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Abstract

A spatio-temporal representation for complex optical
flow events is developed that generalizes traditional
parameterized motion models (e.g. affine). These gen-
erative spatio-temporal models may be non-linear or
stochastic and are event-specific in that they charac-
terize a particular type of object motion (e.g. sit-
ting or walking). Within a Bayesian framework we
seek the appropriate model, phase, rate, spatial po-
sition, and scale to account for the image variation.
The posterior distribution over this parameter space
conditioned on image measurements is typically non-
Gaussian. The distribution is represented using fac-
tored sampling and is predicted and updated over
time using the Condensation algorithm. The resulting
framework automatically detects, localizes, and rec-
ognizes motion events.

1 Introduction
While the last decade has seen significant improvements in
the robustness and accuracy of techniques for estimating
optical flow, a number of issues remain. Consider the op-
tical flow field computed for the pair of images in Figure
1 [13]. The recovered flow serves as a poor characteri-
zation of the image motion but illustrates two open prob-
lems. First, motion remains difficult to estimate in complex
image sequences containing non-rigid deformations, artic-
ulated motions, occlusion, illumination changes, self shad-
owing, etc. Second, even if we could estimate the motion
accurately, how can the optical flow be used to recognize
the activity? In contrast to traditional optical flow meth-
ods this paper presents a framework that shifts the focus
of the problem fromestimationof accurate pixel motion in
generic scenes toexplanationof image changes in terms of
explicit spatio-temporal models of motion events.

These spatio-temporal models are illustrated in Figure 2.
The spatial component consists of a basis set of flow fields,
~bj . The temporal component,~�k, contains trajectories of

�� Portions of this work were performed while the author was on sab-
batical in the Computational Vision and Active Perception Laboratory
(CVAP), Royal Instititue of Technology (KTH), Stockholm, Sweden.

Figure 1: Challenges for motionestimation/explanation.

coefficients. A particular position, or phase�, within the
temporal model determines a vector of linear coefficients,
~ak;� = [a1; : : : ; an] that, together with the spatial model
determines a flow field. Particular motion events are de-
scribed by a spatio-temporal model�i = f~bj ; ~�kg.

Recognizing a motion event requires choosing the most
likely spatio-temporal model,�, the correct phase, the po-
sition,~p, of the model within the image, the spatial scale,�,
and an amplitude scaling,�. An additional rate parameter
� will described later. With multiple, non-linear, models,
the probability distribution over these parameters is non-
Gaussian and we represent it explicitly using a discrete set
of random samples.

This distribution can be predicted forward in time and
updated with new information using the Condensation algo-
rithm [8]. With a high dimensional parameter space, many
samples may be needed to characterize the distribution and
each sample requires computing the likelihood of the image
measurements given a particular set of parameters. This can
be done efficiently by sampling from spatial and temporal
image derivatives in a multi-scale representation. Note the
likelihood function is computed directly from image deriva-
tives and not from a dense optical flow field.

The resulting model solves a number of problems simul-
taneously. Motion events are detected, localized, and rec-
ognized automatically using only motion information. The
approach extends the application of parameterized spatial
models to domains that require non-linear, or stochastic,
spatio-temporal models. The models provide strong con-
straints on the interpretation of motion which are exploited
to estimate motion in challenging sequences such as that in
Figure 1. More importantly however, the approach shifts
the focus from accurate estimation of general flow fields to
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Figure 2: Overview of the generative model.

model-based recognition of motion events.

2 Related Work

Much of the work on detecting and recognizing human mo-
tion relies on image brightness [12, 14] or image differences
[7] rather than explicitly on optical flow. Unlike motion-
based approaches, these methods can be sensitive to the
color of the background and the clothing of the subject.
They may be most useful in conjunction with a motion-
based method as a source of additional information.

Work that uses image motion for recognition typically
exploits statistical properties of the motion field [11, 15].
These models allow discrimination between motions with
distinct first or second order statistics but cannot model the
precise spatio-temporal variation needed to distinguish the
mouth motions for two words such as “print” and “track.”

Learned models of image motion provide a more precise
characterization of the spatial variation of complex objects
such as mouths [5]. These spatial models have typically not
included models of the temporal properties of the moving
objects. Combined spatial and temporal models have typi-
cally exploited assumptions of constant acceleration result-
ing in a linear formulation [18]. Linear temporal models are
not sufficient for the recognition of complex motion events.

