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Abstract

This paper describes a new method for estimating op-
tical flow that strikes a balance between the flexibil-
ity of local dense computationsand the robustness and
accuracy of global parameterized flow models. An
affine model of image motionis used within local im-
age patches while a spatial smoothness constraint on
the affine flow parameters of neighboring patches en-
forces continuity of the motion. We refer to thisas a
“Skin and Bones” model in which the affine patches
can bethought of asrigid“ bones’ connected by aflex-
ible “skin”. Snce local image patches may contain
multiple motions we use a layered representation for
the affine bones. To regularizethislayered motion rep-
resentation we develop a new framework for regular-
ization with transparency.

1 Introduction

Recent work on optical flow can be seen as trying to find
a baance between loca dense optical flow schemes and
global parameterized approaches [2, 9, 14]. Dense opti-
cal flow methods require only local image measurements
and integrate information over larger aress via regulariza-
tion. While these methods have the advantage of being
able to cope with complex and varying flow fields and can
be extended to model motion discontinuitiesin arelatively
straightforward fashion [8], they remain somewhat inaccu-
rate. Global parameterized approaches, on the other hand,
assumethat the optical flow within someimage region (pos-
sibly theentireimage) can be model ed by alow-order poly-
nomia [4]. When the modd is a good approximation to
theimage motion these methods are very accurate since one
only has to estimate a small number of parameters given
hundreds or thousands of constraints. The problem with
these methods is that large image regions are typically not
well model ed by a single parametric motion dueto the com-
plexity of the motion or the presence of multiple motions.
Smaller regions on the other hand may not provide suffi-
cient constraintsfor estimating the motion. This problem of
choosing a region size has been referred to as the general-

ized aperture problem (GAP) [11]. Thework described here
combinesfeatures of both theregularized and parameterized
methods to obtain nearly the accuracy of the parametrized
motion approaches but with the generality and flexibility of
the regul arized approaches.

The approach tilestheimage with afixed set of rectangu-
lar patches and assumes that the motion within the regions
can be represented by asmall number of affine motionsthat
can bethought of as“layers’ [10, 16]. Theapproach assigns
pixelsto layers and estimates the motion of each layer using
arobust mixturemodel formulation[2, 11, 13] that accounts
for outlierswhich cannot be represented by any of thelayers.
The assignment to layers and the estimation of the motions
isachieved using avariant of the EM algorithm[13].

Within image regions of fixed size the affine motion
model may be underconstrained, and thereforewe add areg-
ularization term that embodiesthe assumption that the affine
parameters of apatch should be similar toitsneighbors’ pa-
rameters. We refer to thisformulation as “ Skin and Bones’
where the parameterized patches can be thought of asrigid
pieces of bone that are connected by a flexible skin. Stan-
dard regularization techniques, however, cannot cope with
this situation since there may be multiple affine motion es-
timates in each patch.

Consider a single patch with multiple motion estimates
and its four nearest neighbors which may aso have multi-
ple affine motion estimates. Our approach “connects’ every
layer in the center patch with every layer inall the neighbor-
ing patches. To regularize a particular layer one considers
all possible neighboring motions within a robust statistical
framework. In such a framework, neighboring layers that
have similar motionswith have a strong i nfluence on the so-
[ution while layers with dissimilar motions will be trested
asoutlierswith little, or no, influence. We call this method
regularization with transparency.

The following section reviews related work on layered
motion estimation. Sections 3 and 4 introduce single-layer
Bones and Skin respectively and show how the skin im-
proves the motion estimates. The model isthen extended to
include multi-layer bonesin Section 5 and transparent reg-
ularization in Section 6.
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2 Redated Work

Parameterized optical flow methods assume that the spa-
tial variation of the image motion within a region can be
represented by alow-order polynomid (eg. affine motion).
With many motion constraints and few parameters to es-
timate these approaches can recover accurate motion esti-
mates when the motion model is a good approximation to
the image motion. The problem with this approach is that
parametric motion models applied over arbitrary image re-
gionsarerarely valid in rea scenes dueto surfaces at vary-
ing depths or the independent motion of objects.

