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Abstract

Bayesian methods for visual tracking model the likelihood
of image measurements conditioned on a tracking hypothe-
sis. Image measurements may, for example, correspond to
various filter responses at multiple scales and orientations.
Most tracking approaches exploit ad hoc likelihood mod-
els while those that exploit more rigorous, learned, mod-
els often make unrealistic assumptions about the under-
lying probabilistic model. Such assumptions cause prob-
lems for Bayesian inference when an unsound likelihood
is combined with an a priori probability distribution. Er-
rors in modeling the likelihood can lead to brittle tracking
results, particularly when using non-parametric inference
techniques such as particle filtering. We show how assump-
tions of conditional independence of filter responses are vi-
olated in common tracking scenarios, lead to incorrect like-
lihood models, and cause problems for Bayesian inference.
We address the problem of modeling more principled likeli-
hoods using Gibbs learning. The learned models are com-
pared with naı̈ve Bayes methods which assume conditional
independence of the filter responses. We show how these
Gibbs models can be used as an effective image likelihood,
and demonstrate them in the context of particle filter-based
human tracking.

1. Introduction
We develop an image likelihood model for visual track-
ing that represents conditional dependencies between var-
ious image cues at multiple scales. Likelihoods are learned
from a novel training set of human motion imagery in which
we have “ground truth” human poses in video sequences;
the method, however, is applicable to any tracking scenario
for which training data is available. Likelihoods are repre-
sented by a Gibbs model [8, 19], which is based on the max-
imum entropy principle and learned from the training data.
The approach extends previous work on modeling natural
image statistics and applies this to the problem of Bayesian
tracking.

Tracking can be viewed as a problem of probabilistic in-
ference from ambiguous sensor measurements. Recent ap-
proaches adopt a Bayesian formulation in which local im-
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Figure 1: Learning Gibbs distributions from marginals. The
log-histogram of the empirical 2D distribution in the center shows
the joint statistics of first derivative filter responses at two adjacent
scales conditioned on the pose of a human arm. The marginal (log)
histograms are taken along the directions marked by dashed white
lines; these correspond to the x- and y-axes, as well as the two
diagonals. As we use more marginals to approximate the joint, the
approximation improves (clockwise from upper left). The naı̈ve
Bayes model corresponds to the product of the x and y marginals
(upper right). Our full Gibbs model exploits all four marginals
(lower left).

age measurements are combined with a priori information
to derive an a posteriori density estimate over the track-
ing hypotheses. The quality of any Bayesian solution is
only as good as the local evidence (likelihood) and prior
models. Many Bayesian tracking approaches adopt ad hoc
likelihoods or make strong simplifying assumptions about
the conditional independence of image measurements. We
demonstrate how such assumptions lead to incorrect likeli-
hood models and how this, in turn, leads to brittle tracking
in a particle filter framework.

Let x be a vector of parameters representing the state
of the object being tracked and let f = [f1, . . . , fn]T be a
vector of image measurements1. Here we take the fi to be

1“Images” may be grayscale images, stereo depth maps, silhouettes, or
any other sensor measurement. The filters could be identity functions that
return the original measurements or any other linear (or non-linear) filter.
Regardless, the likelihood modeling problem remains the same.



various filters (first and second derivatives of Gaussians at
multiple scales) at image locations and orientations deter-
mined by the object state.

In its simplest form, the Bayesian framework involves
estimating

p(x | f) ∝ p(f |x) p(x).

Our goal is to model the likelihood, p(f |x), of observing
the filter responses f conditioned on the state x.

Consider the empirical joint conditional density in Fig-
ure 1 (center), which shows a distribution of filter responses
on the boundary of human limbs. The axes correspond to
first derivative filter responses at two adjacent image scales
conditioned on the known limb orientation. A common as-
sumption is that the filter responses are conditionally inde-
pendent across scale and consequently the joint probability
can be approximated by the product of the marginal prob-
abilities at each scale ((1) and (2) in the figure); that is,
p(f |x) =

∏
i p(fi |x). This corresponds to a naı̈ve Bayes

assumption. The product of marginals is shown in Figure
1 (upper right). While the marginals for this and the cen-
ter plot are the same, the joint conditional density is very
different.