More complex spatial models of human motion treat the
body as a set of connected parts [4, 6, 10]. There has also
been work on recognition of activities using the temporal
evolution of the parameters of models such as these [3, 16].
Yacoob and Davis [17] use learned spatial models of walk-
ing motions to constrain the tracking and estimation of a
part-based motion model. All these tracking methods re-
quire manual initialization of the spatial model.

To cope with more complex noise models and the prob-
lem of initialization, Isard and Blake proposed the Conden-
sation algorithm [8]. By representing a discretely sampled
distribution over model parameters they can track objects
when multiple matches and occlusion make the distribution
non-Gaussian. The approach as been extended to multiple
models, multiple sources of information [9], and non-linear
temporal models [3]. This paper extends these methods to
exploit optical flow information.

~b1: ~b2: ~b3:

Figure 3: First 3 basis flow fields accounting for85% of the
variance in the mouth training motions.

3 Spatio-temporal Flow Models

This section briefly reviews object specific spatial and tem-
poral models of motion.

Spatial Models of Motion. We formulate spatial models
of image motion using abasis setof orthogonal flow fields,
~bj . Linear combinations of these basis flow fields are used
to describe image motion. Basis flow fields my be con-
structed from examples using principal component analysis
[5] and may be used to approximate the motions of fairly
complex non-rigid objects such as human mouths. While
we restrict our attention to linear spatial models here the
framework is more general and can be used with non-linear
or stochastic models of motion.

As an example, we construct a spatial model of mouth
motion for a single speaker. A training set of 3000 images
is gathered of a person saying several words and changing
facial expressions throughout several seconds of video. The
face region is stabilized using an affine motion model [4]
and the motion of the mouth region is estimated relative
to the stabilized sequence using a dense flow method [2].
Singular value decomposition is used to compute a set of
basis flow fields from the training flow fields [5] (Figure
3). A small number of basis flow fields will be sufficient to
discriminate between different optical flow events.

Temporal Models of Motion. While spatial models con-
strain instantaneous motion, the temporal properties of
many motions may be modeled to further constrain the in-
terpretation of image brightness changes. Combined spa-
tial and temporal models can be constructed by perform-
ing principal component analysis on a space-time block of
training flow fields.

For objects such as human mouths, however, we can sep-
arate the spatial and temporal models. The spatial variation
of the mouth is modeled with the spatial basis flow fields
above. Different words or expressions will result in pat-
terns of image motion that are modeled by different discrete
trajectories of the spatial coefficients over time. Temporal
modelk is ~�k = [~ak;1; : : : ;~ak;�k;max ], where�k;max is the
length of the model and~ak;� is a vector of linear coeffi-
cients at phase�. A spatio-temporal model�i = f~bj ; ~�kg
combines a spatial basis set~bj and a temporal model~�k .

For example, the mouth training set above contains mul-
tiple utterances of the words “Center,” “Print,” “Track,” and
“Release;” these words were chosen for a user interface ap-
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Figure 4: Temporal models for “Center,” “Print,” “Track,” and “Release” utterances; dash =a1, solid =a2, dot =a3.

plication. Given the spatial basis set we estimate the co-
efficients describing the image motion using the method in
[5]. For each utterance we take the trajectories of the mo-
tion coefficients and manually align them [3]. The mean
trajectories shown in Figure 4 form the temporal models.

4 Model-based Motion Representation
Given an image sequence and a set of spatio-temporal mod-
els of motion events, explaining the image in terms of the
models requires that we choose a model�, at spatial loca-
tion~p = (x; y) and scale�, with a rate,�, an amplitude,�,
and a temporal position, or phase,�. This defines agenera-
tive modelof the image motion in a particular region. Note
that� and� are assumed independent.

Let st = (�;~p; �; �; �; �) be a state at time t. Let
zt = [Ix(t); Iy(t); It(t)] represent the spatial and tempo-
ral derivatives of the image sequence at timet and let~zt be
a sequence of such derivatives from time0 to time t. Then
we seek the probability of a state,st, given the data,~zt. This
distribution is not directly observable, but from Bayes’ rule

p(stj~zt) = k p(ztjst) p(stj~zt�1); (1)

where the measurement densityp(ztjst) can be evaluated
for a state,p(stj~zt�1) is the prior probability of a particular
state, andk is a normalizing constant independent ofst.

The non-linear nature of the motion models means that
p(stj~zt) will not be Gaussian and we represent this distribu-
tion using a discrete set of random samples [8]. A similar
representation is used for dense flow estimation in [19].

