
Efficient Sparse-to-Dense Optical Flow Estimation
using a Learned Basis and Layers

Jonas Wulff Michael J. Black
Max Planck Institute for Intelligent Systems, Tübingen, Germany

{jonas.wulff,black}@tue.mpg.de

Abstract

We address the elusive goal of estimating optical flow
both accurately and efficiently by adopting a sparse-to-
dense approach. Given a set of sparse matches, we regress
to dense optical flow using a learned set of full-frame ba-
sis flow fields. We learn the principal components of nat-
ural flow fields using flow computed from four Hollywood
movies. Optical flow fields are then compactly approxi-
mated as a weighted sum of the basis flow fields. Our
new PCA-Flow algorithm robustly estimates these weights
from sparse feature matches. The method runs in under
200ms/frame on the MPI-Sintel dataset using a single CPU
and is more accurate and significantly faster than popular
methods such as LDOF and Classic+NL. For some appli-
cations, however, the results are too smooth. Consequently,
we develop a novel sparse layered flow method in which
each layer is represented by PCA-Flow. Unlike existing lay-
ered methods, estimation is fast because it uses only sparse
matches. We combine information from different layers into
a dense flow field using an image-aware MRF. The result-
ing PCA-Layers method runs in 3.2s/frame, is significantly
more accurate than PCA-Flow, and achieves state-of-the-
art performance in occluded regions on MPI-Sintel.

1. Introduction

Recent progress in optical flow estimation has led to
increased accuracy, driven in part by benchmarks such as
Middlebury [3], MPI-Sintel [10], and KITTI [16]. In par-
ticular, recent methods use either sparse or dense matching
to capture long-range motions while exploiting traditional
variational techniques to obtain high accuracy [9, 24, 26,
28, 29, 50, 53]. Still other methods use layered models or
segmented regions to reason about occlusion relationships
and better estimate motion at boundaries and in unmatched
regions [24, 28, 43, 46]. In many applications, however,
speed is at least as important. Most accurate methods re-
quire several seconds to many minutes per frame. Efficient

Figure 1: Result overview. (a) Image from MPI-Sintel; (b)
Ground truth flow; (c) PCA-Flow; (d) PCA-Layers.

methods are often less accurate or require a GPU (or both).
To address both accuracy and speed we propose a new

sparse-to-dense approach that is based on sparse feature
matching followed by interpolation. Sparse features are ef-
ficient to compute robustly and can capture long-range mo-
tions. By interpolating between these sparse matches, dense
flow can be computed efficiently. However, due to outliers
in the sparse matches and uneven covering of the images,
generic interpolators do not work well. Instead, we learn
an interpolant from training optical flow fields via principal
component analysis (PCA).

The idea of learning linear models of flow is not new [7,
15], but previous work applied such models only in image
patches, not to full images. To train our PCA model we use
optical flow computed from 8 hours of video frames from
four commercial movies using an existing flow algorithm
(GPUflow [52]). To deal with noise in the training flow
we use a robust PCA method that scales well to our huge
training set [21].

Our method computes dense flow by estimating the lo-
cation in the PCA subspace that best explains the sparse
matches (Fig. 1(c)). At first it is not immediately obvi-
ous that one can represent generic flow fields using a low-
dimensional PCA basis constructed from computed flow;
we demonstrate that this indeed works.

This approach is very efficient. Our novel flow algo-
rithm, called PCA-Flow, has a runtime of about 190 ms

1



per frame on a standard CPU; this is the fastest CPU-based
method on both KITTI [16] and MPI-Sintel [10]. While
there is a trade-off between accuracy and speed, and PCA-
Flow cannot compete with the most accurate methods, it is
significantly more accurate than the next fastest method on
KITTI and is more accurate than recent, widely used meth-
ods such as LDOF [9] and Classic+NL [44] on MPI-Sintel.
Interestingly, by learning from enough data, we obtain a
lower error than the algorithm used to train our PCA basis.

While fast and sufficiently accurate for many tasks,
PCA-Flow does not contain high-frequency spatial infor-
mation and consequently over-smooths the flow at motion
boundaries. To obtain sharp motion boundaries while re-
taining efficiency, we propose a novel layered flow model
where each layer is a PCA-Flow field estimated from a sub-
set of the sparse matches. Previous layered models are com-
putationally expensive [45, 46]. By working with sparse
matches and the learned PCA interpolator, the motion of
each layer can be efficiently computed using Expectation
Maximization (EM) [23].

To compute a final dense flow field, we must combine
the flow fields estimated for each layer. We do so using
a Markov Random Field (MRF) that incorporates image
evidence to select among PCA-Flow fields at each pixel.
This PCA-Layers method computes optical flow fields with
much sharper motion boundaries and reduces the overall er-
rors (Fig. 1(d)). At the same time, it is still reasonably fast,
taking on average 3.2s/frame on MPI-Sintel. On Sintel it is
more accurate than recent methods like MDP-Flow2 [53],
EPPM [4], MLDP-OF [33], Classic+NLP [44] and the tra-
ditional layered approach, FC-2Layers-FF [46], which is a
least two orders of magnitude slower. Most interestingly,
PCA-Layers is particularly good in occluded (unmatched)
regions, achieving lower errors there than DeepFlow [50]
on Sintel.

For research purposes, the code for both methods and the
learned optical flow basis are available at [1].

2. Previous work
Both optical flow and sparse feature tracking have long

histories. Here we focus on the elements and combinations
most related to our approach. Traditional variational meth-
ods for optical flow achieve good results for smooth and
small motions, but fail in the presence of long-range mo-
tions. Feature matching, on the other hand, requires suffi-
cient local image structure, and therefore only yields sparse
results. They must therefore be “densified”, either through
explicit interpolation/regression, or through integration in a
variational framework.