Approaches have been devised which ameliorate some of
the problems of “global” parametric models. One set of ap-
proaches estimates a fixed number of parametric motions
within a given image region using a variety of regression
techniques [5, 6, 11, 18]. Another set of approaches ap-
plies parametric models to coarse flow fields by grouping
the flow vectorsinto consistent regions[1, 16]. Both sets of
approaches can cope with asmall number of motionswithin
aregion but not with general flow fields. They do not ad-
dress how to select appropriate image regions in which to
apply the parametric model s nor how to select the appropri-
ate number of motionsor layers. These limitationscan lead
to inaccuracies and instabilitiesin the recovered motions.

A number of methods have addressed the problem of how
to choose the appropriate number of parameterized motions
that are necessary to represent the motion in the scene. One
set of approaches[2, 10] uses aminimum description length
encoding principleto strike a balance between accurate en-
coding of themotion and the number of layers needed to rep-
resent it. Whilethese methods provideasegmentation of the
image based on the support of pixelsfor each of thelayers,
they still operate over fixed image regions (typically theen-
tireimage).

There have been a number of recent attempts to find ap-
propriate image regions within which to apply parameter-
ized motion models. For example, Black and Jepson [9] first
segment an image into regions using brightnessinformation
and then fit the motion within the regions using parameter-
ized flow models. When a good segmentation is available,
the motion can be estimated accurately but brightnessinfor-
mation aone cannot be guaranteed to provide a good seg-
mentation.

Szeliski and Shum [14] take an approach based on
“quadtree splines’ that treats the image as a set of patches
of varying size which are connected in a spline-based repre-
sentation that enforces smooth motion. The motion within
a patch is determined by a parametrized motion model and
the patch size varies based on how well the motionin are-
gion can be approximated by a single flow model. The ap-
proach can only model a singlemotion withinapatch which
precludes the representation of transparent motion and frag-
mented occlusion. Additionaly, the spline-based represen-
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Figurel1: A robust error norm.

tation does not readily admit spatial discontinuities.

In contrast, we take fixed sized regions of theimage and
model multiple motions within each region using alayered
motion estimation scheme [2, 6, 11, 18]. To modd spa
tia smoothness we add a constraint on the affine param-
eters of neighboring patches. This is similar in spirit to
the constraints used in oriented particle systems [15]. In
our case we must extend standard regularization schemes
to deal with the multi-layer data. Madarasmi et al. [12]
approached a similar problem of regularization with mul-
tiple depth measurements at each point using a stochastic
minimization framework. Our solution is deterministic and
is a straightforward extension of the robust regularization
scheme described by Black and Anandan [8].

3 Locally Affine Motion (Bones)

For a small image region, an affine (linear) transformation
can well approximatetheimage motion of asmooth surface.
Thismodel is defined as

wrz,y) = ata(r—z)+a(y—y), (@)
v(e,y) = astaa(e —z)tas(y—vye), (2

where u(x,a) = [u(z,y), v(z,y)]T are the horizontal and
vertical componentsof theimage velocity at theimage point
X = [z,y]",and a = [ao, a1, as, a3, as, as]” denotes the
vector of parameters to be estimated rel ative to someregion
center (¢, ¥e).

The assumption of brightness constancy for a given re-
gion and a particular flow model gives rise to the optical
flow constraint equation

VI-uxas)+1I; =0, ¥YXxeR(S) (3)

where a(s) denotes the affine model for region s, R(s) de-

notes the pointsin region s, / isthe image brightnessfunc-

tion and ¢ representstime. VI = [I,, I,], and the sub-

scriptsindicatespartial derivatives of image brightnesswith

respect to the spatial dimensionsand time at the point x.
To estimate the parameters a(s), we minimize

E(= > p(VI-u(xa9)+1, 0), (4
XER(S)

with respect to the affine parameters a(s). Thevalues is
ascae parameter and p is some robust error norm. For the
examplesin this paper, p istaken to be

pla,o) = /(0 + ) 5)
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Figure2: Yosemite Sequence, groundtruth. (a) Image 11in
the sequence; (b) flow field.

whichisused in [6] and isshown in Figure 1. The shape of
p issuch that it “rejects’, or down-weights, large residual
errors. The function ¢ (x, o), dso shown in Figure 1, isthe
derivative of p and characterizes the influence of the resid-
uas. Asthe magnitudes of residuals VI - u(a) + I, grow
beyond a point their influence on the solution begins to de-
crease and the value of p(-) approaches a constant.

