

Generative Layered Model

Acknowledgements: DS and MJB were supported in part by the NSF Collaborative Research in Computational Neuroscience Program (IIS-0904875) and a gift from Intel Corporation.

Layered Segmentation and Optical Flow Estimation Over Time

Deqing Sun¹, Erik B. Sudderth¹, and Michael J. Black^{1,2}

¹Department of Computer Science, Brown University, Providence, RI, USA, ²Max Planck Institute for Intelligent Systems, 72076 Tubingen, Germany

Occlusion Reasoning

[7] Weiss, Smoothness in Layers: Motion Segmentation Using Nonparametric Mixture Estimation. CVPR, 1997. [8] Xu, Jia, & Matsushita. Motion Detail Preserving Optical Flow Estimation. IEEE TPAMI to appear.

MAX-PLANCK-GESELLSCHAFT

Toy Example

Classic+NL [4] Layers++ [5] nLayers Flow field

Multiple Frames Help

Middlebury Optical Flow Benchmark

MIT Layer Segmentation Benchmark

HGVS [1]	nLayers	Flow field	Ground truth
Rand Index (RI): 0.766	RI: 0.979		
RI: 0.689	RI: 0.766		
RI: 0.499	RI: 0.881		E