Modeling the full joint conditional density is difficult be-
cause: (1) filter responses and other image measurements
are typically non-Gaussian; (2) many features or measure-
ments are required for robust tracking which makes the
dimensionality of the joint space high; (3) there may be
significant dependencies between measurements that make
simple independence assumptions inappropriate; and (4)
training data may be too limited to fully populate a high-
dimensional joint probability space.

To address these problems we model the likelihood using
a Gibbs model

p(f |x) =
1

Z(Λ)
exp

(
−
∑

i

〈λ(i), φ(i)(f ,x)〉
)

,

where the λ(i) are weight functions that we must learn
and the φ(i) can be thought of as “selector” functions that
choose bins of marginal histograms along various directions
in the filter space. The partition function, Z(Λ), acts as a
normalization term. Here the φ(i) select both histograms
for individual filter types as well as histograms for combi-
nations of two filters (e.g. across adjacent scales). An ex-
ample of learning such a Gibbs model with four marginals
is shown in Figure 1 (lower left).

A general method for learning such Gibbs models was
presented by Zhu and Mumford [18]. The key idea is to
learn the λ(i) such that the marginal statistics of the Gibbs
model match the marginal statistics that we can easily com-
pute from training data. Note that the learning algorithm
can match marginals along arbitrary directions in the pa-
rameter space [8]. We exploit a simplified version of the

algorithm in [8] and marginalize along fixed directions “be-
tween” pairs of filter responses. Regardless of the dimen-
sionality of the joint space, we need only model marginals.
This reduces the amount of training data needed to avoid
overfitting. The model also imposes a maximum entropy
condition which ensures that the learned model makes the
least commitment in areas where it is not constrained by the
marginals.

Proper probabilistic models are critical for Bayesian
tracking. We show that naı̈ve Bayes methods can overes-
timate the likelihood resulting in overly sharp peaks in the
likelihood distribution. Such peaks are particularly prob-
lematic for Monte Carlo sampling methods such as particle
filtering. We demonstrate how Gibbs models produce bet-
ter approximations to image likelihoods and consequently
result in more reliable tracking in a particle filtering frame-
work. We show how they can be used to model the likeli-
hood of human limbs and that the resulting models are less
distracted by clutter than naı̈ve Bayes models.

1.1. Other related work
A complete review of image likelihoods used in Bayesian
tracking is beyond the scope of this paper. We focus, in-
stead, on human motion tracking and, in particular, the
use of linear filters as image measurements. The marginal
statistics of filter responses in natural images have received
a great deal of attention [9, 11, 14, 19] and it has often been
noted that these marginals are strongly non-Gaussian with
heavy tails. It has also been noted that wavelet filter re-
sponses are statistically dependent across scale and across
different filter types [9, 14].

In [12] the marginal statistics of first and second deriva-
tive responses at multiple scales were used to model the
likelihood of human limbs for 3D person tracking. We take
a similar approach and exploit a novel set of training data
containing synchronized video imagery and 3D “ground
truth” human motion [13]. Given the known limb pose we
steer the filter responses to the limb orientation and com-
pute the statistics for first derivative filters along and across
the limb edges as well as for second derivative filters in the
center of the limb (at an appropriate scale [12]).

In [12] the marginal probabilities of filter responses were
multiplied in a naı̈ve Bayesian model. There have been
many uses of filter responses for Bayesian tracking and
some of these have attempted to reduce conditional depen-
dence by spacing filters sufficiently far apart [6, 10, 15, 16].
These methods are approximate and do not attempt to learn
any remaining conditional dependence. Here we show that
the filter responses on human limbs are conditionally de-
pendent, and we approximate the joint conditional density
with a Gibbs model.