The value o effects the point at which the influence of
residual s beginsto decrease. Thisdown-weighting of resid-
uals begins where the second derivative of p iszero; that is
++/0/3 for the norm used here. Following[6] we consider
residua errors, VI - u(a) + I, to be outliersif their magni-
tude is greater than \/o times /o /3; that is, o //3.

To minimize Equation (4) we use a simple gradient de-
scent scheme with a continuation method that beginswith a
highvalueof ¢ andlowersit gradually during the minimiza-
tionuntil it reaches thedesired value[8]. To copewithlarge
motions a coarse-to-fine strategy is employed [6].

3.1 Bones Example

To illustrate the behavior of loca affine “bones’ we ap-
ply the method to two images in the synthetic Yosemite
sequence!, the first of which is shown in Figure 2(a). Fig-
ure 2(b) shows the known vector-field for the true motion.
Theimageissegmented intofixed rectangular patches (51 x
48 pixels) and the affine motion of each patch is estimated
independently. A four-level Gaussian pyramid was used in
the coarse-to-fine processing. The vaue of o began at 35
and was lowered by a factor of 0.95 at each iteration to a
minimum of 10, and 30 iterations of gradient descent were
used at each level. These parameters, except for patch size
and levels, remain fixed for the experimentsin the remain-
der of this section and the next.

Theaffinemotionsa(s), for each region s, specify themo-
tion of every pixel x € R(s) and we can use this computed
affine motion to produce a dense flow field with a vector at
every pixel as shown in Figure 3 (a).

Sincethe sequence is synthetic, we can compute the error
in the flow using the angular error measure of Barron et al.

1 This sequence was generated by Lynn Quam and provided by David
Heeger.

[3]. The performance of the agorithm can be quantified
as shown in Table 1 (Bones). “Average Error” refersto the
mean angular error over the non-sky portion of the image.

By visual inspection, it is clear that the motion field in
Figure 3(a) is not as smooth as the actua flow and shows
aclear block structure. In some regions, most notably at the
boundaries, the estimated motion isincorrect. The follow-
ing section illustrates how a regularization term (skin) im-
proves on these local affine estimates.

4 Regularization (Skin)

Regardless of the region size chosen for optical flow esti-
mation, there is the possibility that the solution will beiill-
conditioned dueto thelack of sufficient brightnessvariation
withintheregion. It istherefore useful to regularize the op-
tical flow estimation problem by adding aspatial coherence
constraint that favors solutionswhich are “smooth”. Tradi-
tionally, this constraint is formulated to minimize the dif-
ference between neighboring optical flow vectorsbut, when
the local flow estimation is performed by affine bones, we
instead need to formulate a notion of spatial coherence be-
tween the parameters of neighboring affine patches.

We define the Skin & Bones model by adding a spatia
coherence term to the to Equation (4)

E(s) = |Rts)|[xgz%s)p(VI.u(x, as) + I, ap)]
A *
* e 2 AES -~ Olhes] @

where sis an image region, A controls the relative impor-
tance of the two terms, R(s) and a(s) are the pixels and
the affine parameters of region s respectively, G(s) are the
neighboring patches of s, and some appropriate normisde-
fined on the neighboring affine parameters. The neighbor-
ing affine motion a(t) is dependent on the region center
(z.(t), y.(t)) and to be compared with a(s) must be trans-
formed as explained below. Thistransformed affine motion
isa*(t). Thedataand spatia termsof £ are normalized with
respect to the size of R(s) and G(s) respectively and each
hasits own scale parameter. The use of arobust error norm,
p alows spatial discontinuities between neighboring affine
patches.

