficient; that is
B = [b1]T = b1 and C = [c1]T = [c1, c2, . . . , cn]
Observe that, in this simple scenario, the energy func-
tion (12) can be expressed as the following quotient,
E(b1)wpca = ∑

i
(bT

1 Wi di )2

bT
1 Wi b1

. But due the fact that the
normalization factor depends on Wi , we cannot solve
this equation in terms of an eigen-equation. However,
it is worth mentioning two interesting special cases
that have solutions in terms of the eigenvectors of a
weighted covariance matrix and that can be very use-
ful for practical applications. These problems can be
solved using Generalized Singular Value Decomposi-
tion (GSVD) (Greenacre, 1988).

First, if every sample (image) has a different weight,
wi , then Wi = wi I. By imposing the constraint BT B =
I, it is easy to show that E(B)wpca = BT (

∑
i wi di dT

i )B.
This is useful when each image may have its own
weight; for example, if data is collected sequentially,
then one might want to weight more recent data higher
than old data. The solution to this problem is given
by the eigenvectors of the weighted covariance matrix∑

i wi di dT
i . Note that this particular case, with just

one weight for each sample, is analogous to previous
robust PCA methods based on robust covariance ma-
trices (Campbell, 1980; Ruymagaart, 1981) and to the
method of Xu and Yuille (1995). This GSVD formula-
tion provides a simple (and efficient) algorithm for this
class of problems provided that the weights are known.
Also observe, that in this case, Eq. (15) becomes a regu-
lar least-squares projection, since the entire sample has
the same weight, and just the rows of the bases (b j ) are
weighted in (16).4

The second special case occurs when some fixed
weight matrix, Ŵ, applies to all the images in the
training set; that is, Wi = Ŵ. This occurs, for ex-
ample with systematic missing data where we would
like to weight pixel locations with a binary value in-
dicating whether or not the training set contains data
at that pixel. It may also be useful to have a particu-
lar spatial weight matrix for a given application such
as face modeling where, for example, we might give
more weight to the eyes and mouth (see Fig. 7) to
obtain a more accurate reconstruction in those areas.
In this case the solution can be found by minimizing
the Rayleigh quotient E(B)wpca = ∑

i
‖BT ΓB‖2

2

‖BT ŴB‖2
2
, were

Γ = Ŵ(
∑n

i=1 di dT
i )Ŵ. The solution is the well known

generalized eigenvalue problem, ΓB = ŴBΛ. It is in-
teresting to observe, as a dual property of the previous
case, that (16) becomes a least-squares estimation prob-
lem; that is, in the computation of the bases, no weights

are involved and just the coefficients ci are calculated
with weighted information.

3.2.3. Updating Parameters. For solving the more
general case, where the weights can be different for
every pixel in every image, we can employ a two step
method that minimizes Ewpca(B, C,µ) as explained
in Section 3.2.1. The most computationally expen-
sive part of the algorithm involves computing (15) and
(16). The computational cost of one iteration of (15) is
O(nk2d) + O(nk3) + O(nkd) for C and O(nk2d) +
O(dk3) + O(nkd) for B (16). Typically d � n � k,
and, for example, estimating the bases B involves com-
puting the solution of d systems of k × k equations,
which for large d is computationally expensive. Rather
than directly solving d systems of k × k (16) or n sys-
tems of k × k (15), we solve for B, C and µ using
gradient descent with a local quadratic approximation
to determine an estimation of the step sizes (see Black
and Jepson (1998) and Blake and Zisserman (1987) for
further information). The robust learning “rules” for
updating successively B, C and µ are then as follows:

B(n+1) = B(n) − [Hb].−1 ◦ ∂ Erpca

∂B
(17)

C(n+1) = C(n) − [Hc].−1 ◦ ∂ Erpca

∂C
(18)

µ(n+1) = µ(n) − [Hµ].−1 ◦ ∂ Erpca

∂µ
(19)

where, recall, [H].−1 is an element-wise inverse of a
matrix H. The partial derivatives with respect to the
parameters are:

∂ Erpca

∂B
= −Ψ(Ẽ,σ)CT (20)

∂ Erpca

∂C
= −BT Ψ(Ẽ,σ) (21)

∂ Erpca

∂µ
= −Ψ(Ẽ,σ)1n (22)

where Ẽ is the reconstruction error and an estimate of
the step size is given by:

Hb = ζ (Ẽ,σ)(C ◦ C)T

(23)
hbi = max diag

(
∂2 Erpca

∂bi∂bT
i

)
Hc = (B ◦ B)T ζ (Ẽ,σ)

(24)
hci = max diag

(
∂2 Erpca

∂ci∂cT
i

)
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Hµ = ζ (Ẽ,σ)1n
(25)

hµi
= max diag

(
∂2 Erpca

∂µ∂µT

)

where ∂ Erpca

∂B ∈ �d×k is the derivative of Erpca with re-
spect to B, and similarly for ∂ Erpca