We focus on exponential models of the likelihood and
take the Gibbs learning approach [18]. There are many re-



Figure 2: Training Data. Example frames from the training set
used to learn human limb likelihoods. The 3D body model is ob-
tained by a commercial motion capture system and is projected
into four calibrated camera views. This gives the known position
and orientation of the limbs in each view.

lated learning approaches in the literature such as projection
pursuit density estimation [2, 17], and products of experts
[4]. We are unaware of previous uses of Gibbs learning for
likelihood modeling and Bayesian detection and tracking.

2. Image Statistics
Image derivatives have proven to be useful cues for model-
ing edges. To illustrate the use of Gibbs models for track-
ing, we consider the case of tracking human limbs. We for-
mulate two conditional likelihood models, pFG(f |x) for the
foreground and pBG(f |x) for the background2. These mod-
els describe the likelihood of observing a limb in terms of
the likelihood ratio

pR(f |x) ∝ pFG(f |x)
pBG(f |x)

. (1)

Although our discussion focuses on human tracking, the
model can be generalized to other objects.

2.1. Training data
In many 3D human tracking applications limbs are mod-
eled as tapered cylinders, so that the edges of the projected
cylinder coincide with the intensity edges of limbs in the
observation. Our training data set (see Figure 2) consists of
4000 images (1000 frames from 4 different views each) of
a person in normal clothes walking in a laboratory environ-
ment. Along with the video images we have ground truth
data of such a body model indicating the 3D position and
orientation of the subjects’ limbs [13]3.

To obtain filter responses at various spatial scales, we
construct a Gaussian pyramid with levels σ = 0, . . . , 2 (0 is
the original image). At each scale σ we compute the first
derivatives, [f (σ)

x , f
(σ)
y ], of the image brightness function

in the horizontal and vertical directions at various locations
along the projected edge. Since we are interested in filter re-
sponses conditioned on the limb orientation, we steer the fil-
ter responses to that orientation as suggested in [12]. More

2When our discussion applies to both the foreground and the back-
ground model, we will drop the subscript.

3Data available at
http://www.cs.brown.edu/research/vision/motioncapture/.

0 50

−10

−5

0

0 50

−10

−5

0

0 50

−10

−5

0

a b c
Figure 3: Marginal statistics of first derivative filter responses.
All plots show log-histograms. (a) Empirical distribution at 3
scales for the filter response orthogonal to the limb boundary (fe).
(b) Distribution for the filter response aligned with the limb (fl).
(c) Filter response in the background.

specifically, the image response for an edge of orientation θ
at pyramid level σ and position y is formulated as the image
gradient perpendicular to the edge orientation θ:

f (σ)
e (y, θ) = sin θ f (σ)

x (y) − cos θ f (σ)
y (y) (2)

We will refer to the first derivative at scale σ along the edge
(i.e. orthogonal to f

(σ)
e ) as f

(σ)
l . Figure 3 shows examples

of steered edge responses for a lower arm at different pyra-
mid levels.

As in [12], we compute the second derivative across the
edge fr and along the edge frl at a scale σ that is chosen so
that the filters capture the ridge character of the whole limb.
The second derivative filters are evaluated at locations on
the mid line between the two sides of the limb. The response
is steered to the limb orientation similar to eq. (2) (see [12]
for details).

The training data for the background model is acquired
in essentially the same way. We compute the same filter
responses at arbitrary locations and orientations in the views
of the same scene, but with the person absent. In contrast to
[6] this is a generic background model.

If we compute image derivatives at nearby locations
along the edges of the limb, the responses of a particular
filter will be strongly dependent between spatial locations,
especially at coarser scales. Here we make the simplifying
assumption that the filter responses along the edge are fully
dependent along each side or the mid line respectively4.

For simplicity of exposition, we consider only the abso-
lute value of the derivatives. Furthermore, we capture the
statistics of both sides of the limb in a single model. Our
filter bank finally becomes

f =
[
|f (0)

e |, |f (1)
e |, |f (2)

e |, |f (0)
l |, |f (1)

l |, |f (2)
l |, |fr|, |frl|

]
.