Measurement Density. We need to compute the likeli-
hood,p(ztjst) of observing the image measurements given
a state. Recall that a state determines a vector of coefficients
and hence a flow field. Using this, we define the likelihood
in terms of the brightness constancy assumption

I(~x(st); t) = I(~x(st) + ~u(~x; st); t� 1)

which states that the image,I , at timet is a warped version
of the image at timet � 1. The spatial position~x(st) takes
into account the spatial scale� and transforms the image to
the scale of the spatial basis flow fields

~x(st) = b�(~x � ~p) + ~pc;
where~x is a position in image coordinates and~p is the lo-
cation ofst (with respect to the center of the spatial basis)
in image coordinates.

The optical flow at a pixel~x is

~u(~x; st; t̂ ) =
nX
i=1

âi(�(t̂; st))~b�;i(~x(st)� ~p);

where~b�;i(~x(st) � ~p) is the basis flow fieldi for the event
model�. Typically, t̂ = t but we can evaluate the phase at
some timêt < t in which case the rate parameter� is used
to compute the phase:�(t̂; st) = �� �(t� t̂ ).

Temporal trajectories are represented by coefficient val-
ues at discrete time instants. To compute the coefficient
âi(�) for some real�, 0 � � < �max, we linearly inter-
polate the coefficients and scale the result by� to allow
variations in amplitude

âi(�) = �(ai(b�c)(1�(��b�c))+ai(b�c+1)(��b�c)):

For computational efficiency we linearize the brightness
constancy assumption about~u(~x; st) to derive the optical
flow constraint equation at a pixel. We use a Gaussian pyra-
mid image representation and compute image derivatives at
all scales. The constraint equation at a particular pyramid
levelg is

rI(~x(st); g; t̂ )~u(~x; g; st; t̂ )+It(~x(st); g; t̂ ) = E(~x; st; g; t̂ )

whererI represents a vector of spatial derivatives[Ix; Iy]
at time t̂. Note that we also have a pyramid of basis flow
fields corresponding to the spatial scales in the image pyra-
mid.

To evaluate the likelihoodp(ztjst) we take a random
sample,Rg , of image locations at each levelg (typically
1% of the pixels in the region) (cf [1]) and use the error
above to definep(ztjst) =

1p
2��

exp(
�1

2�2
P

t̂;g jRg j
t�wX
t̂=t

X
g

X
~x2Rg

~E(~x; st; g; t̂ )2)

where ~E(~x; st; g; t̂) = min(jE(~x; st; g; t̂)j; �Out), and�Out
is the residual of an outlier (empirically chosen to be 15.0).
Note that the likelihood is computed over a temporal win-
dow,w, (taken to be 5 frames). This violates the assumption
in (1) that observations are mutually conditionally indepen-
dent but allows time warping in the computation of the like-
lihood and reduces the number of discrete samples needed
to represent the posterior.
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The value of̂a(�) when� < 0 depends on the model�.
In the case of repetitive actions such as walking the phase is
computed modulo the�max. In the case of mouth motions
we assume thêai(�) = 0 when� < 0; that is the mouth is
static before an utterance. Position,~p, can also depend on̂t
but here we assume it is constant overw.

The distributionp(stj~zt) will be represented below with
discrete samples. Each sample requires evaluating the like-
lihood p(ztjst) and hence this computation must be effi-
cient. For this reason, we place a number of restrictions
on the samplesRg . First, we support non-rectangular ba-
sis flow models by restricting the samplesR to be drawn
from a binary mask distribution that indicates where the
basis flow model is defined. Second, we restrict the sam-
ples~x 2 Rg to be those for which the generated flow
~u(~x; g; st; t̂ ) magnitude in the horizontal and vertical direc-
tion is less than1:5 pixels; this restricts large motions to
being evaluated only at the appropriate scales,g. Third, so
that all constraints are as informative as possible, we re-
strict the samples to locations where the spatial brightness
variation(rI) is greater than a threshold; this reduces the
required number of samples. Given these constraints onR,
if sufficient samples are not available to evaluate the likeli-
hood, the sample is assigned the probability of an outlier.

Temporal Prior. The priorp(stj~zt�1) embodies the tem-
poral dynamics of the system

p(stj~zt�1) =
SX
i=1

p(stjs(i)t�1) p(s(i)t�1j~zt�1)

wherep(s(i)t�1j~zt�1) is the posterior from the previous time

step. The termp(stjs(i)t�1) defines how a state evolves over
time and will be defined below.

