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Abstract

Principal component analysis (PCA) has been successfully applied to construct linear

models of shape, graylevel, and motion in images. In particular, PCA has been widely used

to model the variation in the appearance of people�s faces. We extend previous work on facial

modeling for tracking faces in video sequences as they undergo significant changes due to

facial expressions. Here we consider person-specific facial appearance models (PSFAM),

which use modular PCA to model complex intra-person appearance changes. Such models re-

quire aligned visual training data; in previous work, this has involved a time consuming and

error-prone hand alignment and cropping process. Instead, the main contribution of this pa-

per is to introduce parameterized component analysis to learn a subspace that is invariant to

affine (or higher order) geometric transformations. The automatic learning of a PSFAM given

a training image sequence is posed as a continuous optimization problem and is solved with a

mixture of stochastic and deterministic techniques achieving sub-pixel accuracy. We illustrate

the use of the 2D PSFAMmodel with preliminary experiments relevant to applications includ-

ing video-conferencing and avatar animation.
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1. Introduction

This paper addresses the problem of learning a linear subspace representation of a

training set in which the data (e.g., images) may have undergone some unknown

parametric transformation (e.g., affine). The key idea is to simultaneously solve
for the optimal linear subspace representing the data while aligning the training data

with that subspace. To illustrate the method we develop it in the context of face mod-

eling. In particular, we adopt the idea of modular eigenspaces (ME) [31,40,44] and

apply our parameterized component analysis technique to the problem of developing

person-specific facial appearance models (PSFAM).

Consider the problem of learning a linear subspace representing the variation of

the subject�s right eye in Fig. 1. The images were captured by asking the user to

change the configuration of the eyes (open, close, look right, etc.) while holding
the head still. However, it is not reasonable to assume that the person is absolutely

still during the training time, and in practical situations there are always small mo-

tions between frames. Observe that in this kind of sequence it is difficult to gather

aligned data due to person�s motion and the lack of labeled points for solving the

correspondence problem between frames.

Although many computer vision researchers have used principal component anal-

ysis (PCA) to model the face [11,17–19,26,40,41,52] the major drawback of this tra-

ditional technique is that it requires normalized (aligned) samples in the training
data. While, in the recognition process, alignment of the data with respect to the face

model is a common step as noted by Mart�ıınez [37], little work has addressed prob-

lems posed by misalignment at the learning stage. Previous methods for constructing

appearance models [11,18,19,26,40,41] have cropped the region of interest by hand,

or have used a hand-labeled, pre-defined, feature points to compute the translation,

scaling and rotation that brought each image into alignment with a prototype. How-

ever, this way of collecting data is likely to introduce errors due to inaccuracies

which arise from labeling the points by hand, even with the use of landmarks, since
it is difficult to achieve sub-pixel accuracy. In addition, manual cropping is a tedious,

unpleasant, and time consuming task.

The aim of the paper is illustrated in Fig. 2, where Fig. 2a shows some original

images used for training. From these (non-aligned images) we compute a set of linear

bases using PCA in the standard way. Fig. 2b shows the original images recon-

structed using the non-aligned bases. Fig. 2c shows the reconstructed images

obtained using the parameterized component analysis technique presented here.
Fig. 1. Some frames from a training sequence of images.



Fig. 2. Reconstruction of image data using an eigenspace representation: (a) example frames from the

training data; (b) reconstruction of the right eye without any alignment; (c) reconstruction of the right

eye with the proposed method (eigen-registration).
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This ‘‘eigen-registration’’ technique iteratively computes the subspace while aligning

the training images w.r.t. this subspace. That is, the algorithm that we propose in this

paper will simultaneously learn the local appearance basis, creating an eigenspace

while computing the motion to align the images w.r.t. the eigenspace. In the case

of modular eigenspaces (ME) [31,40,44] considered here, masks which define the spa-
tial domain of the ME are defined by hand in the first frame (no appearance model is

previously learned) and after that the method is fully automatic. Preliminary results

were presented in [13].
2. Previous work

It is beyond the scope of this paper to review all possible applications of PCA and
subspace methods, therefore we just briefly describe the theory and point to related

work for further information.
2.1. Subspace learning

Let D ¼ ½d1 d2 � � � dT � ¼ ½d1 d2 � � � dd �T be a matrix D 2 Rd�T , where each column

di is a data sample, T is the number of training images, and d is the number of pixels

in each image. If the effective rank of D is much less than d, we can approximate
the column space of D with k � d principal components. Let the first k principal