∂C ∈ �k×n and ∂ Erpca

∂µ
∈

�d×1.Ψ(Ẽσ) = W◦Ẽ ∈ Rd×n is a matrix that contains
the derivatives of the robust ρ-function (i.e. each ele-
ment pi is ψ(ẽ pi , σp) = wpi ẽ pi ). Hb ∈ �d×k is a matrix
in which every component hi jb

is an upper bound of the
second derivative w.r.t. b; that is, hi jb

≥ ∂2 Erpca

∂b2
i j

. Each
element ζpi of the matrix ζ(Ẽ,σ) ∈ Rd×n , contains a
maximum of the second derivative (Blake and Zis-
serman, 1987); that is, ζpi = maxẽ pi

∂2ρ(ẽ pi ,σp)
∂ ẽ2

pi
= 2

σ 2
p
.

Recall that hbi is the i th column of the matrix Hb, which
is computed by taking a maximum of the diagonal of
the Hessian matrix for this column. The same can be
applied to the matrices Hc and Hµ. After each update
of B, C, or, µ we update the error Ẽ. Also several iter-
ations for each update of B, C and µ are possible.

Now, the computational cost of one iteration of the
updating of B, C or µ with the normalized gradient de-
scent is linear in all the parameters, that is, O(ndk). For
testing these approaches, we implemented in Matlab
both updating schemes and compare their convergence
properties. Figure 6 plots the energy (Erpca) versus the
computation time for the normalized gradient descent
and compares this with ALS. As can be observed the

Figure 6. Robust error versus computation time (seconds). The
experiment uses 300 images of 120 × 160 pixels and involves com-
puting 30 bases. The graph plots reconstruction error versus com-
putation time for both gradient descent and alternated least squares
approaches.

gradient descent algorithm approaches the local mini-
mum faster, although it typically requires more (but less
computationally expensive) iterations to converge. An-
other benefit of the normalized gradient updating rule
is that it allows incremental or on-line learning (Xu and
Yuille, 1995). Performing on-line learning is of partic-
ular interest when data becomes available over time
and one must re-estimate the parameters to account for
the new data. Also this incremental update algorithm
can be useful when, due to memory limitations, not
all the data can be loaded into memory. In such a case
one can iteratively load different subsets of the original
data and adapt the model parameters; the convergence
properties of this method are not addressed here.

3.2.4. Local Measure of the Scale Value. The scale
parameterσ controls the shape of the robust ρ-function
and hence determines what residual errors are treated
as outliers. When the absolute value of the robust er-
ror |ẽ pi | is larger than σp√

3
, the ρ-function used here

begins reducing the influence of the pixel p in im-
age i on the solution (Black and Rangarajan, 1996).
We estimate the scale parameters σp, for each pixel
p, automatically using the Median Absolute Deviation
(MAD) (Black et al., 1998; Holland and Welsch, 1977;
Li, 1985; Rousseeuw and Leroy, 1987) of the pixel (al-
though other approaches are possible). The MAD can
be viewed as a robust statistical estimate of the standard
deviation, and we compute it as:

σp = β max(1.4826 medR (|ep − medR(|ep|)|), σmin)

(26)

where medR indicates that the median is taken over a
region, R, around pixel p and σmin is the MAD over
the whole image (Black et al., 1998). β is a constant
factor that sets the outlier σp to be between 1 and 2.5
times the estimated deviation.

For calculating the MAD, we need to have an initial
error, ep, which is obtained as follows: we compute
the standard PCA of the data, and calculate the num-
ber of bases which preserve 55% of the energy (Epca).
This is achieved when the ratio between the energy of
the reconstructed vectors and the original ones is larger
than 0.55; that is, ξ =

∑n
i=1 ‖Bci ‖2

2∑n
i=1‖di ‖2

2
≥ 0.55. Observe, that

with standard PCA, this ratio can be calculated in terms
of eigenvalues of the covariance matrix (Diamantaras,
1996). With this number of bases we compute the least-
squares reconstruction error E and use that to obtain
a robust estimate of σ. Although other methods have
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Figure 7. Local σp values estimated in 4 × 4 regions for a training
set of 100 face images.

been proposed in the statistical literature (Hampel et al.,
1986; Huber, 1981) that recalculate the σ at each iter-
ation, we found this method very stable.

Figure 7 shows the local σp values for the training set
in Fig. 1. Observe how larger values of σp are estimated
for the eyes, mouth, and boundary of the face. This in-
dicates that there is higher variance in the training set in
these regions and larger deviations from the estimated
subspace should be required before a training pixel is
considered an outlier.

3.2.5. Initialization and Other Issues. Since min-
imization of (11) is an iterative scheme, an initial
guess for the parameters B or C and µ has to be
given. An initial estimate of µ is given by the robust
mean which can be found by minimizing Ermean(x̄) =∑

i erpca(di − x̄,σ). Alternatively, simply taking the
median or mean is often sufficient. As an initial guess
for B we chose the standard principal components. The
parameters C are just the solution of the linear system
of equations which minimize minC‖D −µ1T

n − BC‖2.
With these parameters and σinitial we calculate the W
which starts the process.

