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Abstract

This paper presents a novel approach to incremen-
tally estimating visual motion over a sequence of
images. We start by formulating constraints on
image motion to account for the possibility of mul-
tiple motions. This is achieved by exploiting the
notions of weak continuity and robust statistics in
the formulation of a minimization problem. The
resulting objective function is non{convex. Tra-
ditional stochastic relaxation techniques for mini-
mizing such functions prove inappropriate for the
task. We present a highly parallel incremental
stochastic minimization algorithm which has a
number of advantages over previous approaches.
The incremental nature of the scheme makes it
truly dynamic and permits the detection of occlu-
sion and disocclusion boundaries.

1 Introduction

This paper presents an approach for the incremental
estimation of visual motion over time. The task of es-
timating visual motion involves specifying constraints
which relate spatiotemporal intensity variations to im-
age motion and express our assumptions about the spa-
tiotemporal variation of the motion itself. We also re-
quire an e�ective procedure for computing the motion
consistent with the assumptions.
In formulating constraints on image motion, the tra-

ditional Gaussian noise model assumes that within a
small image region only a single motion is present. The
assumption however, ignores the case of motion discon-
tinuities [4] and results in either errors in the motion
estimate or over smoothing across discontinuities. This
paper formulates more realistic constraints which ac-
count for multiple motions occurring at surface bound-
aries by exploiting the notions of weak continuity [5, 7]
and robust statistics [8].
The constraints are formulated as energy terms in an

objective function which is minimized to estimate the
motion. With the removal of the simplifying assump-
tion of Gaussian noise the objective function becomes
highly non-convex.

Stochastic methods, like simulated annealing [7, 12],
are one approach for minimizing such complex func-
tions with many local minima. While they are highly
parallel, these approaches converge slowly making
them ill suited to motion estimation which must be
dynamic.
We propose a new incremental stochastic minimiza-

tion (ISM) algorithm which has the bene�ts of sim-
ulated annealing without many of the shortcomings
[2, 3]. The ISM approach, which is designed to mini-
mize an objective function changing slowly over time,
is parallel, incremental and robust. Additionally, the
approach provides estimates of occlusion and disocclu-
sion boundaries.
The next section formulates constraints which ac-

count for multiple motions. Section 3 presents the ISM
approach and discontinuity detection. The algorithm
is then extended to handle large motions in Section 4
and experimental results are presented in Section 5.

2 Multiple Motions, Robust Statistics
and Weak Continuity

We specify our assumptions about the scene and the
images in terms of constraints. The constraints are for-
malized as energy functions over local neighborhoods,
or cliques, in a grid. For an image of size n � n pixels
we de�ne a grid of sites:

S = fs1; s2; : : : ; sn2 j 8w 0 � i(sw); j(sw) � n � 1g;

where (i(s); j(s)) denotes the pixel coordinates of site
s. Horizontal and vertical image motion at a site s is
denoted by the vector u(s) = (u(s); v(s)).
For the remainder of the paper we focus on three

constraints [2, 3]: data conservation, spatial coherence,
and temporal coherence. Various approaches have been
presented for formulating the the spatial coherence as-
sumption to account for motion discontinuities; in par-
ticular, the notion of weak continuity constraints has
been popular [5, 7] . Less attention has been paid, how-
ever, to relaxing the data conservation assumption. In
fact, we observe that the two problems are both special
cases of the more general statistical problem of outlier
rejection encountered in robust statistics [8].



The general problem is one of �nding the best �t of
a model to data where we have some (possibly inaccu-
rate) prior model of the statistics of the errors in the
data. The least-squares �t of the sort typically em-
ployed with these constraints implies a Gaussian noise
model. In the case of multiple motions, our prior Gaus-
sian noise model is incorrect due to outliers. Our goal
then is to �nd the best �t to the data while ignoring
outlying data.