Sparse features in optical flow. The idea of using
tracked features to estimate motion has its roots in early
signal processing [5]. Early optical flow methods used cor-
relation matching to deal with large motions [2].

Gibson and Spann [18] describe a two-stage method that
first estimates sparse feature tracks, followed by an interpo-
lation stage. Their tracking stage uses an MRF to enforce
spatio-temporal smoothing, while the interpolation phase
essentially optimizes a traditional dense optical flow objec-
tive. This makes the method computationally expensive.

Nicolescu and Medioni [34] use feature matching to get
candidate motions and use tensor voting for interpolation.
They then segment the flow into regions using only the flow
information. Our PCA-Flow method has similar stages but
uses a learned PCA basis for densification.

Lang et al. [26] first track sparse features over an image
sequence and then use an image-guided filtering approach
to interpolate between the features. They rely on temporal
smoothness over multiple frames. Their results are visually
appealing, but they report poor performance on Middlebury
and do not evaluate on Sintel or KITTI.

Leordeanu et al. [28] use k-NN to find correspondences
of features on a grid, and iteratively refine estimates of lo-
cally affine motion and occlusions. They follow this with a
standard variational optical flow method [44]. Their algo-
rithm requires 39 minutes per pair of frames on Sintel.

Several methods combine feature matching and tradi-
tional variational methods in a single optimization. Liu et
al. [29] combine dense SIFT features with an optical flow-
based regularization. Brox and Malik [9] match regions seg-
mented in both frames using both region and HOG descrip-
tors. These descriptor matches then form an additional data
term in their dense flow optimization. Kennedy and Taylor
[24] use a traditional data term in triangulated patches to-
gether with dense HOG matches; their method, TF+OFM
performs well on MPI Sintel but is computationally expen-
sive (350s on KITTI). Weinzaepfel et al. [50] use a similar
approach, but propose a novel matching mechanism termed
DeepFlow. Xu et al. [53] use sparse SIFT features to gen-
erate additional translational flow hypotheses. They then
use a labeling approach to assign a pixel to one of those
hypotheses, or to more traditional variational flow.

PatchMatch-based approaches fall between dense optical
flow and sparse feature estimation [11, 30]. They compute a
dense but approximate correspondence field, and refine this
field using anisotropic diffusion [30] or segmentation into
small surface patches [11].

Computing flow quickly. Zach et al. [54] were the first
to demonstrate optical flow computation on a GPU. Us-
ing a traditional objective function they show how a to-
tal variation approach can be parallelized with a shader.
They achieve realtime performance for small resolutions
(320 × 240 pixels). Werlberger et al. [52] extend this ap-
proach to robust regularization. On a recent GPU, their al-
gorithm takes approximately 2 seconds per frame at a reso-
lution of 1024 × 436 pixels. Rannacher [35] presents an
extremely fast method, but requires stereo images and a



pre-computed disparity field (for example, using an FPGA).
Sundaram et al. [47] port the large-displacement optical
flow method [9] to a GPU, with a runtime of 1.8 seconds
for image pairs of 640× 480 pixels. The reported runtimes
depend on image resolution and the type of GPU.

Tao et al. [48] propose an algorithm that scales sub-
linearly with image input resolution by computing the flow
on a selected subset of the image pixels and interpolating
the remaining pixels. However, it still has a running time of
around 2 seconds on Middlebury image pairs. Bao et al. [4]
use a GPU to make their recent EPPM method run at about
0.25s/frame on Sintel. Our basic method is slightly less ac-
curate, but around 60ms faster and does not require a GPU.
Our layered method is more accurate but takes 3.2s/frame.

Non-local smoothing and layers. Optical flow regular-
ization typically uses small neighborhoods but recent work
suggests the value of non-local regularization. This can be
done via median filtering [44, 51] or a densely connected
MRF [25]. Here we achieve non-local smoothing using the
learned PCA basis.

Layered models [13, 23, 42, 45, 46, 49] provide another
approach. The advantage of layered models is that the seg-
mentation is related to the scene geometry. The disadvan-
tage of current methods, however, is that the runtime varies
between tens of minutes [46] to tens of hours [45].

Learning spatial models of flow. Simple linear mod-
els (translational or affine) of optical flow in image patches
have a long history [31]. As patch size grows, so does the
complexity of the motion, and such models are no longer
appropriate [23]. Consequently such linear models are typ-
ically used only locally.

Fleet et al. [15] extend the linear modeling approach by
using PCA to learn basis flow fields from examples. They
estimate the coefficients of these models in patches using
a computationally expensive warping-based optimization
scheme. Our approach of using sparse features is more
efficient and can cope with long range correspondences.
Chessa et al. [12] use basis flow fields in local patches,
which accounts for affine motion plus deformation due to
the geometric structure of the scene. Several authors have
explored PCA models of walking humans [14, 20].

Roberts et al. [37] learn an optical flow subspace for ego-
motion using probabilistic PCA. Using this subspace, they
estimate a dense flow field from sparse motion estimates.
They restrict themselves to egomotion, train and test on sim-
ilar sequences captured from the same platform, and use
only a two-dimensional subspace with a low resolution of
45×13 pixels. Recent work extends this, but focuses on se-
mantic classification into obstacle classes from this motion
subspace, rather than accurate motion estimation [36].

Beyond these linear models, there is little work on learn-
ing spatial models for the full flow field. Roth and Black
[39] learn a high-order MRF model for the spatial regular-

ization of optical flow, but the neighborhood is still small
(5×5 pixels). Rosenbaum et al. [38] learn a spatial model of
flow and use this for flow denoising rather than estimation.
Gibson and Marques [19] use an overcomplete dictionary
of optical flow in patches to regularize the flow.