To compare the affine parameters of neighboring patches,
it is necessary to transform these parameters so that they
are defined with respect to the center of the central patch,
s. If the center of patch sis (z.(S), y.(S)) and the center of
aneighboring patch t is (z.(t), y.(t)) then apoint X in re-
gion t can be described, with respect ot the center of s, as
((z—c(8) 4 (we(t) =2c(9)), (Y= ye (1)) + (ye () =y (9)))-
Substitutingthisinto the affine motion equations (1) and (2)
and simplifyinggives shifted affine parameters, a*, of patch
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Average | Standard Percent of flow vectorswith error less than:
Error | Deviation <1° | <2° | <3° | <5° | < 10°
Bones: 2.77° 3.4° 23.7% 49.9% 69.2% 89.1% 98.3%
Skin& Bones: 2.16° 2.0° 33.0% 61.3% 76.3% 91.6% 99.6%

Table 1: Error resultsfor the Yosemite fly-through sequence.
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Figure 3: Yosemite flow results. (a) Local affine patches;
(b) Affine patches with spatial coherence.
tas
ag = ap+ ar(ze(t) — z.(9) + aa(ye(t) — ve(9)),
azg = az+ ag(zc(t) — z.() + as(ye(t) — ve(9)),

andal = a;,1#0,3.

In practice we have found that minimizing the sum of the
differences in the neighboring individua affine parameters
works as well as minimizing the norm and issimpler toim-
plement. The spatia term then becomes

ST 57 plai(s) — ai (), 00) ™

teg(s) i=0

where a;(s) is the i'" affine parameter of patch s and the
scale parameter may vary depending on the parameter.

We minimize this function using the same gradient de-
scent scheme and continuation method described in the pre-
vious section and in [6, 8]. Unlike traditiona parametric
motion estimation schemes, the addition of the spatial co-
herence constraint on the affine parameters means that each
step in the optimization takes into account both the optical
flow constraints within the region and the parameters of the
neighboringregions(cf. [14]). Thisresultsin more accurate
motion estimates and a more stabl e optimi zation problem.

4.1 Example: Skin & Bones

To illugtrate the effect of regularizing the affine parameters
we add skin to the Yosemite sequence example from the
previous section. The recovered optica flow using Equa
tion (6) is shown in Figure 3 (b). Comparing the resultsto
those in Figure 3 (@) revedls that the unstable results near
the boundaries are gone and that the flow appears dightly
smoother. Quantitatively, the addition of “skin” improves

Technique Average | Standard | Density
Error | Deviation
Anandan 15.84° 13.46° 100%
Singh 13.16° 12.07° 100%
Nagel 11.71° 10.59° 100%
Horn and Schunck (modified) | 11.26° 16.41° 100%
Urasetal. 10.44° 15.00° 100%
Fleet and Jepson 4.29° 11.24° | 34.1%
Lucas and Kanade 4.10° 9.58° | 35.1%
Weber and Malik [17] 3.42° 5.35° | 45.2%
Black and Anandan [8]+ 4.47° 3.90° | 100%
Black [7]* 3.52° 3.25° 100%
Black and Jepson [9] 2.29° 2.25° 100%
[ Skin & Bonesx [ 2.16° ] 2.0° [ 100% |

Table 2: Comparison of various optical flow agorithms.

the average angular error by 22% as seen in Table 1 (Skin
& Bones).

All parameter values were the same as thosein the previ-
ous section and, for the new parameters, oy = o3 started at
4.0 and were lowered to 0.2 by afactor of 0.88 per frame.
Theremaining ¢; were afactor of 100 smaller than thisand
A was takento be 0.05.

The results of the Skin & Bones approach are compared
with other published results for the Yosemite sequence in
Table 2 [3]. Methodsfollowed by a“+” have errors com-
puted without the sky region. In [3], when the sky isig-
nored, the accuracy of the other methods improves by ap-
proximately 25% which is still below the accuracy of the
Skin & Bones model. The Skin & Bones model aso pro-
vides aflow vector at every point (100% density).

In[9], Black and Jepson perform a similar parametrized
fit, but do so in regions obtained by segmenting the bright-
ness images. They allow deformations from the fitted mo-
tionsusing arobust regularization scheme in which the pa-
rameterized motion of the patchesistreated asaprior. If we
alow similar local deformationsfrom the Skin & Bonesfit,
theaverage angul ar error decreasesto 1.82° with as standard
deviation of 1.58° and 100% density.