2.2. Marginal densities
Figure 3 shows a few examples of marginal histograms from
the training data. The left two plots show the log-histograms

4The Gibbs model we use would be capable of jointly modeling the
responses of the various locations along the edge, but we leave this for
future work.



of the absolute response of derivative filters steered accord-
ing to the edge orientation, either across or along the edge.
As expected, the responses at all scales and in both orienta-
tions are non-Gaussian. Moreover, the filter responses are
fairly consistent across scale.

If we compare the histograms for the derivatives across
and along the edge, we immediately see that the filter re-
sponse histogram for fe is more heavy-tailed than the his-
togram for fl. This intuitively makes sense, because we
expect large derivatives to occur across the edge, but not so
much along the edge. We also observe that the maximum of
the histogram occurs at or near zero, which is due to indis-
tinct limb edges that are common in real images [12].

The derivative across the edge at the finest scale is less
heavy-tailed than at the two coarser scales. This is due to
our simple limb model, which assumes the edges of the limb
to be straight. At coarse scales the edge is more likely to fall
within the scope of the filter response.

Comparing these histograms to the background distribu-
tion, we see that the background tends to contain large gra-
dients as well. Since their orientation does not necessarily
coincide with limb orientations, the broadness of the distri-
bution is somewhere between the broadness of the two edge
histograms. Here as well, the filter response statistics are
consistent across scale.

2.3. Joint densities
The majority of work on visual tracking has assumed that
image measurements are conditionally independent given
the body pose. On the other hand, it is known that image fil-
ter responses (wavelets, derivatives of Gaussians, etc.) are
not statistically independent. As noted by Simoncelli [14],
conditional histograms of filter responses at neighboring
scales or neighboring locations exhibit strong dependence.
This is true even when carefully selected filters decorrelate
the data. For simplicity, we focus here on conditional de-
pendence across scale and between different types of filters.
The same analysis applies to spatial dependence, which can
be dealt with in a similar manner.

Knowing the limb orientation does not tell us the edge
contrast or even whether there is any observable edge in the
image. Conditional dependence exists here because what-
ever image structure is present tends to be consistent across
scale. This is illustrated in Figure 1 where the empirical
joint density is plotted for fe at 2 scales (center). We can
clearly see that joint steered responses across scales are not
conditionally independent, because the probability mass ex-
tends on a ridge along the diagonal. In the upper right we
show the effect of approximating this distribution by the
product of the marginals. The so-called naı̈ve Bayes model
hence treats

p(f (1)
e , f (2)

e |x) = p(f (1)
e |x)p(f (2)

e |x) .

0 20
−20

−10

0

0 20
−20

−10

0

0 20
−20

−10

0

a b c
Figure 4: Learned λ weight functions in the Gibbs likelihood
model. (a) λ for f

(1)
e (solid) and f

(1)
l (dashed) (b) same for scale

2 (c) λ for 1
2
(f

(1)
e + f

(2)
e ) (solid) and 1

2
(f

(1)
e − f

(2)
e ) (dashed).

As we can see this assumption leads to a poor representation
of the actual joint. The result captures the non-Gaussian na-
ture of the statistics (high kurtosis) but not its skewness.
From Figure 7 we can see that the first and second deriva-
tives across the edge show conditional dependence as well.
Our conclusion is that simple models that are based on prod-
ucts of marginals fail to capture important properties of the
joint distribution of filter responses conditioned on the edge
orientation5.

3. Gibbs Likelihood Models
Gibbs models have appeared in the computer vision litera-
ture in various guises, for example in the form of Markov
random fields. Zhu et al. [19] were among the first to for-
mally introduce a more general framework for Gibbs learn-
ing. There is an extensive literature to which we refer the
reader for more technical detail [8, 18, 19].