56 F. De la Torre, M.J. Black / Computer Vision and Image Understanding 91 (2003) 53–71
components of D be B ¼ ½b1; . . . ; bk� 2 Rd�k. The columns of B span the subspace of

maximum variation of D.1

Although a closed form solution for computing the principal components (B) can

be achieved by finding the k largest eigenvectors of the covariance matrix DDT [20],

here it is useful to exploit work that formulates PCA/subspace learning as the min-
imization of an energy function [16,20,21]
1 B

column

column

variab

diagon

trace

kDk2F ¼
produc
EpcaðB;CÞ ¼ kD� BCk2F ¼
XT
i¼1

kdi � Bcik22 ¼
XT
t¼1

Xd
p¼1

 
dpt:�

Xk
j¼1

bpjcjt

!2

;

where C ¼ ½c1 c2 � � � cn� and each ci is a vector of coefficients used to reconstruct the

data vector di. Observe that subspace learning involves approximately factoring the

data, D, into the product of the bases, B, and the coefficients, C, therefore it can be

posed as a bilinear estimation problem. There exist many methods for minimizing

this equation including alternated least squares (ALS), criss-cross regression, vari-

ants of expectation-maximization (EM), etc., but in the case of PCA, they share the

same basic philosophy. These algorithms alternate between solving for the coeffi-

cients C with the appearance bases B fixed and then solving for the bases B with C
fixed. Typically, both updates are computed by solving a linear system of equations.

2.2. Adding motion into the subspace formulation

Since the preliminary work of Sirovich and Kirby [48] and the successful eigenface

application of Turk and Pentland [49], PCA has been widely applied to the construc-

tion of a face subspace. Since then, there has been a lot of work and interest in trying

to construct more accurate models of the high dimensional manifold of faces. During
the last few years there has been a growing trend to apply new machine learning or

multivariate statistical techniques to construct more accurate face models. Many 2D/

3D linear/non-linear models [26,39,46,52] have been proposed based on support vec-

tor machines, mixture of factor analyzers, Independent Component Analysis, Kernel

PCA, etc. See [12,26,52] for an extended review in the context of recognition and

modeling.

Mis-registration or variations in scale introduce significant non-linearities in

the manifold of faces and can reduce the accuracy of tracking and recognition
algorithms. While previous approaches have dealt with these issues as a separate,

off-line registration processes (often manual), here it is integrated into the learning

procedure.
old capital letters denote a matrix D, bold lower-case letters a column vector d. dj represents the jth
of D and dj is a column vector representing the jth row of D. dij denotes the scalar in row i and
j of D and the scalar ith element of a column vector dj. All non-bold letters represent scalar

les. dji is the ith scalar element of the vector dj. diag is an operator that transforms a vector to a

al matrix, or a matrix into a column vector by taking each of its diagonal components. trðDÞ is the
operator. kdk22 ¼ dTd denotes the L2 norm and kdk2W ¼ dTWd is the weighted L2 norm.

trðDTDÞ ¼ trðDDTÞ is the Frobenius norm of D. D1 �D2 denotes the Hadamard (point wise)

t.
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Recently, there has been an interest in the simultaneous computation of appear-

ance bases and the motion that aligns the training images. This is a classic chicken-

and-egg problem. Once the correspondence of interesting points through an image

sequence is known, learning the appearance model is straightforward, and if the ap-

pearance is known solving for the correspondence is easy. De la Torre et al. [17] pro-
posed a method for face tracking which recovers affine parameters using subspace

methods. This method dynamically updates the eigenspace by utilizing the most re-

cent history. The updating algorithm estimates the parametric transformation, which

aligns the actual image w.r.t. the eigenspace and recalculates a local eigenspace. Be-

cause the new images usually contain information not available in the eigenspace, the

motion parameters are calculated in a robust manner. However, the method assumes

that an initial eigenspace is learned from a training set aligned by hand.

Schweitzer [47] proposed a deterministic method which registers a set of images
with respect to their eigenfeatures, applying it to the flower garden sequence for in-

dexing purposes. However, the assumption of affine or quadratic motion models [47]

is only valid when the scene is planar. The extension to the general case of arbitrary

3D scenes and camera motions remains unclear. As Schweitzer notices [47] the algo-

rithm is likely to get stuck in local minima, since it comes from a linearization and

uses gradient descent methods. Alternatively, Rao [45] proposed a neural-network

which can learn a translation-invariant code for natural images. Although he sug-

gests updating the appearance basis, the experiments show only translation-invariant
recognition, as proposed by Black and Jepson [4]. Frey and Jojic [24] took a different

approach and they introduce an expectation maximization (EM) algorithm for fac-

tor analysis (similar to PCA) that is invariant to geometric transformations. The pro-

posed method is problematic because the computational cost grows exponentially

with the number of possible spatial transformations, and can be too computationally

intensive when working with realistic high dimensional (greater than two) motion

models.