3. A learned basis for optical flow
Our basic assumption is that optical flow fields can be ap-

proximated as a weighted sum over a relatively small num-
ber of basis flow fields bn, n = 1 . . . N , with corresponding
weights wn

u ≈
N∑

n=1

wnbn. (1)

Here, u and bn are vectorized optical flow fields, contain-
ing the horizontal and vertical motions stacked as column
vectors: u =

(
u>x ,u

>
y

)>
. We assume separate basis vec-

tors for the horizontal and vertical flow components, so that
the horizontal motion is spanned by {bn}n=1,...,N2

, and the
vertical by {bn}n=N

2 +1,...,N .

3.1. Learning the flow basis

To learn the basis flow fields, we use data from four Hol-
lywood movies spanning several genres (Star Wars, Babel,
The Constant Gardener, Land of Plenty). For each movie,
we compute the optical flow using GPUFlow [52]. This
method is not the most accurate (as we will see, it is less ac-
curate than our PCA-Flow algorithm trained using it). How-
ever, it is the fastest method with an available reference im-
plementation, and has a runtime of approximately 2 seconds
per frame. Computing the optical flow takes approximately
4 days per movie. The computed flow is then resized to
512× 256 pixels and the magnitudes of the flow values are
scaled accordingly; this is the same resolution used in [50].

From the computed optical flow fields, we randomly se-
lect 180,000 frames, limited by the maximum amount of
memory at our disposal. We first subtract the mean flow,
which contains some consistent boundary artifacts caused
by the GPUFlow method. Note that here, the dimension-
ality of our components is higher than the number of dat-
apoints. However, compared to the theoretical dimension-
ality, we extract only a very small fraction of the principal
components, here N = 500, 250 for the horizontal motion
and 250 for the vertical. Since the computed optical flow
contains outliers due to editing cuts and frames for which
the optical flow computation fails, we use a robust PCA
method to compute the principal components [21]. The
total time required to extract 500 components is approxi-
mately 22 hours. However, this has to be done only once
and offline; we make the learned basis available [1]. Fig-
ure 2 shows the first 12 flow components in the horizontal
and vertical directions. Note that one could also train a com-



(a) Principal components for horizontal motion

(b) Principal components for vertical motion

Figure 2: First 12 components for horizontal and vertical
motion. Contrast enhanced for visualization.

(a) Ground truth optical flow (b) Projected optical flow

Figure 3: Example of projecting Sintel ground truth flow
onto the first 500 principal components.

bined basis for vertical and horizontal motion. In our exper-
iments, however, separate bases consistently outperformed
a combined basis. Note also that the first six components
do not directly correspond to affine motion, in contrast with
what was found for small flow patches [15].

Figure 2 reveals that the resulting principal components
resemble the basis functions of a Discrete Cosine Trans-
form (DCT). In order to achieve comparable performance
to our learned basis with the same number of components,
we generated a DCT basis with ten times more components
and used basis pursuit to select the most useful ones. De-
spite this, the DCT basis gave slightly worse endpoint errors
in our experiments and so we do not consider it further.

Figure 3 shows the projection of a ground truth flow field
from Sintel onto the learned basis. Note that no Sintel train-
ing data was used in learning the basis, so this tests gen-
eralization. Also note that the Sintel sequences are quite
complex and that the projected flow is much smoother; this
is to be expected. For the impact of the number of principal
components on the reconstruction accuracy, as well as for
a quantitative comparison with a DCT basis, please see the
Supplemental Material [1].

4. Estimating flow

Given an image sequence and the learned flow basis, we
estimate the coefficients that define the optical flow. To that
end, we first compute sparse feature matches to establish
correspondences of key points between both frames. We
then estimate the coefficients that produce a dense flow field
that is consistent with both the matched scene motion and
with the general structure of optical flow fields.

4.1. Sparse feature matching

Our algorithm starts by estimating K sparse feature
matches across neighboring frames; i.e. pairs of points
{(pk,qk)} , k = 1 . . .K. pk is the 2D location of a (usu-
ally visually distinct) feature point in frame 1, and qk is
the corresponding feature point location in frame 2. Each
of these correspondences induces a displacement vector
vk = qk − pk = (vk,x, vk,y)

>. Using sparse features has
two main advantages. First, it provides a coarse estimate
of image and object motions while being relatively cheap
computationally. Second, it establishes long range corre-
spondences, which are difficult for traditional, dense flow
methods to estimate [9, 50, 53].

First, we normalize the image contrast using
CLAHE [55] to increase detail that can be captured
by the feature detectors. Then, we use the features
from [17], which are designed for visual odometry applica-
tions. We found that to match features across video frames,
these features work much better than image matching
features such as SURF or SIFT. The latter are invariant
against a wide range of geometric deformations which
rarely occur in adjacent frames of a video, and hence return
a large number of mismatches. Furthermore, the features
we use are computationally much cheaper: currently,
matching across two frames in MPI-Sintel takes on average
80 ms. Using sparse features creates the problem of low
coverage in unstructured image regions. However, this
problem also exists in classical optical flow: If image
structure is missing, the data term becomes ambiguous, and
flow computation relies on the regularization, just as our
approach relies on the learned basis for interpolation.

Feature matches will always include outliers. We ac-
count for these in the matching process by formulating our
optimization in a robust manner below. Figure 4(a) shows
a frame and Fig. 4(c) the corresponding features. Features
shown in blue have an error of less than 3 pixels; features
with greater errors are red.

4.2. Regression: From sparse to dense

Extending the sparse feature matches to a dense opti-
cal flow field is a regression problem. Using our learned
flow basis vectors bn, this can be formulated as finding the
weighted linear combination of flow basis vectors that best



(a) Example image (b) Ground truth flow

(c) Matched features (d) Linear interpolation

(e) Guided interpolation (f) PCA-Flow (ours)

Figure 4: Sparse features and possible interpolations.

explains the detected feature matches. The weights then de-
fine the dense flow field.