It is important to mention several key properties that
make Gibbs learning attractive: As already mentioned in
the introduction, Gibbs learning is based on the principle
of learning a probability distribution from a number of its
marginals. Using marginal statistics has the advantage that
fairly little training data is needed to learn the distribution.
Furthermore, Gibbs distributions have the property that they
are maximally smooth in areas where they are not con-
strained by the marginals. Again, this avoids overfitting and
leads to the learning algorithm being fairly insensitive to
having small amounts of training data. Although learning a
Gibbs model is computationally intensive, evaluating such
a log-linear model is very fast.

Gibbs models arise from a few, quite simple, axioms:

1. The learned distribution p(f |x) should preserve select
marginal statistics of the distribution to be learned: Let
φ(i)(f ,x) be a set of typically real- or vector-valued
functions6 of the filter responses f , and let µ(i) be

5While taking the product of marginals along other directions might
alleviate this problem somewhat, the resulting joint nevertheless fails to
model, for example, the slightly “bent” character of the ridge in Figure 1,
which can be in fact modeled using a full Gibbs model.

6Continuous interpretations exist where the function values φ(i)(f ,x)
are functions themselves. Since they don’t differ from the discrete case
very much, we omit them here for brevity.
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Figure 5: Log-marginals of the foreground data for the lower
left leg (green with circles), as well as naı̈ve Bayes (red with
crosses) and Gibbs (blue) fits. (Top row) From left to right:
Across edge on first scale p(f

(1)
e ) and second scale p(f

(2)
e ). (Bot-

tom row) From left to right: Average response p( 1
2
(f

(1)
e + f

(2)
e ))

and difference of responses p( 1
2
(f

(1)
e − f

(2)
e )).

their (empirical) expectations over the training data.
In the case considered here, the µ(i) are 1D marginal
histograms. The concept of preserving the empirical
marginals can be written as

Ep(f |x)

[
φ(i)(f ,x)

]
= µ(i), ∀i. (3)

2. Furthermore, we require the distribution to be maxi-
mally uninformative (i.e. “smooth”), subject to these
constraints. This is achieved by requiring the learned
distribution p(f |x) to have maximal entropy. We for-
mulate this as a search problem over all distributions
p(f |x):

maximize −
∫

p(f |x) log(p(f |x)) df (4)

s.t. Ep(f |x)

[
φ(i)(f ,x)

]
= µ(i), ∀i.

It can be shown that the solution to this entropy maxi-
mization problem under the given marginal constraints has
the form of a Gibbs distribution:

p(f |x) ∝ exp

(
−
∑

i

〈λ(i), φ(i)(f ,x)〉
)

, (5)

where 〈·, ·〉 is either a product of scalars, or the Euclidean
scalar-product. The λ(i) can be thought of as weight func-
tions for each marginal. In our discrete realization, these
weights are vectors. We are not aware of an intuitive in-
terpretation of the exact shape of these weight functions,
except for special cases (see below). Figure 4 shows exam-
ples of various λ weight functions for the learned likelihood
model.

The question remains, how the weights λ(i) can be cho-
sen in order to satisfy the marginal constraints. Fortunately,

there is a simple iterative scheme that is guaranteed to con-
verge. If at time step n we have a Gibbs distribution

pn(f |x) ∝ exp

(
−
∑

i

〈λ(i)
n , φ(i)(f ,x)〉

)
,

then we update the weights using (see [8])

λ
(i)
n+1 = λ(i)

n + α
[
log(µ(i)) − log Epn(f |x)[φ(i)(f ,x)]

]
.

The marginals of pn(f ,x) are computed using Monte-Carlo
integration. The simplest version involves a standard Gibbs
sampler [19], and more advanced importance sampling-
based techniques have been proposed [8]. In our imple-
mentation the domain of the probability distribution is fairly
low-dimensional, so we chose a Gibbs sampler for simplic-
ity, which is sufficiently fast; the algorithm runs in at most
a few minutes with good accuracy.