In general the energy function (11) is non-convex
and the minimization method can get trapped in lo-
cal minima. We make use of a deterministic anneal-
ing scheme that helps avoid these local minima (Black
and Jepson, 1998). The method begins with σ being
a large multiple of (26) such that all pixels are in-
liers. Then σ is successively lowered to the value given
by (26), reducing the influence of outliers. While it is
not guaranteed to converge to a global minimum, ex-
perimental results have shown reasonable convergence
points. If one is concerned about local minima, the al-
gorithm can be run multiple times with different initial
conditions. The solution with the lowest minimum er-
ror can then be chosen. In practice, with reasonable
initial estimates, the algorithm converges to similar re-
sults (visually and in terms of robust error).

Since the method is iterative in nature, it is necessary
to impose some termination criterion. Several methods
can be chosen (e.g. that the difference between two or
more successive errors is less than a threshold, the norm
of two or more consecutive updates of the parameters
is less than a certain parameter ε, etc.). However, since
the method should converge to a subspace, we found
that a good stopping criterion can be defined in terms
of the principal angles (Golub and Van Loan, 1989)
between two consecutive subspaces B(n) and B(n+1).
The largest principal angle is related to the “distance”
between equidimensional subspaces. These principal
angles can be computed efficiently with the QR factor-
ization and the SVD algorithm (Golub and Van Loan,
1989). If the principal angle is smaller than a certain ε

or we have reached a maximum number of iterations,
the iterative procedure will stop (Fig. 13(b)).

With standard PCA, the number of bases is usu-
ally selected to preserve some percentage of the en-
ergy (Epca); for example, ‖BC‖2

2

‖D‖2
2

≥ 0.9. With RPCA
this criterion is not straightforward to apply particu-
larly in the case of real problems with high dimen-
sional data. The robust error, Erpca, (11), depends on
the σ and the number of bases so we can not di-
rectly compare energy functions with different scale
parameters. Moreover, the energy of the outliers is
confused with the energy of the signal. We have ex-
perimented with different methods for automatically
selecting the number of basis images including the
Minimum Descriptor Length (MDL) criterion and
Akaike Information Criterion (AIC). However, these
model selection methods do not scale well to high
dimensional data and require the manual selection
of a number of normalization factors. We have ex-
ploited more heuristic methods here that work well in
practice.

We apply standard PCA to the data, and calculate
the number of bases that preserve 55% of the energy
(Epca). With this number of bases, we apply RPCA,
minimizing (11), until convergence. At the end of
this process we have a matrix W that contains the
weighting of each pixel in the training data. We detect
outliers using this matrix and set the values of W to
0 if |wpi | >

σp√
3

and to wpi otherwise, obtaining W∗.
The value σp√

3
represents the point at which the robust

ρ-function begins down-weighting the contribution
of data and, hence, can be thought of as an outlier
rejection point (Black and Rangarajan, 1996). We
then incrementally add additional bases and minimize
E(B, C,µ) = ‖W∗ ◦ (D − µ1T

n − BC)‖2
2 with the
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same method as before but maintaining constant
weights W∗. We proceed adding bases until the per-
centage of energy accounted for, ξ , is bigger than 0.9,
where:

ξ =
∑n

i=1(Bci )T W∗
i (Bci )∑n

i=1(di − µ)T W∗
i (di − µ)

. (27)

Once the linear subspace has been learned, images
can be robustly reconstructed for a variety of appli-
cations (Black and Jepson, 1998). In order to robustly
compute the coefficients ci of a new given image di , we
first subtract the robust mean µ and compute the coef-
ficients C using Eq. (15). Note that there is no need to
also update the bases in this case. Note also that σ val-
ues used in the robust reconstruction are those learned
during the training process.

The following pseudocode describes the whole op-
timization process:

• Compute the robust mean, µ(0), and the standard
PCA solution (e.g. with the SVD). Calculate the
residuals, initialize B(0), C(0) and select the initial
number of bases.

• Calculate the scale parameter σ (Eq. (26) (MAD)),
this will be σfinal. Multiply it by a constant, so all
the pixels are inliers at the beginning, that is σfinal =
K ∗ σinitial.

• Until the principal angle between B(n) and B(n+1) is
less than a chosen ε:

– Compute an estimation of the step size (Eqs. (23)–
(25)).

– Compute the partial derivatives w.r.t. the parame-
ters (Eq. (22)).

– Update the parameters (Eqs. (17)–(19)).
– Lower σ according to the annealing schedule if it

is bigger than σfinal.

• Additionally, compute W∗ by thresholding the
weight matrix W. Keep adding bases and solving
for B, C, and µ while Eq. (27) is less than 0.9.

Figure 8. Two sinusoidal plaid patterns and their linear combination.