First, consider a basic version of the method. This can be
expressed as a simple least squares problem in the unknown
w = (w1, . . . , wN )

>:

ŵ = argmin
w

‖Aw − y‖22 (2)

with

A =



b1,x (p1) bN,x (p1)
...

...
b1,x (pK) · · · bN,x (pK)
b1,y (p1) bN,y (p1)

...
...

b1,y (pK) bN,y (pK)


. (3)

We use nearest neighbor interpolation to compute the el-
ements at fractional coordinates; better interpolation did
not increase the accuracy in our experiments. y =

(v1,x, . . . , vK,x, v1,y, . . . , vK,y)
> contains the motion of

the matched points.
Solving Eq. (2) yields ŵ, and thus the estimated dense

optical flow field

uest =

N∑
n=1

ŵnbn. (4)

Unfortunately, the sparse feature matches usually contain
outliers. Since the search for feature matches is done across
the whole image (i.e., the spatial extent of feature motion
is not limited), the errors caused by bad matches are often
large, and thus can have a large influence on the solution of
Eq. (2). Therefore, we solve a robust version of Eq. (2)

ŵ = argmin
w

ρ
(
‖Aw − y‖22

)
(5)

where ρ(·) is the robust Cauchy function

ρ(x2) =
σ2

2
log

[
1 +

(x
σ

)2]
. (6)

The parameter σ controls the sensitivity to outliers. Note
that (6) is just one of many possible robust estimators [6].
We found the Cauchy estimator to work well.

If the input images have a different resolution than the
flow basis, we first detect the features at full resolution, and
scale their locations to the resolution of our flow basis. The
weights are then estimated at this resolution, and the result-
ing optical flow field is upsampled and scaled again to the
resolution of the input images.

Note that one could also estimate the coefficients us-
ing classical, dense estimation of parametric optical flow
[31]. This is the approach used in [15]. We implemented
this method and found, surprisingly, that its accuracy was
comparable to our PCA-flow method with sparse feature
matches. Because it is much slower, we do not consider
it further here; see the Supplemental Material for results
and comparisons [1].

4.3. Imposing a prior

Equation (5) does not take the distribution of w into ac-
count. The simplest prior on w is given by the eigenval-
ues computed during PCA on the training flow fields. New
sequences may have quite different statistics, however. In
KITTI, for example, the motion is caused purely by the ego-
motion of a car, and thus is less general than our training
data. While KITTI and MPI-Sintel contain training data,
the amount of data is insufficient to learn the full flow basis.
We can, however, keep the basis fixed and adapt the prior.
Since the prior lies in the 500-dimensional subspace de-
fined by our flow basis, this requires much less training data.
Given ground truth flow fields (e.g. from KITTI or Sintel),
we project these onto our generic flow basis and compute
Γ, the inverse covariance matrix of the coefficients.

We express our prior using a Tikhonov regularizer on w:

ŵ = argmin
w

ρ
(
‖Aw − y‖22

)
+ λ‖Γw‖2. (7)

Intuitively, if a certain coefficient does not vary much in
the projection of the training set onto the flow bases, we re-
strict this coefficient to small values during inference. When
training data is available, this regularizer improves perfor-
mance significantly.

We solve Eq. (7) using Iterative Reweighted Least
Squares and refer to the method as PCA-Flow. Figure 4
shows the results of our method (4(f)) in comparison to
two simpler methods that interpolate from sparse features
to a dense flow field, nearest-neighbor interpolation (4(d))
and image-guided interpolation [22] (4(e)). These generic
interpolation methods cannot detect and eliminate outliers



caused by wrong feature matches. Thus, their average end-
point errors on the Sintel test set (linear: 9.07 px; guided:
8.44 px) are higher than our basic method, PCA-Flow (7.74
px).

5. Dense motion from sparse layers
While the smooth flow fields generated by PCA-Flow

may be appropriate for some applications, many applica-
tions require accurate motion boundaries. To that end, we
develop a method that generates proposals using a layered
method and combines them using image evidence.

5.1. Sparse layers

Here, we assume that a full optical flow field is com-
posed of M simpler motions, where one of the motions is
assigned to each pixel. The flow in each layer is represented
by our learned basis as above with one modification: Since
the motion of each layer should be simpler than for the full
flow field, we change the prior. To obtain a layered repre-
sentation for training, we first cluster the motion fields in
our training set into layers with similar motions. Then, we
compute w for each of the layers, compute the covariance
matrix Σ from the weights of all segments across the whole
training set, and use Γ = Σ−1 in Eq. 7.

To compute the simpler motions at test time, we first
cluster sparse feature matches using an EM algorithm with
hard assignments1. To initialize, we cluster the features into
M clusters using K-Means. The assignments of features to
layers at iteration i are represented as assignment variables
a
(i)
k , k = 1 . . .K, where a(i)k = m means that feature point

pk is assigned to layerm. Given a set of layers, the distance
of a feature point pk to a layer m in iteration i is given as

d(i) (pk,m) =‖u(i−1)
m (pk)− vk‖2+

α‖pk −median
(
pk|a(i−1)k = m

)
‖2 (8)

um is the optical flow field of layer m, vk are the feature
displacements as defined above. The right part is the dis-
tance of point pk to the median of all features assigned to
m in the previous iteration; initially, the medians are initial-
ized to the center of the image. α is a weighting factor.