Using a different approach Mandel and Penev [36] report the interesting observa-
tion that non-properly aligned data lie on curved manifolds. This observation forms

the basis of an algorithm to align visual data. Results where reported on image se-

quences of faces to compensate for translational motion. However, it is not clear

how to extend the method to more complex high dimensional motion models with-

out considerably increasing the computational cost. In this paper, unlike previous

methods we use stochastic and multi-resolution techniques to avoid local minima

in the minimization process. Also, we extend previous approaches to multiple re-

gions within a robust (to outliers) and continuous optimization framework.
In a different direction, there has been intensive research on automatically or

semi-automatically building facial shape models using extracted landmarks. Most

of the previous work in this area assumes that the object has already been segmented

from the image sequence and in some cases the features or curves are placed by hand.

If this is the case, the problem is how to put the features in correspondence using

rigid or non-rigid transformations [9,29]. In the other direction, Walker et al. [32]

have proposed a method for automatically placing landmarks to define correspon-

dence between images and hence automatically constructing appearance models.
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See the report of Cootes and Taylor [12] for a good review in automatic 2D/3D land-

mark placement. In contrast to previous automatic landmark methods, we use pa-

rameterized matching with a low dimensional model (e.g. affine) and generalize

the matching by incorporating a subspace for the appearance variation.
2.3. Person specific models

While most work on face tracking focuses on generic trackers which are indepen-

dent of the identity of the person being tracked [5,8,10,11,26,27,34], here we focus

on PSFAM [17,26,22,50] for tracking a single individual and use PCA to model

the variations due to changes in expression. Although PSFAM are only valid for

one person, they remain useful in many vision related applications such as vision-

based human–computer interaction [5,8,10,11,17–19,26,27,31], driver fatigue detec-
tion, facial animation, face detection/recognition, video-conferencing, text to speech,

etc., which usually involve tracking or modeling a particular user.

We build these PSFAMs using modular eigenspaces (ME) [31,40] which have

benefits over global eigenspace methods (e.g., more accurate reconstruction of the

regions of interest, lower computational cost, robustness to occlusions [37], etc.).

However, it is worth pointing out that representations other than ME have been ex-

plored successfully for face recognition and tracking; for instance, Local Feature

Analysis [42,43] or Gabor jets with elastic graph matching [51]. Although these tech-
niques have shown good performance in recognition and tracking domains, they do

not address the issue of learning a model invariant to geometric transformations.
3. Generative model for 2D faces

The generative model we propose for image formation takes into account the mo-

tion and appearance of the face. Adopting the ME approach we use predefined
masks for the various image features and learn the appearance bases within these re-

gions. Fig. 3 shows some frames of a training set for learning a 2D PSFAM. Given

this training data as input, the algorithm that we propose in this paper is able to fac-

tor the training data into appearance and motion of the predefined face regions. In

principle the regions of support (masks) could be computed as an eigenspace-based

segmentation problem (finding independent regions). However, in the case of the

face, these regions are quite clear, and a rough approximation is sufficient. There-

fore, we define the masks in the first image and they will remain the same for the
entire training image sequence.

Let dt 2 Rd�1 be the region of d pixels belonging to the face, defined by hand in

the first image. pl ¼ ½pl
1 p

l
2 � � � pl

d �
T 2 Rd�1 denotes the binary mask for the region l

and it has the same size as the face region (d pixels). Each of the mask�s pixels take a
binary value, pl

p 2 f0; 1g and there is no overlap between masks, that is,PL
l¼1 p

l
p ¼ 1 8p. pl will contain dl pixels with value 1, which define the spatial domain

of the mask l (see Fig. 3) and
PL

l¼1 dl ¼ d.



Fig. 3. The generative model for an image sequence. Face images are decomposed using appearance mod-

els within regions corresponding to the eyes, mouth, and remainder of the face. The appearance within

regions varies independently. In the current implementation the regions move together according to a sin-

gle affine (or other parameterized) model.
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Each of these masks will have an associated eigenspace. Let dlt 2 Rdl�1 be the im-

age patch of the region l and let clt be the appearance coefficients of the region l at
time t. Bl ¼ ½bl1 bl2 � � � blkl � 2 Rdl�kl are the kl appearance bases for the lth region.
~BBl 2 Rd�kl (which is introduced for notational convenience) will be equal to Bl for

all pixels where pl
p ¼ 1 (i.e., belongs to the l mask) and otherwise can take an arbi-

trary value. The graylevel of the patch, or region l, will be reconstructed by a linear

combination of an appearance basis ~BBl, as
dt ¼
d1t

..