2.1 The Data Conservation Constraint

The data conservation constraint embodies the as-
sumption that the intensity of a surface element re-
mains constant over time, although its image location
may change. We adopt a correlation based approach
in which a correlation surface at a site s, ED(u; v; s), is
de�ned over the space of possible displacements (u; v)
with the height of the surface corresponding to an es-
timate of the data error of that displacement. The
minimum of this surface corresponds to the best mo-
tion estimate with respect to the data conservation as-
sumption.
Let s and t denote image locations, or sites, in S. We

de�ne a neighborhood of s, �D(s), for the data conser-
vation constraint as a square \window" of sites about
s. Data error is de�ned as the the di�erence between
predicted and measured intensity values. Given image
intensity functions In and In+1 between two successive
frames, the local contribution to the data conservation
constraint ED(u; v; s) is de�ned as:

X

t2�(s)

�D(In(i(t); j(t)) � In+1(i(t) + u; j(t) + v)): (1)

The standard quadratic error measure (�D(x) = x2),
which is a direct consequence of an additive Gaussian
noise model, is not robust in the presence of outliers.
As the magnitude of the data error increases, the con-
tribution to the error term increases without bound.
As a result, when multiple motions are present within
the neighborhood of a site, the correlation computed
for one of the motions is corrupted by the outliers cor-
responding to the other motion.
What is needed is a new error measure which takes

into account the outliers which violate the Gaussian
noise assumption. Heuristically, we would like such
an error measure to behave like the quadratic measure
when the data errors are small (and hence are more
likely to have come from the consistent surface). We
also want the inuence of large errors (which corre-
spond to the uncorrelated motion) to be reduced.
One way of characterizing the behavior of an error

measure, �(x), is by its inuence function,  (x) =
d
dx
�(x) [8]. For the standard quadratic error measure
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Figure 1: a) Standard quadratic error measure, b) Inu-
ence function for the quadratic error measure.
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Figure 2: a) A robust error measure, �D, b) Inuence
function  D for �D.

(�gure 1a) the inuence of errors increases linearly and
without bound (�gure 1b).

An error function with the desired saturating prop-
erties (�gure 2a) is:

�D(x) =
�1

1 + (x=�D)2
; (2)

where �D is a constant scale factor. Examining the
inuence function of �D (�gure 2b) we see it the in-
uence of outliers tends to zero. This function �D is
related to the redescending estimators used in robust
statistics [8].

Sub-pixel Accuracy The data error term ED(u; v)
as de�ned is discrete. Sub-pixel motion estimates can
be obtained by interpolating the error surface [1, 11].
When the Gaussian noise assumption is violated the
standard quadratic interpolation is incorrect. The new
error surface can be interpolated by using bi{cubic
splines[2].

2.2 The Spatial Coherence Constraint

The spatial coherence constraint is derived from the ob-
servation that surfaces have spatial extent and hence
neighboring points on a surface will have similar mo-
tion. Once again, the spatial coherence assumption
and its standard (quadratic) formulation [1] are invalid
in areas containing multiple motions.

The neighborhood, �S(s), for the spatial coherence
constraint is de�ned to be the nearest neighbors of a
site s at location (i; j) in the grid. To cope with mul-
tiple motions, the spatial coherence constraint can be



reformulated using weak continuity constraints [6]:

ES(u; s) =
X

t2�S(s)

�(l)ku(s) � u(t)k+ �(l); (3)

where u(s) = (u(s); v(s)) is the motion vector at site
s, l is a continuous line process variable, 0 � l � 1,
�(0) = 0 and is increasing, and �(0) = 0 and is de-
creasing. The value of l can be thought of as indicat-
ing the likelihood of a discontinuity and �(l) can be
thought of as a penalty for introducing a discontinu-
ity. This is a generalization of the Blake and Zisserman
formulation [5].
The line process variables can be removed from the

smoothness constraint by �rst minimizing over them
[5, 6] resulting in an equivalent minimization problem:

ES(u; s) =
X

t2�S(s)

�S(u(s) � u(t)); (4)

which is just a function �S of the di�erence in the
neighbors' ow. For the appropriate choice of � and �
(see [6]) we have

�S(x) =
�1

1 + jxj=�S
: (5)

This error measure, like �D, saturates as errors in-
crease thus performing outlier rejection.

2.3 The Temporal Coherence Constraint

Our current formulation of the temporal coherence
constraint embodies the assumption that the image
plane acceleration of a patch is constant over time.
This can be regarded as a �rst approximation to a more
accurate model, namely continuous 3-D motion.
Let u� and �u� denote the predicted velocity and

acceleration and u+ and �u+ the estimated values.
We predict the new velocity at time t of a given patch
as the estimated motion at the previous time instant
plus the predicted acceleration:

u�t = u+t�1 +�u�t : (6)

Since the estimated accelerations may be noisy, we pre-
dict the new acceleration to be a temporal average of
previous estimates. This can be obtained by,

�u�t = ��u+t�1 + (1� �)�u�t�1 (7)

�u+t�1 = �u+t�2 + (u+t�1 � u+t�2); (8)

where 0 � � � 1 controls the rate at which new infor-
mation replaces previous information.
Given a prediction of the new velocity of a patch

u�t = (u�t ; v
�

t ), the temporal constraint is formulated
as,

ET (u; t) = �T (u� u�t ); (9)

where �T is the same function used in the smoothness
error term, with a possibly di�erent �T .