The features are then hard-assigned to the layers

a
(i)
k = argmin

m̂
d(i) (pk, m̂) (9)

and the layers are updated to

w(i)
m = estimate

({
pk|a(i)k = m

})
(10)

where estimate (·) solves Eq. (7) using a given subset of
features. Since the motion of each layer is simpler than the

1Soft assignments did not significantly change the results, and in-
creased the runtime.

motion of the whole image, the layers do not have to cap-
ture fine spatial detail. Consequently we reduce the number
of linear coefficients from 500 to 100; this is sufficient for
good results. We iteratively solve Eqs. (8)–(10) for 20 iter-
ations, or until the assignments ak do not change anymore.

5.2. Combining the layers

The estimated layers give motion for their assigned fea-
tures but we have created a new interpolation problem. We
do not know which of the non-feature pixels correspond to
which layer. Consequently we develop a method to com-
bine the layers into a dense flow field. Several methods have
been propose in the literature for related problems [27, 32].
Here we use a simple MRF model.

The layer estimation step generatesM approximate opti-
cal flow fields, represented by their coefficients wm, and the
final assignment variables ak, denoting which sparse feature
belongs to which motion model. We treat each layer’s mo-
tion as a proposal. In addition to these M flow fields, we
compute two additional flow proposals: a simple homogra-
phy model, robustly fit to all matched features, and the full
approximate flow field, i.e. solving Eq. (7) with all features
and 500 principal components (“global model”). Therefore,
M̃ =M + 2.

At each image location x, the task is now to assign a
label l (x) ∈ 1 . . . M̃ , with the best flow model at this pixel.
Then, the final optical flow field ufinal (x) is given as

ufinal (x) =

M̃∑
m=1

δ [m = l (x)]um (x) . (11)

Finding l(x) can be formulated as an energy minimization
problem, which can be solved via multi-class graph cuts [8]:

l̂ = argmin
l

∑
x

Eu (x, l (x))+

γl
∑

y∈n(x)

Ep (x,y, l (x) , l (y)) (12)

where Eu and Ep are unary and pairwise energies, respec-
tively, and n(x) denotes the 4-neighborhood of x. Omitting
the arguments x, l (x), the unaries Eu are defined as

Eu = Ewarp + γcEcol + γlEloc. (13)

Warping cost. The warping cost Ewarp is a rectified
brightness and gradient constancy term:

Ewarp(x, l(x)) = 1− exp

(
−
(
c(x, l(x))

σw

)2
)

(14)

c(x, l(x)) =

∥∥∥∥∥∥
 I1(x)− I2

(
x + ul(x)

)
∇xI1(x)−∇xI2

(
x + ul(x)

)
∇yI1(x)−∇yI2

(
x + ul(x)

)
∥∥∥∥∥∥

2

.

(15)



Color cost. We build an appearance model for each layer
using the pixel colors at the feature points assigned to this
layer. This helps especially in occluded regions, where the
warping error is high, but the color provides a good cue
about which layer to use.

Ecol(x, l(x)) = − log pl(x) (I1 (x)) (16)

pl(x) (I1 (x)) = N (µk,Σk) (17)

where µm,Σm are computed from the pixels
{I1 (pk) |ak = m} Here, we use simple multivariate
Gaussian distributions as color models; we found these to
perform as well as or better than multi-component Gaussian
Mixture Models. For the homography model, we fit the
distribution to all inlier features; for the global model, we
fit it to all features.

Feature location cost. Lastly, we note that the features
assigned to a given layer are often spatially clustered, and
the quality of the model decreases for regions far away from
the features. Therefore, we encourage spatial compactness
of the layers using Eloc(x, l(x)) =

1−
∑

k|ak=l(x)

1√
2πσ2

l

exp

(
− (x− pk)

2

σ2
l

)
(18)

For the homography model, we again use only the inlier
features, for the global model we use all.

Image-modulated smoothness. To enforce spatial
smoothness, we use the image-modulated pairwise Potts
energy from GrabCut [40]:

Ep (x,y, l (x) , l (y)) =

− δ [l (x) = l (y)] exp

(
− (I1 (x)− I2 (y))2

2E [‖∇I1‖2]

)
(19)

with E [·] denoting the expected value. This energy encour-
ages spatial smoothness of the layer labels between pixels,
unless there is a strong gradient in the image. It thus allows
the layer labels to change at image boundaries.

6. Evaluation
This section describes the performance of our algorithm in
terms of accuracy on standard optical flow datasets. Ad-
ditionally, we provide runtime information, and relate this
to other current optical flow algorithms. All parameters are
determined using cross validation on the available training
sets. For PCA-Layers, we use M = 6 layers. For the other
parameter values, experiments on the impact of the num-
ber of principal components as well as the feature matches,
and more visual results, please see the Supplemental Ma-
terial [1].

Figure 5: Results on MPI-Sintel: (a) Image; (b) Ground
truth flow; (c) PCA-Flow; (d) PCA-Layers.

Figure 6: Results on KITTI: (a) Image; (b) Ground truth
flow; (c) PCA-Flow; (d) PCA-Layers.

Figure 7: Avg. EPE vs. runtime on Sintel and KITTI

6.1. Evaluation on optical flow datasets

MPI-Sintel. Figure 5 shows an example from the clean
pass of the training set of the MPI-Sintel optical flow bench-
mark for both PCA-Flow and PCA-Layers. PCA-Flow pro-



duces an oversmoothed optical flow field, but can correctly
estimate most of the long-range motion. By computing and
combining multiple layers, PCA-Layers is able to compute
good motion and precisely locate motion boundaries.

On the Sintel test set, PCA-Flow currently ranks at place
22 of 36 on both the final pass (EPE = 8.65 px) and the
clean pass (EPE = 6.83 px). While not the most accurate
method, it only requires 190 ms per frame, while consis-
tently outperforming the widely used methods LDOF and
Classic+NL. Notably, we outperform GPUFlow [54], which
we used to generate the training data. GPUFlow takes 2 s
per frame, and achieves an average EPE of 12.64 px (clean)
and 11.93 px (final).