Additional Evidence. The state space we need to repre-
sent is large and it is useful to have additional information
so that a small number of samples can adequately charac-
terize it. Isard and Blake [9] describe the technique of im-
portance sampling for incorporating additional information
when this information is not conditionally independent of
the evidence~zt.

As in [9], we are concerned with narrowing the search
over spatial positions~p. In some cases we have evidence
for a particular location from a higher level model; for ex-
ample, leg locations given knowledge of the torso position.
Alternatively, evidence may come from some image source;
for example, mouth locations using color information. In
these cases it is reasonable to assume that the evidence is
conditionally independent of the image derivatives used to
compute the likelihood above.

With additional evidence,mt, the posterior is

p(stj~zt;mt) = k p(ztjst) p(mtjst) p(stj~zt�1):

Initialization Prior. When initializing a new state with
no evidence, lets0 represent some unknown previous state
andp(stjs0) be an initialization prior. This distribution is
uniform (between minimum and maximum values) over the
state parameters�, �, �, �. The choice of� depends on the
model and may be chosen uniformly or, for mouth motions
we chosey uniformly between 0 and 1 and let� = (1 �p
y)=

p
y which biases new states to have a value of� close

to zero. We chose the location~p by sampling fromp(mtjst)
if the evidencemt is available; uniformly otherwise.

5 Computational Model
Due to the non-Gaussian nature ofp(ztjst) p(mtjst)we rep-
resent this distribution using a finite set of samples,S, [8]
and normalize the probabilities of the samples so that they
sum to one, producing weights�(n)t

�
(n)
t =

p(ztjs(n)t )p(mtjs(n)t )PS
i=1 p(ztjs(i)t )p(mtjs(i)t )

:

The set ofS pairs,(s(n)t ; �
(n)
t ), represents the distribution.

Note that given the sampled approximation to the dis-
tribution p(stj~zt), we can compute the expected value for
some state parameter,f(st), as

E[f(st)j~zt;mt] =

SX
n=1

f(s(n)t )�
(n)
t :

To approximate the prior at timet, we sample from the
posterior from timet�1 by choosing a state,s(n)t�1 according

to the weights�(n)t�1. To avoid becoming trapped in local
maxima we chose some fraction0 � q � 1 of the samples
from the initialization prior (q is typically0:1).

Dynamical Model. Given a sampled states(n)t�1 we pre-

dict the parameters of the new states(n)t at timet by sam-
pling from p(stjst�1). We assume the model does not
change (�t = �t�1), that�t is normally distributed about
�t�1+�t�1, and that�t, �t, �t, and~pt are all normally dis-
tributed about their values att � 1. The normal distribu-
tion about~p allows the estimated position to drift to follow
small changes in location; the temporal dynamics could be
extended to allow constant velocity or acceleration.

Given the new states, we evaluate their probability with
respect to the evidence at timet and normalize to update the
weights. The Condensation algorithm [8] repeats this sam-
pling, prediction, and updating to propagate the posterior
over time.

6 Experimental Results
The framework is tested below on walking and speaking
events. The number of samples,S, is taken to be 35000.
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Figure 5: Example training images showing one complete
walking cycle. The white box indicates the region of the
image used for training.
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Figure 6: Left: First 3 basis flow fields for walking motion;
they account of80% of the variance in the training motions.
Right: temporal model.

6.1 Walking Experiments

We construct spatial and temporal models (Figure 6) from
a training sequence of a single subject walking on a tread-
mill parallel to the image plane of the camera (Figure 5).
Note that the temporal model includes the full walking cy-
cle and that each half of the cycle is similar, resulting in
phase ambiguities. We assume that the torso location and
scale are known and these predict~p and� and thatp(mtjst)
is a Gaussian distribution about these values.

Figure 7 shows example frames from one of the test
sequences which contains six complete walking cycles.
Clothing, viewing angle, and rate all differed from the train-
ing images. All cycles were correctly detected as shown in
Figure 8. The graph on the right shows the expected phase
E[�jst] while the graph on the left shows the probability
that a cycle has completed which is defined to be

p(��) =
SX

n=1

�
�
(n)
t if � 2 s(n)t and�+ 1 > �max;

0 otherwise.