4. A Note on Robust SVD

Singular Value Decomposition returns the factorization
of a real matrix D ∈ �d×n into three matrices such
that D = UΛVT where Λ = diag(λ1, λ2, . . . , λs) ∈
�d×n, s = min{d, n}, and λ1 ≥ λ2 ≥ · · · ≥ λs ≥ 0.
The matrices U ∈ �d×d and V ∈ �n×n are orthogonal
and span the column and row space of D respectively.

SVD gives the best rank k approximation of a real
matrix D, that minimizes ‖D − UΛVT ‖ for any uni-
tarily invariant norm (L2 norm, Frobenius Norm, etc.)
(Mirsky, 1960). Observe at this point, that if we re-
name C = ΛVT , and we assume zero mean data in
the PCA model, the subspace spanned by the matrix B
of (2) and the matrix U of the SVD are the same (for
the same number of bases). PCA and SVD both can
be formulated as bilinear regression problems. There-
fore, for performing Robust Singular Value Decompo-
sition (RSVD), we will proceed in the same manner
as RPCA. That is, given the number of bases k and
the σ parameters, we calculate the robust subspace,
B ∈ �d×k , spanned by the first k bases, by minimizing
E(B, C) = ∑n

i=1 erpca(di − Bci ,σ) as before.
Then, given B and C, we robustly reconstruct the

data D ≈ D̃ = BC which effectively filters out the out-
lying data. Now given the reconstructed data, D̃ that is
free of outliers, we perform standard SVD to compute
D̃ = BC = ŨΛ̃ṼT . Note that at most the first k singu-
lar values of Λ̃ will be non-zero since the robust recon-
structed subspace has dimension k; i.e. dim(BC) = k.

We take this approach of using RPCA since the
method has already been developed above and is
straightforward to apply here. An alternative approach
consists of explicitly calculating U,Λ and VT while im-
posing orthogonality on U and VT (e.g. with Gramm-
Schmidt orthogonalization).

To show the benefits of the RSVD, we syntheti-
cally generate a sinusoidal plaid pattern (Fig. 8) of
100 × 100 pixels. The sinusoidal pattern is composed
of the sum of the outer products of two unidimensional
sinusoidal signals; that is, D = ∑2

i=1 bi (ci )T = BC,
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Figure 9. SVD Experiment. (a) Original data. Each column of the matrix is a “sample” (i.e. a 1D image). (b) Training data with the addition
of outliers. (c) Least squares (SVD) reconstruction of the training data. (d) Robust SVD automatically removes the outliers and results in a
reconstruction similar to the original data.

where B ∈ �100×2 and C ∈ �2×100. In the two matri-
ces on the left hand side of Fig. 8, the two dimensional
sinusoidal signals are drawn. The right hand side is
the weighted sum of the other two. The original one-
dimensional sinusoidal signals which create the plaid
pattern, are plotted in Fig. 10 top, where b1, c1, b2, c2

are plotted in order. This training data has been artifi-
cially contaminated with 50% outliers (see Fig. 9(b)),
where outliers are generated by uniformly sampling po-
sitions in the matrix and replacing the values with zero
mean Gaussian noise having the variance of the signal.

The first row of Fig. 10 shows the true factorization
of the matrix (without outliers) into the two original
sinusoids that generate the outer products. The term b1

in Fig. 10(a) corresponds to the first column of matrix
B while c1 corresponds to the first row of the coefficient
matrix C. Similarly b2 and c2 correspond to the second
mode.

Figure 10(b) shows the least squares solution with
the standard version of the SVD. Similarly, Fig. 9(c)
shows the full reconstructed matrix using the SVD re-
sult. As can be observed, due to the effects of outliers
the solution is very noisy. In contrast, Figs. 10(c) and
9(d) show the robust solution to the factorization prob-
lem. Observe how the results achieved by the RSVD
are closer to the original data than those obtained with
SVD. The error between the original noiseless matrix
(D) and the reconstructed matrix (BC) (i.e. ‖D−BC‖F )
is 25.61 for standard SVD and 1.16 for RSVD. The
original matrix D, is produced from 2 sinusoidal sig-
nals and the first two eigenvalues of this matrix are
50.00 and 25.00 respectively. The eigenvalues recov-
ered by RSVD are 49.27 and 24.60, whereas standard
SVD, in contrast, spreads out the energy over all the
eigenvalues with the first two having much lower values
of 26.60 and 14.35.

5. Experiments

To illustrate the range of applications of Robust Sub-
space Learning (RSL), we consider two problems of
current interest in computer vision. The first involves
learning a “background” appearance model for use in
person detection and tracking (Oliver et al., 1999).
More generally, RSL can be applied to any other eigen-
image learning problem. We also consider the prob-
lem of computing structure from the motion of tracked
feature points. We show how both of these problems
benefit from a robust formulation that can reject intra-
sample outliers.

5.1. Learning a Subspace for Illumination

The behavior of RPCA is illustrated with a collection
of 520 images (120 × 160) gathered from a static cam-
era over two days. The first column in Figs. 11 and 12,
shows example training images; in addition to changes
in the illumination of the static background, 40% of
the images contain people in various locations. While
the people often pass through the view of the cam-
era quickly, they sometimes remain relatively still over
multiple frames. We applied standard PCA and RPCA
to the training data to build a background model that
captures the illumination variation and that can be used
to detect and track people (Oliver et al., 1999).