Since the optical flow field generated by our method has
a low spatial resolution, we compare it to Classic+NLP at
an image resolution of 64x32 px. At this resolution, Clas-
sic+NLP achieves an EPE of 10.01 px, significantly worse
than PCA-Flow, and requires 1.9 s per pair of frames.

PCA-Layers performs much better, with place 10 of 36
on the final pass, and 9 of 36 on the clean pass. It performs
particularly well in the unmatched regions, where it ranks 5
of 36 on both passes. This demonstrates that our learned ba-
sis captures the structure of the optical flow well enough to
make “educated guesses” about regions that are only visible
in one frame of a pair.

KITTI. In addition to Sintel, we tested our method on
the KITTI benchmark [16]. Since KITTI contains scenes
recorded from a moving vehicle, we expect the subspace of
possible motions to be relatively low-dimensional. Figure 6
shows an example. Note how we are able to accurately esti-
mate the motion of the hedge on the right side, and how the
boundaries are much sharper using PCA-Layers.

On the KITTI test set we obtain an average EPE
(Avg-All) on all pixels of 6.2 px for PCA-Flow and 5.2 px
for PCA-Layers. While the flow in KITTI is purely caused
by the low-dimensional motion of the car, a segmentation
into layers helps to better capture motion boundaries. All
other published methods faster than 5 s per frame perform
worse in average EPE, the next best being TGV2CENSUS
with 6.6 px at a runtime of 4 s. No CPU-based method with
similar accuracy to ours is faster than 10 s per frame.

In the Out-Noc metric (percentage of pixels with an
error> 3 px), PCA-Flow ranks 40 of 63 (15.67%) and PCA-
Layers ranks 34 of 63 (12.02%). These results reflect the
approximate nature of our flow fields.

6.2. Timings

On a current CPU (Intel Xeon i7), the PCA-Flow algo-
rithm takes on average 190 ms per frame on the MPI-Sintel
dataset. 80 milliseconds are used for the feature matching.
One advantage of our algorithm is that, when using longer
sequences such as those from MPI-Sintel, the features for
each frame have to be computed only once, which elimi-

nates roughly 20 milliseconds runtime per frame. Fitting
the flow basis itself requires approximately 90 milliseconds.
PCA-Layers is significantly slower, requiring on average
3.2 seconds per pair of frames. Our implementation uses
Python and its OpenCV bindings. The core IRLS algorithm
is implemented in C++ using Armadillo [41]. Figure 7 plots
the best and fastest published methods on Sintel and KITTI
in the EPE-runtime plane2. Generally, all methods faster
than PCA-Flow require a GPU, and achieve a much higher
endpoint error. On the other hand, all methods that are more
accurate than PCA-Layers are significantly slower.

7. Conclusion and future work
To summarize, this paper makes several contributions.

First, we demonstrate the feasibility of computing a basis
for global optical flow fields from a large amount of train-
ing data. Second, we show how this basis can be used with
different datasets and scenarios, showing good generaliza-
tion capabilities. Third, we propose an algorithm to effi-
ciently estimate approximate optical flow, using sparse fea-
ture matches and the learned basis. Fourth, we develop a
sparse layered optical flow method that is more efficient
than existing dense layered methods. To do so, we com-
bine several PCA-Flow fields using image evidence to im-
prove accuracy and produce sharp motion boundaries. Fifth,
we evaluate both algorithms on two current, challenging
datasets for optical flow estimation. Our results suggest
that sparse-to-dense methods can compete on accuracy with
current non-sparse methods while achieving state-of-the-art
efficiency using a standard CPU.

The existing basis vectors appear sufficient for the task
and future work should focus on “assembling” coherent
flow fields from the layer flows. Our current MRF is quite
simple and much more sophisticated models exist for scene
segmentation. In particular, including higher level scene
classification and segmentation into the flow generation
process holds promise. Still, even in its current form, the
combination of speed and accuracy opens up opportunities
to apply optical flow to new problems involving large video
databases. In addition to speed, here the compactness of the
optical flow descriptor that PCA-Flow provides is also ben-
eficial, and we are currently exploring the use of PCA-Flow
for large-scale video classification and indexing.

Lastly, our methods assume a linear subspace. While
this does not necessarily reflect the reality of flow, prelim-
inary experiments with other subspace extraction methods
did not improve accuracy. Investigating the true structure of
the subspace of optical flow remains future work.

Acknowledgements. We thank A. Geiger for providing
the code for the features from [17].

2For Sintel, we used the timings as reported by the authors.



References
[1] http://pcaflow.is.tue.mpg.de. 2, 3, 4, 5,

7

[2] P. Anandan. A computational framework and an al-
gorithm for the measurement of visual motion. Inter-
national Journal of Computer Vision, 2(3):283–310,
1989. 2

[3] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black,
and R. Szeliski. A database and evaluation methodol-
ogy for optical flow. International Journal of Com-
puter Vision, 92(1):1–31, 2011. 1

[4] L. Bao, Q. Yang, and H. Jin. Fast edge-preserving
PatchMatch for large displacement optical flow. Im-
age Processing, IEEE Transactions on, 23(12):4996–
5006, Dec 2014. 2, 3

[5] D. I. Barnea and H. Silverman. A class of algorithms
for fast digital image registration. Computers, IEEE
Transactions on, C-21(2):179–186, Feb 1972. 2

[6] M. J. Black and P. Anandan. The robust estimation of
multiple motions: Parametric and piecewise-smooth
flow fields. Computer Vision and Image Understand-
ing, 63(1):75 – 104, 1996. 5

[7] M. J. Black and Y. Yacoob. Recognizing facial ex-
pressions in image sequences using local parameter-
ized models of image motion. International Journal
of Computer Vision, 25(1):23–48, 1997. 1