.

dLt

2
64

3
75 ¼

B1c1t

..

.

BLcLt

2
64

3
75 ¼

XL
i¼1

ðpl�~BBlcltÞ: ð1Þ
3.1. Motion

If the face to be modeled can be considered to be far away from the camera, it

can be approximated by a plane. The motion of planar surfaces, under ortho-

graphic or perspective projection, can be recovered with a parametric model of 6
or 8 parameters [5]. For simplicity, the rigid motion of the face will be parameter-

ized by an affine model: f1ðxp; a
l
tÞ ¼ ½al1t al4t�

T þ Al
f ½xp � xlc yp � ylc�

T
, where Al

f is a
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matrix containing the affine parameters (al2t a
l
3t a

l
5t a

l
6t). Let a

l
t ¼ ½al1t al2t � � � al6t�

T
de-

note the vector of affine motion parameters of the mask l at time t and let

xp ¼ ½xp yp�T denote the Cartesian coordinates of the image at the pixel p and

xl
c ¼ ½xlc ylc�

T
denote the center of the lth region. Throughout the paper, we will as-

sume that the rigid motion of all the modular eigenspaces (w.r.t. the center) is the

same (i.e., a1t ¼ a2t � � � ¼ aLt ).

Once the appearance and motion models have been defined, the graylevel of

each pixel of the image dt is explained as a superposition of a region-subspace plus

a warping, see Fig. (3); that is, dt ¼
PL

l¼1ðpl � ~BBlcltÞðf1ðx; altÞÞ where x ¼ ½x1 x2 � � �
xd �T and the notation ðpl � ~BBlcltÞðf1ðx; altÞÞ means that the reconstructed image re-

gion ðpl � ~BBlcltÞ is warped by the motion ðf1ðx; altÞÞ. Observe that this image model
is essentially the same as previous appearance representations [4,11,18] but with the

addition of modular eigenspaces and we now treat the basis as parameters to be

estimated.
4. Learning the model parameters

Once the model has been defined, in order to automatically learn the PSFAM, it is

necessary to learn the model parameters. In this section, we describe the learning

procedure; that is, given an observed image sequence ðD 2 Rd�T Þ and L masks in

the first image (p ¼ fp1; . . . ; pLg), we find the parameters B, C, A, and r, that best

reconstruct the sequence (in a robust statistical sense). Where A ¼ fA1;
A2; . . . ;ALg is the set of motion parameters of all the face regions in all the image

frames. Ai ¼ ½ai1 ai2 � � � aiT � is the matrix which contains the motion parameters for

each image in the ith region. Analogously, C ¼ fC1;C2; . . . ;CLg, where

Ci ¼ ½ci1 ci2 � � � ciT � and B ¼ fB1;B2; . . . ;BLg.
At this point, learning the model parameters can be posed as a minimization

problem. In this case the residual will be the difference between the image at time

t and the reconstruction using the model. In order to take into account outlying data,

we introduce a robust objective function, minimizing Erereg:
EreregðB; C;A; rÞ ¼
XT
t¼1

Xd
p¼1

q

 
dpt �

XL
l¼1

pl
p

Xk
j¼1

blpjc
l
jt

 !
ðf1ðxp; a

l
tÞÞ; rp

!
; ð2Þ
where blpj is the pth pixel of the jth basis of Bl for the region l. Observe that the pixel

residual is filtered by the Geman–McClure robust error function [25] given by

qðx; rpÞ ¼ x2=ðx2 þ r2
pÞ, in order to reduce the influence of outlying data. rp is a

parameter that controls the convexity of the robust function and is used for deter-
ministic annealing [4,7]. Benefits of the robust formulation for subspace related

problems are explained elsewhere [15,16]. Observe that the previous equation is a

patched version of Eigentracking [4], and similar to AAM [11] or Flexible Eigen-

tracking [18] without shape constraints. However, in contrast to these approaches

[4,11,18], in Erereg the appearance bases B are now treated as a set of parameters to be

estimated.
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4.1. Stochastic state initialization

The error function Erereg, Eq. (2), is a non-convex function, thus, without a good

starting point, any gradient descent method may get trapped in local minima. When

computing the motion parameters, as in the case of optical flow, a coarse-to-fine
strategy [4,12], in which the input images are represented by a Gaussian pyramid,

can help avoid local minima. Although a coarse-to-fine strategy is helpful, this tech-

nique is insufficient in our case, since in real image sequences the size of the face can

be small in comparison to the number of pixels in the background, and large motions

can be performed (e.g., in the sequences that we tried, the face can move more than