While we take the φ(i)(f ,x) to select 1D marginal his-
tograms, the theory admits more general functions. As-
sume for simplicity that each filter response is an integer in
{1, . . . , N}. We chose to discretize the filter responses into
32 bins. Then the “selector” function φ(f ,x)(i) = ej ⇔
fi = j selects histogram bin j of the i-th component of f .
In other words, the j-th component of φ is 1 when filter re-
sponse fi falls into histogram bin j; the other components
are 0. If we take the expectation over this φ function, then
we obtain the marginal histogram of fi.

If we have exactly one such φ function per component
of f , then the Gibbs model is equivalent to the naı̈ve Bayes
model, because each component of f is modeled indepen-
dently of the others and its marginal statistics are identical to
the empirical marginals. In this special case the weights λ(i)

are proportional to the negative logarithm of the respective
empirical marginal. However, the generality of the Gibbs
model allows us to go beyond this. We can consider selec-
tor functions such as φ(f ,x) = ej ⇔ 1

2 (f1 + f2) = j,
which captures the statistics of the average of f1 and f2. We
should note that the combination of filter responses defining
this φ is no longer orthogonal to the ones we previously con-
sidered, which is exactly the reason why we can model more
complex properties of the joint. In this case the weights λ(i)

have to correct for the fact that the joint Gibbs distribution
is no longer simply a product of marginals. More generally,
we can use marginal histograms along any line in the space
of filter responses to model the joint. We can express this
(again in a discretized way) as φ(f ,x) = ej ⇔ dTf = j,
where d is some marginal direction.

Due to the quite simple filter bank considered here, we
have a good intuition for the dependencies between the ran-
dom variables. Hence it is possible to choose marginal di-
rections by hand to capture the properties that one wishes
to model. We choose the marginals of the individual fil-
ter responses, as well as diagonal marginals (average and
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Figure 6: Log-marginals of the background data (green with
circles), as well as naı̈ve Bayes (red with crosses) and Gibbs (blue)
fits. (Top row) From left to right: Across edge on first scale
p(f

(1)
e ) and second scale p(f

(2)
e ). (Bottom row) From left to

right: Average response p( 1
2
(f

(1)
e + f

(2)
e )) and difference of re-

sponses p( 1
2
(f

(1)
e − f

(2)
e )).

difference) between filter responses across scale and be-
tween the first and second derivative. Alternatively, one
can employ methods for automatically selecting important
marginals [8, 19].

4. Experimental Results
The experiments here are designed to illustrate properties
of the Gibbs likelihood in Bayesian tracking scenarios. We
focus on simple tracking and detection experiments where
we can clearly attribute the change in performance to the
better likelihood model.

From Figures 5 and 6 we see that the marginals of the
data, taken along the chosen directions, are essentially iden-
tical to the marginals of the learned Gibbs distribution. As
we also expected, the marginals of the naı̈ve Bayes model
coincide with the marginals of the data only for single
derivative responses. However, the plots of the marginals
along a diagonal in the filter space, which represent some
combination of filter responses, show that the naı̈ve model
fails to capture important properties of the joint distribution.
Observing large filter responses that are consistent across
scale is much less likely in the naı̈ve model than it should
be given the training data. This is true for both the fore-
ground model, as well as the background model.

The 2D marginals in Figure 7 show that the Gibbs model
qualitatively approximates the joint conditional likelihood
better than the naı̈ve model. For quantitative comparison,

Model Training data Test data
Foreground Gibbs -6.21 -5.56

naı̈ve -7.68 -6.77
Background Gibbs -4.90 -4.06

naı̈ve -5.72 -4.59

Table 1: Average log-likelihood of the data sets in the Gibbs
and naı̈ve Bayes models.