The second column of Figs. 11 and 12 shows the
result of reconstructing each of the illustrated training
images using the PCA basis (with 20 basis vectors). The
presence of people in the scene affects the recovered
illumination of the background and results in “ghostly”
images where the people are poorly reconstructed.

The third column shows the reconstruction obtained
with 20 RPCA basis vectors. RPCA is able to capture
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Figure 10. Robust SVD. (a) Factorization of non-contaminated data. (b) Bases and coefficients learned using traditional SVD. (c) Bases and
coefficients learned using Robust SVD.

the illumination changes while ignoring the people. In
the fourth column, the outliers are plotted in white. Ob-
serve that the outliers primarily correspond to people,
specular reflections, and graylevel changes due to the
motion of the trees in the background. The last column
plots the final weights, W∗, for each image. Bright ar-
eas correspond to high weights (inliers) while black
areas correspond to outliers. These weight images il-
lustrate the “influence” that individual pixels have on
the recovered bases.

The RSL method does a better job of accounting
for the illumination variation in the scene and provides
a basis for person detection. The algorithm takes ap-
proximately eight hours on a 900 MHz Pentium III in
Matlab (although a rough approximation of the basis

takes around half hour). This is approximately an order
of magnitude slower than SVD and is one of the disad-
vantages of the energy minimization formulation. The
robust method is beneficial in situations where robust-
ness is important, the dimensionality is relatively low,
or learning can be performed off-line.

Figure 13(a) plots the value of the robust energy
function versus the number of iterations of the core
algorithm. Because the robust energy function de-
pends on σ, in order to verify that at every iteration
it decreases monotonically, we plot the energy func-
tion once σ has achieved its final, annealed, value.
Figure 13(b) shows the convergence of the algorithm in
terms of the principal angle between two consecutive
subspaces Bn and Bn+1 (Golub and Van Loan, 1989).
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Figure 11. (a) Original data, (b) PCA reconstruction, (c) RPCA reconstruction, (d) outliers, and (e) weights.
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Figure 12. (a) Original data, (b) PCA reconstruction, (c) RPCA reconstruction, (d) outliers, and (e) weights.
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Figure 13. Convergence properties. (a) Robust energy function vs. iterations and (b) principal angle vs. iterations.

Figure 14. Standard PCA. The learned model using standard PCA. The mean image appears in the upper left followed by the bases from left
to right, top to bottom. Notice the “patchy” effects of the people (outliers).

Since the energy function is being minimized, it de-
creases monotonically while the principal angle does
not necessarily do so.

Figure 14 shows the mean (upper left) and the stan-
dard PCA bases learned here. Observe that the first few
principal components appear to capture the major vari-
ations in illumination but that the effects of the people
(outliers) appear in many of the bases as bright or dark

regions. For comparison, Fig. 15 shows the mean and
bases recovered using RPCA. Note that the “patches”
corresponding to the people do not appear.

5.2. Structure From Motion (SFM)

Recovering 3D shape and motion from feature corre-
spondences across multiple views is a well known, and
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Figure 15. Robust PCA. Learned linear model using RPCA. Compared with Fig. 14 the effect of outliers has been reduced and the bases
primarily capture changes in illumination.

well studied, problem in computer vision. Here, we
provide a brief overview of the factorization approach
to structure from motion (SFM); for more details the
reader is referred to Aguiar and Moura (1999), Irani and
Anandan (2000), Morris and Kanade (1998), Poelman
and Kanade (1994), and Tomasi and Kanade (1992).
The presentation here follows closely that of Irani and
Anandan (2000). They address the problem of factoring
shape and motion when there is measurable uncertainty
in the locations of the features.

Given a set of n feature points of a rigid object
tracked across d frames with coordinates {(x pi , ypi ) |
p = 1, . . . , d, i = 1, . . . , n}, the points can be stacked
into the measurement matrix D ∈ �2d×n:

D =
[

X

Y

]
2d×n

. (28)

At each time instant, we compute the mean of the fea-
ture points (i.e. the “center” of the object) and sub-
tract the mean from the x, y feature locations. This
defines a model of shape relative to the object’s coor-
dinate frame. The rows of the matrices X and Y con-

tain these relative object coordinates at a single time
instant.

It has been shown that, for an affine camera (i.e.
orthographic, weak-perspective, or paraperspective)
(Morris and Kanade, 1998; Poelman and Kanade, 1994;
Tomasi and Kanade, 1992), when there is no noise, the
rank of D is 3 or less. Under these conditions, the ma-
trix D can be factored into the product of a structure
matrix S ∈ �3×n and a motion matrix M ∈ �2d×3; that
is, D = MS. The matrix M recovers the rotation of
the object with respect to an arbitrary coordinate frame
(e.g. the first frame) while the matrix S encodes the
relative 3D positions (x, y, z) for each feature in the
reconstructed object.