[8] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate
energy minimization via graph cuts. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
23(11):1222–1239, Nov 2001. 6

[9] T. Brox and J. Malik. Large displacement optical
flow: Descriptor matching in variational motion es-
timation. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 33(3):500–513, March 2011.
1, 2, 3, 4

[10] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black.
A naturalistic open source movie for optical flow eval-
uation. In A. Fitzgibbon, S. Lazebnik, P. Perona,
Y. Sato, and C. Schmid, editors, Computer Vision -
ECCV 2012, volume 7577 of Lecture Notes in Com-
puter Science, pages 611–625. Springer Berlin Hei-
delberg, 2012. 1, 2

[11] Z. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu.
Large displacement optical flow from nearest neigh-
bor fields. In Computer Vision and Pattern Recogni-
tion (CVPR), 2013 IEEE Conference on, pages 2443–
2450, June 2013. 2

[12] M. Chessa, F. Solari, S. P. Sabatini, and G. M. Bisio.
Motion interpretation using adjustable linear models.
In BMVC, pages 1–10, 2008. 3

[13] T. Darrell and A. Pentland. Robust estimation of a
multi-layered motion representation. In Visual Mo-
tion, 1991., Proceedings of the IEEE Workshop on,
pages 173–178, Oct 1991. 3

[14] R. Fablet and M. Black. Automatic detection and
tracking of human motion with a view-based repre-
sentation. In A. Heyden, G. Sparr, M. Nielsen, and
P. Johansen, editors, Computer Vision - ECCV 2002,
volume 2350 of Lecture Notes in Computer Science,
pages 476–491. Springer Berlin Heidelberg, 2002. 3

[15] D. J. Fleet, M. J. Black, Y. Yacoob, and A. D. Jep-
son. Design and use of linear models for image motion
analysis. International Journal of Computer Vision,
36(3):171–193, 2000. 1, 3, 4, 5

[16] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vi-
sion meets robotics: The KITTI dataset. Interna-
tional Journal of Robotics Research, 32(11):1231–
1237, Sept. 2013. 1, 2, 8

[17] A. Geiger, J. Ziegler, and C. Stiller. StereoScan:
Dense 3D reconstruction in real-time. In Intelligent
Vehicles Symposium (IV), 2011 IEEE, pages 963–968,
June 2011. 4, 8

[18] D. Gibson and M. Spann. Robust optical flow esti-
mation based on a sparse motion trajectory set. Im-
age Processing, IEEE Transactions on, 12(4):431–
445, April 2003. 2

[19] J. Gibson and O. Marques. Sparse regularization of
TV-L1 optical flow. In A. Elmoataz, O. Lezoray,
F. Nouboud, and D. Mammass, editors, Image and
Signal Processing, volume 8509 of Lecture Notes in
Computer Science, pages 460–467. Springer Interna-
tional Publishing, 2014. 3

[20] T. Guthier, J. Eggert, and V. Willert. Unsupervised
learning of motion patterns. In European Symposium
on Artificial Neural Networks, Computational Intelli-
gence and Machine Learning, volume 20, pages 323–
328, Bruges, April 2012. 3

[21] S. Hauberg, A. Feragen, and M. Black. Grassmann
averages for scalable robust PCA. In Computer Vision
and Pattern Recognition (CVPR), 2014 IEEE Confer-
ence on, pages 3810–3817, June 2014. 1, 3

[22] K. He, J. Sun, and X. Tang. Guided image filter-
ing. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 35(6):1397–1409, June 2013. 5

[23] A. Jepson and M. Black. Mixture models for opti-
cal flow computation. In Computer Vision and Pat-
tern Recognition (CVPR), 1993 IEEE Conference on,
pages 760–761, Jun 1993. 2, 3

[24] R. Kennedy and C. Taylor. Optical flow with geomet-
ric occlusion estimation and fusion of multiple frames.
In X.-C. Tai, E. Bae, T. Chan, and M. Lysaker, editors,



Energy Minimization Methods in Computer Vision and
Pattern Recognition, volume 8932 of Lecture Notes in
Computer Science, pages 364–377. Springer Interna-
tional Publishing, 2015. 1, 2

[25] P. Krähenbühl and V. Koltun. Efficient nonlocal regu-
larization for optical flow. In A. Fitzgibbon, S. Lazeb-
nik, P. Perona, Y. Sato, and C. Schmid, editors, Com-
puter Vision - ECCV 2012, volume 7572 of Lecture
Notes in Computer Science, pages 356–369. Springer
Berlin Heidelberg, 2012. 3

[26] M. Lang, O. Wang, T. Aydin, A. Smolic, and
M. Gross. Practical temporal consistency for image-
based graphics applications. ACM Trans. Graph.,
31(4):34:1–34:8, July 2012. 1, 2

[27] V. Lempitsky, S. Roth, and C. Rother. Fusionflow:
Discrete-continuous optimization for optical flow es-
timation. In Computer Vision and Pattern Recognition
(CVPR), 2008 IEEE Conference on, pages 1–8, June
2008. 6

[28] M. Leordeanu, A. Zanfir, and C. Sminchisescu. Lo-
cally affine sparse-to-dense matching for motion and
occlusion estimation. In Computer Vision (ICCV),
2013 IEEE International Conference on, pages 1721–
1728, Dec 2013. 1, 2

[29] C. Liu, J. Yuen, and A. Torralba. Sift flow: Dense cor-
respondence across scenes and its applications. Pat-
tern Analysis and Machine Intelligence, IEEE Trans-
actions on, 33(5):978–994, May 2011. 1, 2