20 pixels from frame to frame). In order to cope with such real conditions, we ex-

plore the use of stochastic methods such as simulated annealing (SA), genetic algo-

rithms (GA) [38] or Condensation (particle filtering) [6] for motion estimation. Betke
and Makris [3] have used a fast version of SA to match traffic signals over rigid pa-

rameters, Lanitis et al. [33] made use of GA to fit an active shape model (ASM). De

la Torre et al. [19] applied particle filtering [6] for appearance based tracking of rigid

and non-rigid motion. The use of particle filtering allows switching between models

(e.g., models with different spatial support [19]), coping with large motion changes

and avoiding local minima in the parameter estimation process. Although the tech-

niques are very similar computationally speaking, here we make use of GA [38] with-

in a coarse-to-fine strategy.
Given the first image of the sequence we manually initialize the masks at the high-

est resolution level and assign the graylevel image values to the first basis for each

region B ¼ fb11; . . . ; bL1g. Afterwards, we take the subset of the m frames closest in

time (typically m ¼ 15), and use a GA for a first estimation of the motion parameters

which minimize Eq. (2). For the initial estimation of the motion parameters with the

GA, we use a least squares version of Eq. (2); that is, qðxÞ ¼ x2. Given the genetic

estimation of these parameters, we recompute the bases B which preserve 60% of

the energy. This initialization procedure is repeated until all the frames in the image
sequence are initialized. The procedure is summarized as

• Manual initialization in the first frame.

� Initialize the mask in the image d1.

� Initialize the bases B ¼ fb11; . . . ; bL1g with the graylevel values of d1.

• Stochastic initialization of the motion and appearance parameters for D.

� for i¼ 2:m:T (Matlab notation)

Run the GA for computing the motion and appearance parameters in

fdi; . . . ; diþmg.
Perform SVD on the registered set of images from 1 to m and keep the num-

ber of bases which preserve 60% of the energy.

Update the set of bases B.
� end

The GA uses 300 individuals over 13 generations for each frame. The selection

function we use is the normalized geometric ranking, which defines the probability

of one individual as Pi ¼ ðq=ð1� ð1� qÞP ÞÞð1� qÞðr�1Þ
, where q is the probability

of selecting the best individual, r is the rank of the individual, and P the population
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size. See [38] for a more detailed explanation of the GA. At the beginning, q has a

low value, and it is successively increased over generations acting as a temperature

parameter in the deterministic annealing [4,7] for improving the local search.

The crossover process is a convex combination between two samples, i.e.,

a � cromosome1 þ ð1� aÞ � cromosome2 where 1P aP 0. The genetic operator is a
simple Gaussian random perturbation, which also depends on the temperature pa-

rameter. In our experiments we take q ¼ 0:04 and a ¼ 0:5.

4.2. Robust deterministic learning

The previous section describes a method for computing an initial estimate of the

parameters B, C, A. In order to improve the solution and achieve sub-pixel accuracy,

a normalized gradient descent algorithm for minimizing Eq. (2) has been employed
in [13]. Alternatively (and conveniently) we can reformulate the minimization prob-

lem as one of iteratively reweighted least-squares (IRLS), which provides an approx-

imate, iterative, solution to the robust M-estimation problem [30,35]. For a given r,

a matrix W 2 Rd�T , which contains the positive weights for each pixel and each im-

age, is calculated for each iteration as a function of the previous residuals

epi ¼ dpt � ðpl
p

Pk
j¼1 b

l
pjc

l
jtÞðf1ðxp; a

l
tÞÞ. Each element, wpi (pth pixel of the ith image)

of W will be equal to wpi ¼ wðepi; rpÞ=epi, where wðepi; rpÞ ¼oqðepi; rpÞ=
oepi ¼ 2epir2

p=ðe2pi þ r2
pÞ

2
; [28]. Given an initial error, the weight matrix W is com-

puted and Eq. (2) becomes
EweregðB; C;A; rÞ ¼
XT
t¼1

dt �
XL
l¼1

ðpl � ~BBlcltÞðf1ðx; altÞÞ
�����

�����
2

Wt

; ð3Þ

¼
XT
t¼1

XL
l¼1

kdltðfðx; altÞÞ � Blcltk
2

Wl
t
; ð4Þ
where f will warp the images towards the eigenspace, whereas f1 warps the bases

towards the images. Observe that f will be approximately the inverse of f1. Recall

that kdk2W ¼ dTWd is a weighted norm. Wt 2 Rd�d is a diagonal matrix, such that the
diagonal elements are the tth column of W. Wl

t 2 Rdl�dl is a diagonal matrix, where

the diagonal is created by the elements of the tth column of W which belong to the

lth region. Observe that if W is a matrix with all ones we have the least-squares

solution.

Eq. (4) provides the formulation for robust parameterized component analysis.