If there are errors (e.g. due to occlusion, missing
data, or noise) the matrix D is no longer rank-3. A
similar problem is posed by the presence of extra
feature points corresponding to other independently
moving objects in the scene. The problem of struc-
ture from motion with multiple moving objects is a
difficult one (see MacLean et al. (1994) for a solu-
tion based on probabilistic mixture models). The ro-
bust formulation here is similar in spirit to work on
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robustly estimating multiple parameterized motions
in the optical flow community (Black and Jepson,
1998).

When there are no outliers such as those above,
a least-squares approximation can be found by min-
imizing ‖D − MS‖2 for any unitary invariant norm.
In this case, we are implicitly assuming an isotropic
noise model of the error (or it is optimal in this case);
that is, the error for each feature p at each time in-
stant i , epi = dpi − ∑3

j=1 m pj s ji , is distributed as an
isotropic Gaussian, epi ∼ N (0, σ 2) ∀p, i . Under these
assumptions, we can compute the SVD factorization
of the measurement matrix D = UΛVT . Setting all
but the largest three singular values to zero gives a
matrix Λ̂. The best rank-3 approximation of D is then
D̂ = UΛ̂VT . The matrices M̂ = UΛ̂

1
2 and Ŝ = Σ̂

1
2 VT ,

provide a least squares estimate of motion and shape
up to an affine transformation (Tomasi and Kanade,
1992).

To deal with outliers, we apply the robust SVD tech-
niques developed in this paper. In the SFM problem
some additional constraints have to be taken into ac-
count in the robust factorization. When either coor-
dinate of a feature point (x or y) is an outlier, we
would like to treat the entire point as an outlier; this im-
plies some coupling between elements of D (the same
thing happens in the case of optical flow or color im-
ages). In order to incorporate this additional constraint
into our algorithm, we simply modify the robust ρ-
function to depend on a vector valued input rather than a
scalar:

ρ2(x, σp) = xT x
xT x + σ 2

p

.

Let ri p = [(dip − µx p − ∑k
j=1 bpj c ji )(d(i+d)p −

µyp −∑k
j=1 bpj c ji )]T , then the robust energy function

becomes

Erpca2(B, C) =
n∑

i=1

d∑
p=1

ρ2(ri p, σp). (29)

The algorithm is basically the same as the one ex-
plained above and, in the interest of space, we will de-
velop only the weighted least squares approach here.
Given σ and some initial parameters, the error is com-
puted as Ẽ = D − MS = [ Ẽx

Ẽy
]. Once Ẽ is computed,

we define the joint error Ejoint =
√

Ẽ2
x + Ẽ2

y ∈ �d×n ,
and every matrix element i p contains the error for

each residual ri p. As before we can define a weight

matrix W = [ W̃x

W̃y
] ∈ �2d×n , were wpi = wp(i+d) =

2σ 2
p

(rT
ipri p+σ 2

p )2 , so Ŵy = Ŵx ∈ �d×n . Once we have W,
the algorithm will alternate between solving (14)–(16),
recomputing the error Ẽ, and calculating the weight
matrix W.

Note there is some similarity in motivation and ap-
proach with the work of Morris and Kanade (1998) and
Irani and Anandan (2000). Irani and Anandan perform
a covariance-weighted SVD that minimizes the Maha-
lanobis distance in feature space. They assume that the
covariance can be factored. Morris and Kanade allow
a general covariance matrix but do not provide a robust
formulation.

In this section we report results of our experimen-
tal evaluation of the robust factorization algorithm and
compare the results with traditional SVD. Following
Irani and Anandan, we use similar synthetic data to
analyze the performance of the algorithm. Figure 16
shows three frames of the original synthetic 3D data
of a cube. The actual feature points are located at the
intersections of the grid lines which are drawn for visu-
alization purposes only. The cube undergoes rotational
motion about the z axis. Figure 16 shows the ortho-
graphic projection in which 10% of the samples have
been contained with outliers (the crosses). The outliers
are synthetically generated from a uniform distribution
in x and y coordinates and are different for each frame.
These synthetic outliers simulate the problem of mis-
matches between points caused by failures of a feature
tracker. The results for multiple independent motions
are similar.

Figure 17(a) shows the standard SVD reconstruction
of the shape animated with the recovered motion. As
can be observed due to the outlying data, the estimation
of the shape of the cube is very noisy. Figure 17(b) plots
the solution obtained with the robust SVD method pro-
posed in this paper, which produces much more accu-
rate results. The error in the shape estimate, ‖S−Ŝ‖F , is
17.2314 and 1.3938 for traditional least squares and ro-
bust SVD respectively. Additionally the error in the mo-
tion, ‖M− M̂‖F , is 0.4177 for traditional least squares
and 0.0060 in the robust case.