3 Recovering the Flow Field

The constraints of the previous section, which embody
our assumptions about the world, can now be combined
to form an objective function H(u; v; t):

�DED(u; v) + �SES(u; v) + �TET (u; v; t); (10)

where the �? are constant weights which control the
relative importance of the constraints. Based on our
assumptions, the best interpretation of the motion,
(u; v), is the minimum of this function.
The formulation of the constraints to account for

multiple motions means that H has many local minima
making the task of �nding the (u; v) which minimize
the function di�cult. The de�nition of the constraints
in terms of local neighborhoods on a grid allows the
problem to be formalized as a Markov Random Field
(MRF) [7, 10].
Each site in the MRF can be thought of as repre-

senting a small environmental surface patch. Associ-
ated with each site s is a continuous random vector u
which represents the current image displacement of the
corresponding surface patch. The discrete state space
�s(t), at a site s, de�nes the possible values that the
random vector can take on at a given time t.
For each site, we construct a probability density

function � de�ned over the range of possible displace-
ments � using a Gibbs distribution [7] as follows:

�(u; v; t) = Z�1e�H(u;v;t)=T (t); (11)

where:
Z =

X

(u;v)2�(t)

e�H(u;v;t)=T (t)

and where t is the current time instance. The quantity
T (t) can be thought of as a temperature which serves
to sharpen (or atten) the distribution.
Standard simulated annealing techniques can be used

to �nd the minimum (u; v) by sampling from � accord-
ing to the distribution � with logarithmicly decreasing
temperatures[7].
While this simulated annealing approach is highly

parallel, it su�ers from two main problems. First, the
Monte Carlo techniques used to sample � assume a dis-
crete state space while we need to solve a continuous
minimization problem for arbitrary fractional displace-
ments. Second, simulated annealing is computationally
intensive, requiring hundreds of iterations to converge
to reasonable results.
The �rst problem can be solved by using a contin-

uous variant of simulated annealing [12]. The second
problem requires a more radical solution. By track-
ing small patches of a scene over an image sequence,
we will modify the basic annealing concept to work on
changing data over time.



3.1 Continuous Annealing and Sub-Pixel
Displacements

To solve continuous problems we allow the state space
�s(t) to vary over time depending on the local proper-
ties of the function being minimized. At a given time
t, we have an estimate of the motion ut, and consider
making small changes �ut to the estimate in an at-
tempt to minimizeH. Vanderbilt and Louie[12] de�ne
a method which is adaptive in that the state space (de-
�ned by the step size, �ut) adjusts to the local shape
of the function being minimized.
We characterize the local shape of the function by

its covariance matrix, S, computed at the current step
size. We adjust the state space to best explore the
function by choosing step sizes so that the covariance
matrix, s, of the state space, �, is proportional to S.
Intuitively, if the variance along a particular search
direction is large, then we want to increase the step size
in that direction to get a coarse view of the function.
When the true minimum has been chosen at a coarse
level, the variance will shrink. To explore the minimum
more �nely, the area covered by the state space should
shrink resulting in smaller step sizes.
At a given site and at a given time, the state space �

is always a 3�3 neighborhood of the current estimate,
but the area covered by the neighborhood varies based
on the current step size �ut = [�ut;�vt]. Given a
current estimate ut = [ut; vt], at time t the state space
� is de�ned as:

� = fu+�u j �u = Q � l; l = [l1; l2]
Tg (12)

where, l1; l2 2 f�(3=2)
1

2 ; 0; (3=2)
1

2 g, and where Q is
a 2 � 2 matrix which controls the step size. Ele-
ments of the state space are all examined with equal
probability, so the choice of trial steps is governed
by a uniform probability distribution g(l) which over

f�(3=2)
1

2 ; 0; (3=2)
1

2 g has zero mean and unit variance.
Since the mean of � is u, the covariance matrix s, of

the state space is simply:

sij =
X

�u2�

�ui�ujg(l): (13)

Vanderbilt and Louie [12] note that this can be ex-
pressed as:

s = Q �QT : (14)