Minimizing (4) with respect to the parameters gives a subspace that is invariant to

the allowed geometric transformations and robust to outliers on a pixel level.

Clearly, finding the minimum is a challenge and the process for doing so is described
below.

Notice that, if the motion parameters are known, computing the basis and the co-

efficients translates into a weighted bilinear problem (computing basis B and coeffi-

cients C). In order to compute the updates of the bases and coefficients in closed form

in the simplest way, we use the following observation:
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Ewereg ¼
XT
t¼1

XL
l¼1

kðdlwÞt � Blcltk
2
Wl

t
¼
Xdl
p¼1

XL
l¼1

kðdlwÞ
p � ðClÞTðblÞpk2ðWlÞp ; ð5Þ
where ðdlwÞt is the warped image dltðfðx; atÞÞ and it is the tth column of the matrix Dw

(just the dl pixels of the lth region). Recall that ðdlwÞ
p
is a column vector which

corresponds to the pth row of the matrix Dw and that ðWlÞp is a diagonal matrix

which contains the pth row of the matrix W of the region l.
Minimizing Eq. (4) is a non-linear optimization problem w.r.t. the motion param-

eters. Following previous work on motion estimation [2,4,27], we linearize the vari-

ation of the function, using a first-order Taylor series approximation. Without loss

of generality, rather than linearizing the transformation which warps the eigenspace

towards the image f1ðx; atÞ, we linearize the transformation which aligns the incom-

ing image w.r.t. the eigenspace fðx; atÞ (see Eq. 4). Expanding, dltðfðx; al0t þ DaltÞÞ in
the Taylor series about the initial estimation of the motion parameters al0t (which are

given by the GA):
dltðfðx; al0t þ DaltÞÞ ¼ dltðfðx; al0t ÞÞ þ Jl
tDa

l
t þ h:o:t:; ð6Þ
where Jl
t is the Jacobian at time t of the lth region and h.o.t. denotes the higher order

terms.
Jl
t ¼

odltðfðx; al0t ÞÞ
oalt1

odltðfðx; al0t ÞÞ
oalt2

� � � odltðfðx; al0t ÞÞ
oaltm

� �
is computed as
Jl
t ¼

rdT
1tðfðx1; a

l0
t ÞÞ

ofðx1;al0t Þ
oalt

..

.

rdT
dlt
ðfðxdl ; a

l0
t ÞÞ

ofðxdl ;a
l0
t Þ

oalt

2
664

3
775;
where
rditðfðxi; a
l0
t ÞÞ ¼

oditðfðxi; a
l0
t ÞÞ

ox
oditðfðxi; a

l0
t ÞÞ

oy

� �T
2 R2�1
is the spatial gradient of the image dt warped with al0t at the position xi.

ðofðxi; a
l0
t Þ=oaltÞ 2 R2�6 is the derivative of the parametric motion w.r.t. the motion

parameters evaluated at the pixel xi and warped with the initial motion param-

eters al0t . In the case that fðxp; a
l
tÞ is an affine model, ofðxp; a

l0
t Þ=oalt would be equal

to
ofðxp; a
l0
t Þ

oalt
¼ 1 xp � xc yp � yc 0 0 0

0 0 0 1 xp � xc yp � yc

� �
: ð7Þ
Observe that after the linearization the objective function Ewereg, Eq. (4), is convex

in each of the parameters. For instance, Dat can be computed in closed form by solv-

ing a linear system of equations:
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ððJ1
t Þ

T
W1

t J
1
t Þ

..

.

ððJL
t Þ

T
WL

t J
L
t Þ

2
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3
75 Dat

� �
¼

ðJ1
t Þ

T
W1

t ðd1t ðfðx; a0t ÞÞ � B1c1t Þ
..
.

ðJL
t Þ

T
WL

t ðdLt ðfðx; a0t ÞÞ � BLcLt Þ

2
64

3
75;
where recall that Wl
t is a matrix containing the weights for the region l at time t. In

this case, we have assumed that Dalt ¼ Dat 8l and drop the superscript l since all

regions in the ME are assumed to have the same motion.
However, Ewereg is no longer convex as a joint function of these variables. In order

to learn the parameters, we break the estimation problem into two sub-problems. We

alternate between estimating C and A with a Gauss–Newton scheme [2,4] and learn-

ing for the basis B and scale parameters r until convergence (see [16,15] for more de-

tailed information). Each of the updates for C;A and B are computed in closed form.