Another issue of practical interest in the SFM com-
putation involves missing data (e.g. when feature points
do not appear in all the views). In the SFM problem,
the missing points are typically known, and the weights
can be set to zero for these points. With these weights
fixed, the robust estimation can be performed as
above.
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Figure 16. 3D data of a rotating cube. (a) Three views of the cube as it rotates about the z axis. (b) Orthographic projection of the feature
points with the addition of outliers.

6. Discussion and Related Methods

In this section, we explore other possible applications
and extensions of RSL to computer vision problems.
De la Torre and Black (2002) proposed Robust Param-
eterized Component Analysis, a technique to robustly
learn a subspace invariant to geometric transforma-
tions (useful when there is misalignment between the
training images). Also, De la Torre and Black (2001)
have proposed Dynamic Coupled Component Analy-
sis to robustly learn temporal and spatial dependencies
between two or more high dimensional training sets.
However, there exist many other subspace reletated
problems which can benefit from a robust formulation.
In the interest of space, we simply point out possi-
ble applications of the ideas developed in this paper.
The robust formulation of many of these problems can
proceed similarly to what is done here, though further
research is needed.

6.1. Multi-Linear Models

There exist problems in vision and signal processing
that are best modeled by the interaction of multiple

factors. One example is the work of Tenenbaum and
Freeman on factoring style and content (Tenenbaum
and Freeman, 2000) using a bilinear model. There are
numerous extensions to this idea in vision such as mod-
eling facial appearances as a linear combination of illu-
mination, expression, and identity. Other multi-linear
models include tensorial approaches to structure from
motion (Hartley and Zisserman, 2000) or Independent
Component Analysis (ICA) (Cardoso, 1996). Tensor
factorization can be seen as a generalization of PCA to
more than two dimensions. However there is no unique
extension of PCA to multi-linear models; see for exam-
ple (Carroll and Chang, 1970; Neudecker and Magnus,
1999; Kroonenberg and de Leeuw, 1980). If one views
tensor factorization methods in terms of the minimiza-
tion of an energy function, then the robust subspace
learning methods developed here can be applied to
multi-linear models in a relatively straightforward way.

6.2. Weighted Subspace Analysis

Weighted Subspace Analysis (WSA) provides a for-
malism for learning linear models when the data is
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Figure 17. Reconstruction of shape and motion. The reconstructed shape of the cube is displayed with the view determined by the recovered
motion. (a) Standard least squares factorization. (b) Robust factorization.

weighted by known weights. Note that Eqs. (15) and
(16) can be used to perform WSA. Recent work has
used this approach for constructing appearance mod-
els of 3D articulated human figures from 2D image
views (Sidenbladh et al., 2000). WSA provides a for-
malism for constructing subspaces with missing data
(Shum et al., 1995) and weighting data with differ-
ent ranges (e.g. when constructing Active Appearance
Models (Cootes et al., 1998) where the shape and the
graylevel pixels have different variance). This idea can
be used for computing structure from motion when
some measure of certainty of the tracked feature points
is available (Irani and Anandan, 2000; Morris and
Kanade, 1998). When the weights are separable, GSVD
provides an efficient method for taking this pixel-
weighted uncertainty into account. In the more gen-
eral case, the method proposed here is straightforward
to apply. Additionally, RSL provides a framework for
on-line PCA/SVD computation as new data becomes
available.

6.3. Minor Component Analysis (MCA)

Another obvious extension of this work is to the ro-
bust estimation of the subspace spanned by the small-
est eigenvalues (Oja, 1982). MCA is a useful technique
for solving Total Least Squares problems (Van Huffel
and Vandewalle, 1991). The formulation of the robust
optimization method, however, is not clear and further
research is needed.

6.4. Regularized Component Analysis

In many situations it can be useful to find subspaces
with spatial coherence between the bases. For instance,
a subspace which captures illumination variations is
likely to be composed of the sum of smooth patterns
or bases. In this case, we try to recover a smooth
eigenspace in which the bases vary smoothly by mini-
mizing

∑n
i=1 ‖di − Bci‖2

2 + λ
∑k

j=1 bT
j Hb j where H

is a symmetric positive definite sparse matrix. Another
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application of regularization involves adding spatial co-
herence to outliers (Skoaj et al., 2002) if we expect them
to correspond to coherent spatial structures.

6.5. The Eigenvalue Problem

Finding the Eigenvalues of a positive definite matrix
Γ ∈ �d×d is important for many problems in applied
mathematics (Golub and van der Vorst, 2000; Parlett,
1980). A possible future application of the work pre-
sented here is to robustify the symmetric eigenvalue
problem by relating the eigenvalue problem to a ro-
bust energy minimization problem. While the energy
minimization approach may make this extension fea-
sible, it will come at some cost in terms of compu-
tation. Finding the subspace spanned by the largest
eigenvectors can be achieved minimizing Eeig(U,Λ) =
‖Γ−UΛUT ‖F . It is easy to show that any saddle point
of the energy function ( ∂ E

∂U = 0) is related to finding the
solution of the eigenvalue problem ΓU = UΛ. Intro-
ducing an intra-sample outlier into Eeig could be useful
when the matrix Γ contains outliers. Also note that if
Γ is a covariance matrix and naturally expands as the
sum of outer products, we can directly use the RPCA
method proposed in this paper.