Figure 7: 2D log-marginals. The top row shows the histograms
of the foreground data for the lower left leg (left two columns) and
the background data (right two columns). The middle row shows
the Gibbs model and the bottom row the naı̈ve Bayes fit. The 1st
and 3rd column show the joint derivative filter responses between
scale 1 and scale 2; i.e. p(f

(1)
e , f

(2)
e ). The 2nd and 4th column

show the joint of first and second derivative filters, p(f
(2)
e , fr).

we computed the average log-likelihood for the training
data and test data for both foreground and background mod-
els. The test data consisted of 700 other frames captured the
same way as the training data. Table 1 shows that the Gibbs
models fit the training data significantly better than simple
products of marginals. Also, the log-likelihoods of the test
data are of the same magnitude as on the training data, from
which we can conclude that we did not overfit the distribu-
tions.

In an experiment relevant to human tracking, we shift
the model of a human leg across the image orthogonal to
the leg’s orientation. Here, the parameters x are the limb’s
position and orientation. At each limb location we evalu-
ated the log-likelihood ratio (see eq. (1)) of foreground to
background at 15 points along each side of the limb. We
averaged the log-likelihood ratios over all points along the
limb, which is consistent with our assumption of full condi-
tional dependence between spatial locations. Figure 8 illus-
trates how the log-likelihood ratio of the two models varies
as we shift the model. For comparison purposes, we imple-
mented an estimator of the ground truth likelihood based on
a nearest neighbor approach7. As we can see, the ground
truth as well as the two models show local maxima near
the actual limb position around 0 (this position was man-
ually selected). We notice that the Gibbs model approxi-
mates the ground truth log-likelihood ratio well. The naı̈ve
model shows local maxima in the right place, however it
“overshoots” and makes the foreground more likely than it
is given our training data. While this may not seem like a
disadvantage (e.g. for maximum likelihood estimation) this

7We should note that such a non-parametric “ground truth model” is
only feasible when there is an abundance of training data available. But
even then, the computation quickly becomes infeasible.
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Figure 8: Log-likelihood ratio between foreground and back-
ground models for a lower leg. The ground truth is shown in
green (with circle markers), the naı̈ve Bayes model in red (with
crosses), and the full Gibbs model in blue.

overshooting has severe drawbacks for Bayesian tracking as
discussed next.

4.1. Particle filtering
Particle filtering [3, 5] provides a simple and popular
method for Bayesian tracking with general (non-Gaussian)
likelihoods. The problem of sample impoverishment is well
known [7] and causes particle filters to reliably loose track
when the posterior is multi-modal. Such tracking failures
are often traced to the likelihood and, moreover, to the pres-
ence of a few peaks in the likelihood that attract all the sam-
ples. It is not uncommon to find likelihoods under which
a single sample is several orders of magnitude more likely
than all the others; in such cases, Monte Carlo sampling
fails to capture the “true” posterior.

A number of ad hoc methods have been exploited to tame
the peaks in the likelihood. These typically correspond to
“smoothing” the likelihood by raising it to some fractional
power. For example, annealed particle filtering [1] exploits
this idea to gradually introduce the influence of the peaks
by changing the smoothing parameter.

The true problem is not how to deal with these peaks
computationally but rather that they are often due to a fail-
ure of the likelihood model. In particular, they can be
caused by a naı̈ve Bayes assumption.

We conducted a simple tracking experiment, in which
two synthetic bars move horizontally across the image. The
two bars have differing foreground/background contrast, a
situation that often occurs in real tracking applications. The
image is cluttered by additive “camera” noise. We track
these two hypotheses with a simple particle filter tracker us-
ing horizontal position and current velocity as state. We use
and compare both likelihood models, which were trained
using real image data. The particles are initially distributed
equally between the two tracking hypotheses.

Due to the differing contrast of the two tracking hypothe-
ses, none of our likelihoods will assign the same likelihood
to both of the bars. As we have already seen in Figure
8, the naı̈ve Bayes model tends to overestimate the like-
lihood at actual edge locations, and moreover the amount
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Figure 9: Synthetic tracking scenario: Average number of time
steps until particles collapse to single hypothesis (naı̈ve Bayes
solid, Gibbs dashed) graphed over the population size (log-scale).

of overshooting depends strongly on the local contrast. In
the Gibbs model the difference in likelihood between the
high- and low-contrast edges is not as large because it bet-
ter captures the true distribution near edges where the the
filter responses are conditionally dependent.