4.2 Limitationsof Single-Layer Bones

The Skin & Bones modd exploits the accuracy of area
based regression techniques locally and does so reliably
through the use of aregularizing skin. When the affine flow
model isareasonable approximation for the motionin are-
gion thisresultsin very accurate motion estimates as were
seen with the Yosemite sequence. In practice, flow fields



Computer Vision and and Pattern Recognition (CV PR’ 96), San Francisco, June 1996. (© |EEE 1996 5

S — .
T -
T e
PRI - .
2 o
. —
2 g - B

© @

Figure 4: (a) Image with patches shown; (b) Outliers (in
black) where the estimated motion did not conform to the
parameterized model; (¢) Horizonta component of flow
(darkness is proportional leftward vel ocity); (d) Flow field.

are rarely smoothly varying and typically contain disconti-
nuities.

Consider the“flower garden” sequence shownin Figure4
(8). The43 x 40 pixe regionsinthefigurespan surfacesat a
number of depths. In this case the robust estimation scheme
of the Skin & Bonesmode will tendto recover the dominant
motion within aregion. This can be seen in the horizonta
flow estimatesin Figure4 (c) (thereisvery littlevertical mo-
tion). Regionsthat span the boundary of thetree choose one
of thetwo motionsin theregion and, where thisoccurs, pix-
els corresponding to the other motion are treated as outliers
(Figure4 (b)). If the patch sizeisincreased sufficiently, the
motion of the foreground may eventually be ignored com-
pletely.

5 Mixtures of Robust Bones

We deal with several motions within a single region using
a straightforward extension of the mixture model approach
described in[11] (cf. [2]). That is, for agivenimage region
we model the flow using severa affine layers. In addition,
to accommodate data which cannot be accounted for by any
of these layers, we include an outlier process. The data at
any given pixel x is assigned to the :* layer with an own-
ership weight m; (X, o). The estimation problem, then, in-
volves recovering the affine parameters for each layer, say
a; for 1 < ¢ < £, dong with the appropriate layer assign-
ment weights, m;(x, o) for1 < ¢ < £ + 1. Here we denote
theoutliersaslayer £ + 1.

The estimation process we use is a variant of the EM-
algorithm, which is an iterative process involving two sepa-
rate steps at each iteration. The first step involves the es-

timation of the ownership weights, while the second uses
these ownership weights to solve for the affine parameters
of each layer.

Ownership Weights. We use a soft assignment of datato
layers based on the di screpanci es between the data and each
of thelayers. In particular, the assignment weights are de-
fined interms of therobust error norm p, fromwhich we de-
rive the likelihood function

1 0 Pz, o) o

l(z,0)= ﬂa—xp(x,a) =5, = CErsE (8)

Thisisthe same p-function as used earlier and its associated
likelihood functionis shown in Figure 1. For a given pixel,
we consider thelikelihood that the pixel x belongsto layer
i inregion sto be

Lix,o0) = UVI-u(x,a(s)+IL,o0)

T ervuxam 07 O
Aswe seefrom Figure 1, data having asmaller error iscon-
sidered to have a higher likelihood of belonging to layer <,
and this likelihood decays to zero as the error increases.
Wewill aso need thelikelihood, {11 (X, ), that thedata
at a given pixel arises from the outlier process. Following
[11] we take any data item to be equdly likely to be pro-
duced from thisoutlier process. Moreover, the value of this
likelihood is taken to be the weight given by p to the small-
est possible outlying residual, namely

o 9

(0 +(o/V3)2)2 o3 +0)

Finally, we set 7 to be the sum of the likelihoods for each

layer, including the outliers; that is L = "' 1;(x, o).
Given these likelihoods {;(z,0), 1 < i < £ 4 1, the

ownershipweightsm; (X, o) are determined by rescaling the

likelihoods so that the results sumto one. That is,

leai(0) = (10)

mi(X,0) =Li(X,0)/L, (12)

for1 < i < L£+1. Thisrescalingisparticularly useful insit-
uationswhere thelayers are close enough so that adataitem
hasasignificant likelihood of coming from two or morelay-
ers. In such a situation the reweighting can reduce or eim-
inate a bias towards the mean of nearby layers (see [13]).