Muybridge Experiment. We return now to the image se-
quence discussed in the Introduction. Figure 9 shows a
sequence of images which covers slightly less than one
walking cycle. The second row shows the estimated im-
age motion within the predicted leg region using a con-
ventional optical flow method [2]. The bottom row shows
the expected flow field,E[~u(~x; st; t)jst], generated from the

Figure 7: Test sequence, every 20 frames.
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Figure 8: Recognition of walking cycles; left: probability
that a cycle has completed; right: expected phase.

spatio-temporal model. Note that the flow corresponding to
each sample is constrained to be a valid walking motion.

To better illustrate the behavior of the algorithm, Figure
10 shows the marginal distribution of the phase,�, over 10
frames. Note that initially the distribution is uniform over
phase. On the right in the figure is a plot of the mean of the
coefficients,E[aijst]. By the third frame the distribution is
centered about the true phase and the mean trajectories of
the coefficients approximate those of the model in Figure 6.

6.2 Mouth Motion
The next experiment introduces multiple motion models
and allows the method to search over spatial location to au-
tomatically detect and track the mouth of a subject as they
speak and move their head. The subject utters one of four
test words (center, print, track, release). The spatial and
temporal models are shown in Figures 3 and 4 respectively.

Evidence for the mouth position is constructed from a
low-resolution average of the magnitude of the absolute
temporal difference between frames. This is scaled to the
size of the image and normalized. Peaks occur where there
is motion but only those areas corresponding to mouth mo-
tions will have high likelihood. This simple scheme works
well when there is limited head and camera motion though
the assumption of conditional independence from the im-
age derivatives is tenuous. Alternative cues such as color
should be explored or importance sampling used [9].

The framework is applied to a 300-image sequence that
was not part of the training set; the subject says “center print
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Figure 9: Muybridge image sequence; see text.
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Figure 11: Top: expected mouth location. Middle: marginal distribution for position~p. Bottom: mean optical flow.
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of coefficientsai.

track release center” followed by other utterances for which
there was no temporal model. Sample images are shown in
Figure 11 with a box superimposed on the expected mouth
positionE[~pjst]. Below each image is the marginal distri-
bution ofp(stj~zt;mt) shown for spatial position,~p. When
one of the spatio-temporal models fits the image motion, a
peak is visible at the correct spatial position. Below this the
mean flow for each of the mouth regions is shown.

Figure 12 (top) shows the marginal probability of each
model as a function of time. Below that is the expected
phase of each model. Note that sometimes the method
quickly settles on a single model whereas in other cases
(e.g. the utterance “track”), multiple hypotheses are main-

tained. Recognition is performed based on the probability
that a model has terminated (bottom plot).

7 Conclusions

We have described parameterized spatio-temporal models
for representing motion events in video sequences. We have
proposed a Bayesian framework that permits the models to
be non-linear or stochastic and a computational mechanism
based on the Condensation algorithm for incrementally esti-
mating a distribution over model parameters. The approach
automatically detects and recognizes motion events based
on image derivatives.

In the context of optical flow estimation, there has been
a trend in the field moving from generic parameterized spa-
tial models (affine) to object specific learned models. Here
we continue that trend by adding object specific temporal
models. Traditional estimation techniques are no longer ap-
plicable and this motivates the use of random sampling.

In the context of motion recognition, the method can be
seen as providing a vocabulary of primitive optical flow
events that can model fairly complex phenomena. The
probabilistic formulation should allow this approach to be
combined with higher-level recognition methods.

Note that we are asking a lot of our model: to detect and
recognize events such as walking purely based on motion
information. There are brightness cues that should be com-
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Figure 12: Mouth experiment; solid = “center,” large dash =
“print,” small dash = “track,” dot = “release.” Top: marginal
probability of each event. Middle: expected phase of each
event. Bottom: probability of each event completing.

bined with motion to further constrain the problem. This is
necessary since, the number of samples required to repre-
sent the distribution may grow exponentially with the size
of the parameter space. With 35000 samples, the computa-
tion takes approximately one minute per frame.

Immediate topics for future work include expanding the
experimentation to include more models of activities (e.g.
walking from various view points, sitting, running, etc.),
multi-part and multi-scale models (e.g. a low resolution
person model combined with a high resolution leg model),
adding models of image appearance change in addition to
motion, and adding a search over small rotations. Addition-
ally, we are developing stochastic models of motion texture
which fit naturally in the framework described here. Tem-
poral stochastic models based on HMM’s may also be ex-
ploited.

The models and mechanisms described here shift the fo-
cus of the optical flow problem: movement in the image se-
quence should be “explained” using available models of the
world. This motion explanation problem focuses on char-
acterizing image brightness variation rather than accurately
estimating image motion.
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