This multi-linear fitting algorithm monotonically reduces the cost function, although

it is not guaranteed to converge to the global minimum. We also use a coarse-to-fine

strategy [2,4,12] to cope with large motions and to improve the efficiency of the
algorithm. Towards that end, a Gaussian image pyramid is constructed. Each level

of the pyramid is constructed by taking the image at the previous resolution level,

convolving it with a Gaussian filter and subsampling. Details are given below.

• For each resolution level (coarse to fine) until convergence of C;A, and B.
� Until convergence of C;A.

Until convergence of A, rewarp D to Dw and update the motion parameters

for each region by computing: ðaltÞ ¼ ðaltÞ þ Dat 8l ¼ 1 . . . L.
Update the appearance coefficients for each region and each image

ððBlÞTWl
tB

lÞclt ¼ ðBlÞTWl
tdtðfðx; altÞÞ 8l ¼ 1 . . . L; 8t ¼ 1 . . . T .

� Update B preserving 85% of the energy, solving:

ðClðWlÞpðClÞTÞðblÞp ¼ ClðWlÞpðdlwÞ
p 8l ¼ 1 . . . L; 8p ¼ 1 . . . dl.

� Recompute the error, weights (W) and the scale statistics r [16].
• Propagate the motion parameters to the next finer resolution level [2,4,12] (the

translation parameters are multiplied by a factor of 2). Once the motion parame-

ters are propagated the bases are recomputed.

Since the face usually performs smooth changes in motion and appearance over

time, the previous model can be improved by incorporating dynamical information

as additional regularization terms into the energy function framework, minimizing:
Edwereg ¼ Ewereg þ
XT
t¼2

XL
l¼1

ðk1kclt � Cl
cc

l
t�1k €WWt

þ k2kalt � Cl
aa

l
t�1k _WWt

Þ:
Here we have introduced the linear dynamics Cl
c of the appearance coefficients, and

the the linear dynamics Cl
a of the motion parameters. The first term Ewereg expresses a

data conservation term, while the second term introduces a temporal smoothness

constraint into the model. The addition of this dynamical information will act as a

regularization term to prefer smooth solutions of the appearance and motion pa-

rameters. However, due to the coupling, a more efficient technique than IRLS will be

a normalize gradient descent [13].
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5. Experiments and applications

5.1. Automatic learning of eigeneyes

Eyes are one of the key elements in Vision Based Human–Computer Interaction.
Tracking the eye becomes a difficult task because the image changes are not solely

due to motion but also to appearance change [4,18,19,26,40]. In this experiment,

we automatically learn a person-specific eigeneye model without any manual crop-

ping, except in the first image. We assume that during the training process the person

is not moving far from the first frame (around 5–8 pixels). However, it is not reason-

able to assume that the person is absolutely still during the training session.

Recall that Fig. 1 illustrates the eigen-registration method and shows a few images

from a training set. In the first frame, we manually select the mask for the eyes, face,
and background (in Fig. 3 the regions are represented). In this case, because we are

assuming a small motion, the GA has not been applied for initializing the algorithm,

and we minimize Eq. (4) with the robust deterministic learning method proposed,

with a coarse-to-fine strategy (2 levels) over the entire training set (around 300

frames). We have presupposed that the data had few outliers, so we give r a high

value. The results are shown in Fig. 2; see Section 1 for more details.

Fig. 4 shows the normalized reconstruction error of the eye for the original train-

ing set D and the aligned training set Dw with the same number of bases. The
normalized reconstruction error for the image i is ri ¼ kdi � Bcik=kdik. The recon-

struction error resulting from our method (solid line) compared with standard
Fig. 4. Normalized reconstruction error of the right eye for the experiment 5.2 versus the number of

frames. See text for details about the normalized error.
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PCA (dotted line). Once the eigeneyes have been learned, tracking can be performed

with deterministic techniques [4,11] or stochastic ones [19]. Applications to driver fa-

tigue detection are being explored [19].

5.2. Automatic face learning

In this experiment, we explore the possibility of learning the entire face model, in-

cluding modeling mouth changes. The modular face model is composed of four re-

gions (see Fig. 3). Some frames of the sequence (240� 320 pixels and 320 frames) are

shown in Fig. 5a. In this sequence, the person can suddenly move more than 20 pix-

els from frame to frame, along with large scale and rotation changes. In this case we

make use of the stochastic initialization with the GA for an initial estimation of the

parameters.
Fig. 5b shows the normalized face (w.r.t. the first frame) reconstructed with the

learned bases after the convergence of the algorithm. Recall that we have just initial-

ized the regions in the first image and no previous appearance model was given. No-

tice that the reconstructed images in the ‘‘b’’ rows are stabilized indicating that the

affine transformation from the input images to the learned eigenspaces has been

accurately recovered.