Figure 9 shows the average number of time steps from
250 runs until one of the populations vanishes. We con-
sider both likelihood models as well as various particle pop-
ulation sizes (20, 40, 80, 160, 320, 640, and 1920 particles).
We can clearly see that the average survival time of the sec-
ond population is larger for the Gibbs model. We note that
the empirical standard deviation is fairly large (see error
bars in the plot). Nevertheless, a signed rank test reveals
with 99% confidence that the second tracking hypothesis
survives longer using the Gibbs likelihood model.

4.2. Sampling the likelihoods

Our final experiment densely evaluates the log-likelihood of
a leg model at it is moved across an image from the training
sequence. As expected, both the naı̈ve and the Gibbs model
show local likelihood ratio maxima on the correct leg, but
also on one of the upper arms. We sample the obtained like-
lihood ratios in order to evaluate what kind of behavior to
expect from each model as part of a more complex Bayesian
tracking system.

As we can see in Figure 10, the naı̈ve model draws many
samples in the background clutter, some of them focused
on local maxima in the left upper corner. The probability of
these samples is comparable to the probability of samples
that were correctly placed on the lower leg. Many samples
fall on the upper arm, which has a deviating orientation, but
a high contrast. Only a few samples fall on the lower leg,
and they have a much lower probability than the samples
on the arm. This is likely to cause problems for a Bayesian
tracker in that the tracker can get stuck on clutter or occlud-
ing limbs with high contrast. The samples from the Gibbs
model show examples in the clutter as well, but they tend
not to focus on particular points and have a much lower
probability than the samples on the leg or the arm. The arm
also receives many samples, but they are roughly as proba-



Figure 10: Sampling limb likelihood-ratios for the naı̈ve Bayes
(left) and the Gibbs model. The intensity of the limb model’s color
reflects the probability of the respective sample.

ble as the ones on the leg. These initial experiments suggest
that Gibbs likelihood models may improve the reliability of
probabilistic tracking systems when compared with current
naı̈ve approaches.

5. Conclusions

Bayesian methods are popular for tracking because they
allow the principled combination of image measurements
with prior knowledge. A Bayesian method, however, is only
as principled as its likelihood and prior. We have shown
how a naı̈ve Bayes assumption can result in an incorrect
image likelihood. We exploited a Gibbs learning technique
to build a likelihood model for human limbs that models
the conditional dependence found between derivative filter
responses. Our experiments have shown that certain Gibbs
models capture the distribution that underlies the data well,
while still not suffering from overfitting.

While having an incorrect, overshooting, likelihood may
not pose a problem for maximum-likelihood methods, the
wrong likelihood guarantees a wrong posterior for Bayesian
methods. This issue becomes particularly apparent when
using Monte Carlo methods such as particle filtering to rep-
resent the posterior. Particle filter-based tracking experi-
ments presented here have shown that naı̈ve Bayes models
suffer significantly more from the well-known sample im-
poverishment problem than the Gibbs model we proposed.
Finally, we showed that naı̈ve likelihood models are more
prone to suffer from clutter. In summary, we can conclude
that a rigorous likelihood model for objects, such as the one
proposed, is likely to prove an important component of a
successful Bayesian tracking system.

Because of its generality, the proposed Gibbs model
could be extended to other image measurements as well.
It remains future work to explore if other image measure-
ments lead to even better likelihood models. As already
suggested, explicitly modeling spatial dependencies could
lead to an improvement. We plan to explore whether lo-
cal contrast normalization as suggested in [12] will improve
Gibbs likelihood models. Finally, our goal is to test the pro-
posed likelihood model in a full human tracker.
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