[30] J. Lu, H. Yang, D. Min, and M. Do. Patch Match
Filter: Efficient edge-aware filtering meets random-
ized search for fast correspondence field estimation.
In Computer Vision and Pattern Recognition (CVPR),
2013 IEEE Conference on, pages 1854–1861, June
2013. 2

[31] B. D. Lucas and T. Kanade. An iterative image regis-
tration technique with an application to stereo vision.
In IJCAI, volume 81, pages 674–679, 1981. 3, 5

[32] O. Mac Aodha, A. Humayun, M. Pollefeys, and
G. Brostow. Learning a confidence measure for op-
tical flow. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 35(5):1107–1120, May 2013.
6

[33] M. Mohamed, H. Rashwan, B. Mertsching, M. Garcia,
and D. Puig. Illumination-robust optical flow using
a local directional pattern. Circuits and Systems for
Video Technology, IEEE Transactions on, 24(9):1499–
1508, Sept 2014. 2

[34] M. Nicolescu and G. Medioni. Layered 4D repre-
sentation and voting for grouping from motion. Pat-
tern Analysis and Machine Intelligence, IEEE Trans-
actions on, 25(4):492–501, April 2003. 2

[35] J. Rannacher. Realtime 3D motion estimation on
graphics hardware. Undergraduate Thesis, Heidelberg
University, 2009. 2

[36] R. Roberts and F. Dellaert. Direct superpixel label-
ing for mobile robot navigation using learned general
optical flow templates. In Intelligent Robots and Sys-
tems (IROS 2014), 2014 IEEE/RSJ International Con-
ference on, pages 1032–1037, Sept 2014. 3

[37] R. Roberts, C. Potthast, and F. Dellaert. Learning
general optical flow subspaces for egomotion estima-
tion and detection of motion anomalies. In Computer
Vision and Pattern Recognition (CVPR), 2009 IEEE
Conference on, pages 57–64, June 2009. 3

[38] D. Rosenbaum, D. Zoran, and Y. Weiss. Learning the
local statistics of optical flow. In C. Burges, L. Bot-
tou, M. Welling, Z. Ghahramani, and K. Weinberger,
editors, Advances in Neural Information Processing
Systems 26, pages 2373–2381. MIT Press, 2013. 3

[39] S. Roth and M. J. Black. On the spatial statistics of op-
tical flow. International Journal of Computer Vision,
74(1):33–50, 2007. 3

[40] C. Rother, V. Kolmogorov, and A. Blake. ”grabcut”:
Interactive foreground extraction using iterated graph
cuts. ACM Trans. Graph., 23(3):309–314, Aug. 2004.
7

[41] C. Sanderson. Armadillo: An open source C++ linear
algebra library for fast prototyping and computation-
ally intensive experiments. Technical report, NICTA,
2010. 8

[42] T. Schoenemann and D. Cremers. A coding-cost
framework for super-resolution motion layer decom-
position. Image Processing, IEEE Transactions on,
21(3):1097–1110, March 2012. 3

[43] D. Sun, C. Liu, and H. Pfister. Local layering for joint
motion estimation and occlusion detection. In Com-
puter Vision and Pattern Recognition (CVPR), 2014
IEEE Conference on, pages 1098–1105, June 2014. 1

[44] D. Sun, S. Roth, and M. Black. A quantitative analy-
sis of current practices in optical flow estimation and
the principles behind them. International Journal of
Computer Vision, 106(2):115–137, 2014. 2, 3

[45] D. Sun, E. Sudderth, and M. Black. Layered segmen-
tation and optical flow estimation over time. In Com-
puter Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on, pages 1768–1775, June 2012. 2,
3

[46] D. Sun, J. Wulff, E. Sudderth, H. Pfister, and
M. Black. A fully-connected layered model of fore-
ground and background flow. In Computer Vision and
Pattern Recognition (CVPR), 2013 IEEE Conference
on, pages 2451–2458, June 2013. 1, 2, 3



[47] N. Sundaram, T. Brox, and K. Keutzer. Dense point
trajectories by gpu-accelerated large displacement op-
tical flow. Technical Report UCB/EECS-2010-104,
EECS Department, University of California, Berkeley,
Jul 2010. 3

[48] M. Tao, J. Bai, P. Kohli, and S. Paris. Simpleflow: A
non-iterative, sublinear optical flow algorithm. Com-
puter Graphics Forum, 31(2pt1):345–353, 2012. 3

[49] J. Wang and E. Adelson. Representing moving images
with layers. Image Processing, IEEE Transactions on,
3(5):625–638, Sep 1994. 3

[50] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and
C. Schmid. DeepFlow: Large displacement optical
flow with deep matching. In Computer Vision (ICCV),
2013 IEEE International Conference on, pages 1385–
1392, Dec 2013. 1, 2, 3, 4

[51] M. Werlberger, T. Pock, and H. Bischof. Motion es-
timation with non-local total variation regularization.
In Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on, pages 2464–2471, June
2010. 3

[52] M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cre-
mers, and H. Bischof. Anisotropic Huber-L1 optical
flow. In BMVC, London, UK, September 2009. 1, 2,
3

[53] L. Xu, J. Jia, and Y. Matsushita. Motion detail
preserving optical flow estimation. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
34(9):1744–1757, Sept 2012. 1, 2, 4

[54] C. Zach, T. Pock, and H. Bischof. A duality based
approach for realtime TV-L1 optical flow. In F. Ham-
precht, C. Schnrr, and B. Jhne, editors, Pattern Recog-
nition, volume 4713 of Lecture Notes in Computer
Science, pages 214–223. Springer Berlin Heidelberg,
2007. 2, 8

[55] K. Zuiderveld. Contrast limited adaptive histogram
equalization. In P. S. Heckbert, editor, Graphics Gems
IV, pages 474–485. Academic Press Professional, Inc.,
San Diego, CA, USA, 1994. 4