Hence we can generate a state space with any desired
covariance matrix s by solving for Q using Cholesky
decomposition and then using Q to generate the state
space in equation 12.
The actual step taken at a time t is determined by

the probability distribution �(ut +�ut) de�ned over

the space of displacements. Using � we can compute
the mean � at time t (note we drop t when it is constant
across all terms):

�i =
X

u2�

�(u)ui: (15)

The covariance matrix S of � given the current step
size is:

Sij =
X

u2�

(ui � �i)(uj � �j)�(u): (16)

We make the covariance matrix of the state space at
time t+ 1 proportional to S(t):

s(t+1) = �S(t); (17)

where � > 1 is a scaling factor. Now solving s(t+1) =
Q � QT for Q gives the Q for determining the state
space at the next time instant.
To prevent the state space from growing or shrinking

too rapidly, we control the rate at which new informa-
tion from S overwrites the previous information:

s(t+1) = ��S(t) + (1� �)s(t);

where � can be viewed as a damping factor.

3.2 Incremental Minimization

The obvious disadvantage of simulated annealing is its
computational expense. However, since we expect the
changes in the images and in the scene to be gradual
and predictable, the iterative minimization process can
be extended over an image sequence. This will also
allow the motion detection algorithm to exploit the
wealth of information available over time to achieve
greater sensitivity and robustness while minimizing the
amount of computation between frames.
When a new image is acquired, the current motion

estimate at a given site is used as the starting point
for the continuous annealing algorithm and to compute
the predicted motion used in the temporal coherence
constraint. The current temperature at that site is
used as the initial temperature, and is then lowered
according to the annealing schedule.
After a �xed (usually small) number of iterations of

the annealing process, each site has a new motion esti-
mate and temperature. The various properties of the
associated surface are then propagated to the new site
where the patch has moved. These properties include
the patch's motion, temperature, and state space. Ad-
ditional properties like image intensity or higher level
information about surface membership may also be
propagated.



This propagation can be viewed as warping the sites
according to the motion estimate[2, 9]. Since the mo-
tion is not discrete, the �eld is resampled using a
weighted bi{linear interpolation, where the weighting
reects the con�dence in the motion estimates.

Let �(s) denote the neighbors of site s whose motion
estimates place them within one pixel of s (we will
extend this to large motions in the next section). Let
� be a property of s. Then the new estimate of �(s) is
given by:

�(s) =
1

w(s)

X

t2�(s)

�(u(t))(1� d(s; t))�(t) (18)

w(s) =
X

t2�(s)

�(u(t))(1 � d(s; t)); (19)

where w is a normalizing term, and d(s; t) is the dis-
tance between the projection of site t and the location
of site s.

Occlusion and Disocclusion The propagation al-
gorithm outlined above can be made sensitive to the
presence of occlusion and disocclusion around each site.
Observe that the normalizing factor w roughly mea-
sures the total ow into a site. In the absence of mo-
tion discontinuities this should be approximately unity.
However, if occlusions are present within the neighbor-
hood of a site, we may expect multiple sites to move
towards it, thereby increasing the total in-ow. Simi-
larly, if there is a disocclusion, we may expect the total
ow to be less than unity.

Sites can be classi�ed as locations of occlusion or
disocclusion using two thresholds, one above and one
below unity respectively. This simple scheme may
prove insu�cient for certain situations. For example, if
there is signi�cant divergence (or convergence) present
within the neighborhood of a site, net ow will di�er
from unity, even if there are no motion discontinuities.

A disoccluded site indicates a new patch of the envi-
ronment which was previously hidden from view. For
this new patch, there is no prior motion estimate, hence
the annealing process should be initially uncommitted
about the motion. This is achieved by initializing the
site to have a high temperature.

Unlike standard annealing, our algorithm uses dif-
ferent temperatures for the di�erent sites and dynam-
ically modi�es the temperature according to the infor-
mation available at a site. As a patch is tracked, its
temperature will decrease over time. Hence, the tem-
peratures of patches that have been tracked over many
frames and whose motion is precisely known tend to be
lower than those of more recently disoccluded patches.

Convergence Unlike simulated annealing, we have
no theoretical convergence results for this new incre-
mental minimization scheme. Empirical results indi-
cate that the approach does in fact converge to the cor-
rect sub-pixel motion estimates. Obviously, the degree
to which the constraints accurately reect the physics
of the world will a�ect both the convergence and the
accuracy of the algorithm. The current model and
the constraints used are �rst order approximations to
the correct physical models. We expect, however, the
framework presented here can be extended to incorpo-
rate more precise models of the scene and its geometry.