More generally, there are several other problems
in computer vision (e.g. Linear discriminant Analy-
sis (Fukunaga, 1990; Mardia et al., 1979) (LDA) and
segmentation (Shi and Malik, 2000)) that are based on
the generalized eigenvalue problem. While formulat-
ing these applications using an intra-sample outlier pro-
cess is relatively straightforward, the solution of the re-
sulting robust generalized eigenvalue problem remains
unclear.

7. Discussion

While the examples throughout the paper illustrate the
benefits of the method, it is worth considering when
the algorithm may give unwanted results. Consider, for
example, a face database that contains a small fraction
of the subjects wearing glasses. In this case, the pixels
corresponding to the glasses are likely to be treated as
outliers by RPCA. Hence, the learned basis set will
not contain these pixels, and it will be impossible to
reconstruct images of people wearing glasses. Whether
or not this is desirable behavior will depend on the
application.

In such a situation, people with or without glasses
can be considered as two different classes of objects

and it might be more appropriate to robustly learn
multiple linear subspaces corresponding to the differ-
ent classes. By detecting outliers, robust techniques
may prove useful for identifying such training sets
that contain significant subsets that are not well mod-
eled by the majority of the data and should be sep-
arated and represented independently. This is one of
the classic advantages of robust techniques for data
analysis.

Another issue to take into account, is the fact that a
training set can contain both intra-sample outliers and
sample outliers. In order to solve such a problem, one
should introduce both a sample outlier and intra-sample
outlier in Eq. (10). However, the learning rules would
be complicated to derive. Another approach, would be
a hierarchical one, where first the sample outliers are
detected and removed from the training set. After that,
we can apply the method proposed in this paper for
removing the intra-sample outliers. In order to imple-
ment an efficient sample RPCA, using the same Iter-
ative Reweighted Least Squares idea, given some ini-
tial weights, one can compute iteratively a weighted
covariance matrix or if the data is very high dimen-
sional perform the GSVD (Greenacre, 1988). With
this first estimation of the eigenvectors, one can cal-
culate the error and compute the weights again and
so on until convergence. Also a more practical ap-
proach would discard as sample outliers those samples
which have more intra-sample outliers than a certain
threshold.

8. Conclusions

We have presented a method for robust subspace learn-
ing that can be used for automatic learning of linear
models from data that may be contaminated by out-
liers. In particular, we have applied this formalism
to the problems of principal component analysis and
singular value decomposition. The approach extends
previous work in the vision community by modeling
outliers that typically occur at the pixel level. Further-
more, it extends work in the statistics community by
connecting the explicit outlier formulation with robust
M-estimation and by developing a fully automatic algo-
rithm that is appropriate for high dimensional data such
as images. The method has been tested on natural and
synthetic images and shows improved tolerance to out-
liers when compared with other techniques.

We have illustrated the methods with examples
from eigen-image modeling and structure from motion.
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These are important problems in computer vision and
robust approaches may help provide solutions in sit-
uations with realistic amounts of un-modeled noise.
In general, the use of linear models in vision is
widespread and increasing. We hope robust techniques
like those proposed here will prove useful as lin-
ear models are used to represent more realistic data
sets. Towards that end, a Matlab implementation of
the method and the results can be downloaded from
http://www.salleURL.edu/∼ftorre
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Notes

1. Bold capital letters denote a matrix D, bold lower-case let-
ters a column vector d. I represents the identity matrix and
1m = [1, . . . , 1]T is a m-tuple of ones. d j represents the j-th
column of the matrix D and d j is a column vector representing
the j-th row of the matrix D. di j denotes the scalar in row i and
column j of the matrix D and the scalar i-th element of a col-
umn vector d j . d ji is the i-th scalar element of the vector d j .
All non-bold letters represent scalar variables. diag is an oper-
ator that transforms a vector to a diagonal matrix, or a matrix
into a column vector by taking each of its diagonal components.
[D].−1 is an operator that calculates the inverse of each element
of a matrix D. D1 ◦ D2 denotes the Hadamard (point wise) prod-
uct between two matrices of equal dimension. tr(A) = ∑d

i=1 aii

is the trace operator for a square matrix A ∈ �d×d .‖D‖F =
tr(DT D) = tr(DDT ) denotes the Frobenius norm of a matrix.
Given a subspace F , dim(F), denotes the dimension of the
subspace.

2. This technique is applied for efficiently computing eigenvectors
by iteratively estimating one eigenvector and removing its in-
fluence from the data (Diamantaras, 1996; Parlett, 1980) while
making all the remaining eigenvectors orthogonal to it.

3. The number between parenthesis indicates the iteration number.
4. In this case, an efficient algorithm can exploit the fact that all

the matrices in the linear system of equations are the same and
for all the rows we can simultaneously solve all the systems of
equations.
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