The faces in Fig. 5b display variations due simply to appearance (expression) and

not to motion. In this case we preserve 85% of the energy in each modular eigen-
space. At this point, it is interesting to observe that ME achieves better compression

factors than the regular eigenspace for the same number of parameters. Each face

image (Fig. 5b) can be reconstructed with 23 parameters and further work needs

to be done to determine the viability of this model for applications such as video-

conferencing. Note also that these figures show the results for automatic registration

and learning with respect to the training data. For video conferencing (or similar)

applications where one needs to track and reconstruct the appearance and motion

of the face one needs to solve for the transformation between the model and the data
to be reconstructed. This is the ‘‘eigentracking’’ problem addressed in [4].

5.3. Virtual avatars

In this experiment we animate one face given another using PSFAMs. In general

it is hard to model and animate faces and often complex models encoding the under-

lying physical musculature of the face are used (e.g., Candide model [23]). Here we

learn the PSFAM of two people with parameterized component analysis introduced
in this paper. Then, we manually select all pairs of corresponding images which share

a common emotional state, i.e., we associate the face regions with equal expression

content, and collect two training sets D and D̂D (for more information see [14]), one

training set for each person. Once we have D and D̂D, we use the recently proposed

asymmetric coupled component analysis (ACCA) [14] to learn the relationship be-

tween these two sets, and predict one from the other. Fig. 6 shows frames of a virtual

female face animated by the appearance of the input male face. The first column

shows the original input stream (D̂D); the second one, (D), is the result of animating



Fig. 5. (a) Original image sequence; (b) reconstructed normalized face.

F. De la Torre, M.J. Black / Computer Vision and Image Understanding 91 (2003) 53–71 67
the face with ACCA plus the affine motion of the head. As we can observe this

approach allows us to model the rich texture present on the face providing fairly

realistic animations.



Fig. 6. (a) Original face; (b) animated virtual face.
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6. Discussion and future work

This paper has introduced robust parameterized component analysis to learn

modular subspaces that are invariant to various geometric transformations. The ro-

bust formulation of the problem extends previous work and has proven effective for

learning low dimensional models of human faces. In particular, we have shown how

the method can simultaneously construct an eigenspace while aligning unregistered

training images. The learned eigenspace captures the motion-invariant appearance

variation in the training data and the method can be applied to arbitrary parameter-

ized deformations.
Due to the complexity of the objective function, a stochastic initialization of the

algorithm has proven to be essential for avoiding local minima. Since the final solu-

tion is sensitive to the initialization from the genetic algorithm, one extension of the

work here would be to take multiple initial estimates from the stochastic initializa-

tion, solve for the bases and then perform model selection. We are exploring another

extension to the optimization technique that incrementally aligns the training images

with an increasing number of bases (e.g., beginning with the bases corresponding to

40% of the energy and successively increasing it until 85%). Intuitively, this would
first align the data w.r.t. to the most common features and later w.r.t. the more de-

tailed ones.

While our parameterized component analysis method is a general technique for

learning linear subspaces, here we have illustrated it with examples from face mod-

eling. In particular, we have illustrated the method in the context of 2D PSFAMs
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and have presented several applications of these models. Observe that parameterized

component analysis always improves the quality of the appearance basis if some mis-

alignment exists in the training set (due to manual cropping, motion of the person,

etc). Although we have presented a method for learning PSFAM, the method can be

also useful when improving the basis of a training set containing faces from different
people. As described here, the method is appropriate for learning appearance models

in an off-line process. The method could be extended to be useful for on-line learning

by simply replacing the closed form solution with a gradient descent algorithm or

any adaptive method. Based on the recent extension of EigenTracking [4] to deal

with Support Vector Machines [1], it would also be interesting and quite straightfor-

ward to consider extending our method to other statistical learning techniques like

SVM, independent component analysis, etc.

Modeling the face with modular eigenspaces coupled by the motion can result in
the loss of correlations between the parts (e.g., when smiling some wrinkles appear in

the eye region). Now we are working on modeling the face with symmetric coupled

component analysis [14] and are experimenting with hierarchical component analysis

in which one set of coefficients model the coupling between regions while each indi-

vidual region has its own local variation.

Finally, the work presented in this paper on automatic learning of 2D PSFAM

has the limitation of being applicable to some particular view of the face, in this case

the frontal view. However, it is likely that in many real applications the head will
undergo 3D motions resulting in changes to the spatial domain of the facial

eigenspaces. An extension to model 3D changes is needed. We are working on ex-

tending the PSFAM to model 3D changes by incorporating shape information. This

can be done using the same continuous optimization techniques described here

[11,18].

Videos with the results for all the experiments performed in this paper can be

down-loaded from http://www.salleURL.edu/~ftorre/.
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