4 Spatio-Temporal Pyramid

The previous section described how small motions can
be estimated over time. The most obvious way to esti-
mate large motions is to expand the state space to be
larger than 3 � 3 and increase the maximum allowed
step size, but this results in a loss of e�ciency and com-
munication between distant sites. To achieve e�cient
and robust computation of large motions we adopt a
multi-resolution strategy [1].
We construct a pyramid of spatially �ltered and sub-

sampled images so that at the highest level in the pyra-
mid the largest motion is less than a pixel. Each level
of the pyramid can be thought of as a MRF which is
responsible for estimating motions of one pixel or less.
The continuous annealing process described in the pre-
vious section is applied at each level in parallel so that
each level estimates its motion simultaneously and in-
dependently.
To derive a global motion estimate, the motion esti-

mates computed at each level are combined using a
coarse-to-�ne, ow-through, strategy without re�ne-
ment in which large motions are determined solely at
the lower spatial frequencies. The motion estimate for
each site is taken from the highest level of the pyramid
at which the motion is greater than one half pixel.

5 Experimental Results

The incremental algorithm has been tested on real and
synthetic image sequences.

5.1 Synthetic Motion Experiments

To illustrate the convergence properties of the algo-
rithm a synthetic image sequence was generated. The
sequence consists of a 64 � 64 pixel uniform random
signal over the range [0; 255] which is undergoing a uni-
form translation of one half pixel to the right and down
per frame.
Experiments with a noiseless signal illustrate the

convergence of the algorithm over time. Figure 3 plots
variance of the motion estimate as a function of the
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Figure 3: Convergence Experiments. Variance as a
function of the number of frames in a 25 image sequence.

number of images examined in the sequence. The vari-
ance is plotted for trials using 2, 3, 4, 5 and 7 iterations
per frame. Similar experiments with images corrupted
by noise indicate that the algorithm can tolerate fairly
large amounts of noise.

5.2 Motion Discontinuities

The following experiment involves an image sequence
consisting of eight 64�64 square images; the last image
in the sequence is shown in �gure 4a. The ow �eld,
computed to sub-pixel accuracy, is shown in �gure 4b.
Notice that over-smoothing does not take place and
ow discontinuities are maintained.
Occlusion and disocclusion boundary estimates are

shown in �gure 4c. Bright areas correspond to occlu-
sion, dark areas to disocclusion. It is important to
remember, that while these results show only the �nal
frames in the image sequence, both ow and disconti-
nuity estimates are available at all times.

5.3 Nap-Of-the-Earth Experiment

The �nal experiment tests the full algorithm, includ-
ing the multi-resolution strategy. The test sequence
consists of 100 images of size 128 � 128 pixels. The
images were acquired from a camera mounted on a
helicopter in Nap-Of-the-Earth (NOE) ight. The se-
quence is challenging in many respects. The motion,
ranging from 0 to approximately 4 pixels, is complex
and changing; there is pitch, yaw and rotation in ad-
dition to translation. The actual motion is corrupted
by jitter introduced by the camera mounting and tur-
bulence.
Unfortunately, it is impossible to convey the dy-

namic behavior of the algorithm over the 100 image
sequence in a static format for presentation here. Fig-

ure 5 shows snapshots of the processing after 45, 60,
75, and 90 frames.

6 Conclusion

This paper has presented a novel approach to incre-
mentally computing motion estimates over a sequence
of images. The starting point is the formulation of con-
straints on image motion which take into multiple mo-
tions. The resulting minimization problem is di�cult
to solve and traditional stochastic techniques are inap-
propriate for motion processing. To ameliorate these
problems an incremental minimization algorithm was
developed.

The approach has a number of advantages over pre-
vious approaches. The incremental and adaptive na-
ture of the scheme makes it appropriate for dynamic
motion processing. In particular, the local nature of
the computations makes it possible to exploit the high
degree of parallelism inherent in the problem. Addi-
tionally, the warping process allows the detection of
occlusion and disocclusion boundaries.

Our current research is extending this scheme in a
number of directions. First we are exploring new for-
mulations of the temporal minimization problem and
its relationship to Kalman �ltering [9, 11]. We are
also considering other possible constraints, for exam-
ple rigid body motion. Additionally we are exploring
the use of robust statistics in coping with multiple mo-
tions.

Finally, it should be noted that the usefulness of the
model extends beyond motion estimation. The frame-
work for tracking surface patches over time may permit
the extension of traditional two frame algorithms to a
sequence of frames.
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