Layer Parameters. Given the soft assignment of thedata
into the different layers by Equation (11), we solvefor layer
parameters, a;, usingareweighted least squaresformulation

E(s) = Y > mi(x,o)(VI-uxa)+ L)% (12)

XER(s) i=1

This formulation can be expected to be robust to outliers
since the ownership for large errors will be small.
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Figure 5: Transparent regularization. (8) Transparent data;
(b) Single-layer regularization; (c) Weight of the connec-
tion between neighboring pointsin al layers; (d) Transpar-
ent regularization, piecewise smooth result.

New estimates for the affine parameters a;, 1 < i < L,
obtained by minimizing E(s) are then used to re-estimate
the ownership weights, and so on, as in the iterative EM-
algorithm.

Unlike the approach presented in [11] we choose a like-
lihood function based on a robust error norm rather than
the standard Gaussian component densities. Additionaly,
rather than attempt to estimate the probability, averaged
over the image region, that a data item will belong to each
of thelayers, we simply take it to be equally likely.

6 Regularization with Transparency

The need to regularize noisy data arises in many computer
vision and image processing problems. Here we will con-
sider what happens when there are multiple measurements
at agiven point. To illustrate what this means we will con-
sider a 1D example which extends a simple regularization
problem to the transparent case.

Consider the noisy data in Figure 5(a). At each spatial
position, &, there are multiple values, dj,; and dj » which
might, for exampl e, be derived from depth measurements of
two transparent surfaces. Fittingasinglesurfacetothisdata
using aleast-squares formulation does not provide a useful
solution as shown in 5(b).

Our goal is to regularize the measurements to derive
two piecewise-smooth approximations uy 1 and uy » with-
out knowing a priori which measurements are grouped with
which other measurements. A given point u; ; has two
neighborsto itsleft: u;_; ; and ug_, 5. It isimportant to
note that we do not know which, if either, of these measure-
ments belongsto the same “ surface” asuy, 1. If weknew the
segmentation of the data pointsinto surfaces, these surfaces
could be regularized independently.

When the segmentation is not known apriori, we can still
regularize by minimizing

K
E(u,d) = ZZ[p(um —dy,i, 00)
k=01i=
L

—_

plug,i —up—15,05)]  (13)

+
=1

J
with respect to each surface point uy ;, where £ isthe num-
ber of layers. This means that we smooth a point with re-
spect to all its neighbors in al surfaces. If any of these
points are similar, they will be treated as inliers by the ro-
bust norm p and will have a strong influence on the sol ution.
If they differ, they will be treated as outliers and will be au-
tomaticallyignored. Minimizing Equation (13) smoothsthe
data without explicitly assigning data to particular layers.

Toillustratethis, Figure 5(c) showsthe “weight” that the
p-function givesto each neighbor. The dark linesindicatea
strong connection between the surface pointswhilethelight
linesindicate aweak connection. Notethat we could thresh-
oldthese valuesto derive asegmentation of thedatainto sur-
faces, but that thereisno need to do thisexplicitly. AsEqua-
tion (13) is minimized, the values of o; are gradually low-
ered, and outlying points receive lower and lower weight.
Figure5(d) showstheresult of minimizing Equation (13) in
thisway. The solution converges to the desired piecewise-
smooth, and transparent, surface interpretation.

6.1 Optical Flow

The transparent regularization theory can incorporated into
the optical flow problem in a straightforward way to allow
the regularization of multi-layer bones. We modify Equa-
tion (6) which combined single-layer affine motion esti-
mates with standard robust regul arization and define a new
objectivefunction, Z;(s), for layer i of paich sas

1

B = )

[ mi(x,00)(VI - u(x,a) + 11)°]
XER(S)

A 5 .
+ w[ Z Z Zp(aiyj(s) - alyj(t),O'j)]. (]_4)

teg(s)leL(t)j=0

The first term is simply a multi-layer motion model. The
smoothness term considers each of the neighboring patches
t and, for each of these patches, considers the layers £(t)
present in that patch (here a7 ;(t) refers to the j coeffi-
cient of the transformed affine parameters for layer [ in the
patch t). For each of these neighbors and layers, the robust
smoothness term is applied to the affine parameters. Mo-
tionsthat are similar will tend to reinforce each other while
dissimilar motionswill be ignored as outliers.

Equation (14) can be minimized in exactly the same way
as al the previous objective functions considered so far.
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Figure 6: (a) Image with segmented regions shown; (b)
Horizontal component of flow; (c) Weights for layer 1; (d)
Weights for layer 2; (€) Weights for outlier layer; (f) Flow
field.

This process aternates between solving for the a; in each
layer taking into account the smoothness term and solving
for the weights m; (X, op). Inour current implementation
we assumethat the number of layersisknownandistakento
betwo (plusoutliers). If more motionsare present, they will
betreated asoutliers. If fewer motionsare present, whichis
quitelikely, bothlayers convergeto the same motionand the
wel ghts assigning pixelsto layers become close to 0.5.

The motion parameters are estimated using a coarse-to-
fine strategy in which the affine transformations are com-
puted at a coarse level and then, at the next finer level, the
estimated transformations are used to register the two im-
ages by warping one towards the other (note that this must
be done for each of the layers). This process is repeated
down to the finest level in the pyramid while the transfor-
mations are updated at each stage.

Experimental Results. Since the data term is different
from that used in Section 4, some the parameters used for
themulti-layer case differ fromthesinglelayer case. Inpar-
ticular, cp decreases from 85.0 to 15.0 by afactor of 0.9 at
each stage in the continuation method and A is taken to be
1.0. All other parameters remained the same.

Figure 6 revisitsthe flower garden sequence of Figure 4.
Inthesingle-layer case regions contai ning multiplemotions

chose only one of the motions. In the multi-layer case, re-
gionsare assumed to contain two motions. Thiscan be seen
inthe horizontal motion at the boundary of thetreein Figure
6 (b). The regions boardering the tree have two clearly dis-
tinct motions which are smoothly connected to their neigh-
bors.

Figure 6 (c) and (d) show the weights for the two mo-
tion layers within each region. Gray areas correspond to
a weight of 0.5 where only one motion was present. Re-
gionsthat span amotion boundary have two distinct sets of
weights. One portion of the region has high weights (white
areas inthefigure) whilethe other haslow weightswithina
particular layer. This pattern is reversed in the other layer.
Figure 6 (d) shows those pointsthat were not accounted for
by either layer and weretreated asoutliers. These occur pre-
dominantly at the boundary between the tree and the back-
ground. A flow field (Figure 6 (€)) can be generated by tak-
ing the most likely motion at each pixel (given the weights
m; (X, op ))

Figure 7 shows multi-layer results for the SRI tree se-
guence. The weights indicate that the ground plane is
trested as a single layer while the branches of the tree and
the background are assigned to different layers when they
both appear in the same region.

In evaluating these motion estimates it is important to
keepin mindthat thisisnot a“dense” method inthe standard
sense but rather a cross between the parametric and dense
approaches. The flow for the SRI tree, for example, does
not exhibit smoothness at the pixel level, but rather a the
region level.

Asmentioned in Section 4, the Skin & Bonesmethod can
providean initial guessfor, and aconstraint on, amoretradi-
tiona dense method. For example, the approach in [9] was
applied to the multi-layer results to produce a dense flow
field, the horizonta component of which is shown in Fig-
ure 8. Thisresult is more accurate than that obtained by a
dense method aone.

7 Conclusions

Estimating optical flow accurately involves pooling infor-
mation over alarge area. Parametric motion models do this
well and can cope with multiple motions in certain cases
but are not applicable globally. When applied locally, how-
ever, insufficient constraints may result in an unstable solu-
tion. We have shown how regul arization can be extended to
congtrain these local affine flow parameters. Moreover, we
have provided a general framework for regularization with
transparency that extends regularization to cope with mul-
tiplelocal motion estimates. The methods have been tested
on synthetic and natural images and provide accurate flow
estimates common to parametric approaches, while main-
taining the flexibility of regularization schemes.
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Figure 7: (a) Image with segmented regions shown; (b)
Horizontal component of flow; (c) Weights for layer 1; (d)
Weights for layer 2; (€) Weightsfor outlier layer; (f) Flow
field.
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