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Abstract

We present a method for simultaneously learning
linear models of multiple high dimensional data
sets and the dependencies between them. For
example, we learn asymmetrically coupled linear
models for the faces of two di�erent people and
show how these models can be used to animate
one face given a video sequence of the other. We
pose the problem as a form of Asymmetric Coupled
Component Analysis (ACCA) in which we simul-
taneously learn the subspaces for reducing the di-
mensionality of each dataset while coupling the pa-
rameters of the low dimensional representations.
Additionally, a dynamic form of ACCA is pro-
posed, that extends this work to model temporal
dependencies in the data sets. To account for
outliers and missing data, we formulate the prob-
lem in a statistically robust estimation framework.
We review connections with previous work and il-
lustrate the method with examples of synthesized
dancing and the animation of facial avatars.

1 Introduction

Learning low-dimensional linear models from high di-
mensional training data has proven useful in computer
vision for solving problems such as recognition and
tracking. In particular, Principal Component Analysis
(PCA) is one of the primary techniques used to con-
struct these linear models. PCA �nds the linear sub-
space of maximum variation within a data set. How-
ever there exist problems in computer vision where it is
important to exploit correlations, linear relationships,
or non-linear dependencies between multiple data sets.
Figure (1), for example, shows two people who have
di�erent facial appearance, however they share some
hidden variable which captures their expression. Many
problems of this form appear in computer vision and

Figure 1: Two people (two data sets) showing di�erent
facial expressions in a high dimensional space coupled
in a hidden space (see text).

modeling the dependencies in the high-dimensional
space of images is impractical. In such a situation, we
would like an algorithm that both reduces the dimen-
sionality of the data sets while modeling and preserving
the coupling between them. This coupling can take a
number of forms as described below.
Given the high dimensional nature of images, model-

ing non-linear dependencies in the image space is often
infeasible due either to limited training data or compu-
tational complexity. For high dimensional data, dimen-
sionality reduction is often necessary. One approach is
to independently learn low-dimensional linear models
for each data set using PCA. The coupling between the
coeÆcients of the linear approximations to the training
data can be modeled using a neural network or other
supervised learning technique. Applying PCA sepa-
rately to each set preserves the directions of maximum
variance within the sets but these do not necessarily
correspond to the directions of maximum covariation
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between sets (or higher order generalizations). That
is, independently learning the low-dimensional models
may result in a loss of important detail relevant to the
coupling between data sets.
Another common approach is to jointly model the

data with a single linear subspace [4, 5]. This is done by
performing PCA on augmented data vectors containing
corresponding data from multiple data sets. Typically,
the data in each training set is �rst normalized so that
the variance of each set is similar (although many vari-
ations are possible). Once this joint model has been
learned, we can use it to make linear predictions of
one set given the other. Although this approach is the
optimal linear solution for the joint representation, it
is not necessarily optimal when we need asymmetric
prediction; that is, predicting one data set from the
other.
The purpose of this paper, is to describe an Asym-

metric Coupled Component Analysis (ACCA) method
for learning dependencies between high dimensional
data sets in the hidden parameter space rather than
the observation space. There are three main contri-
butions. First, we formulate ACCA in such a way
that the hidden coeÆcients are made explicit. This
di�ers from and generalizes previous work in that it al-
lows us to impose constraints on the coupling. Second,
we formulate ACCA in a robust statistical estimation
framework that improves resistance to outliers. This
approach exploits an energy minimization framework
that allows further generalizations of the method as
discussed in the conclusions. Finally, by making the
coupling coeÆcients explicit, we can extend the energy
minimization approach to account for temporal depen-
dencies in dynamic data sets. The approach comple-
ments recent work on robust PCA and robust Singular
Value Decomposition (SVD) [7].
We illustrate the method by learning a coupled

model of the faces in Fig. 1. This model can be used to
animate one face using an image sequence of the other.
Also, we illustrate the results by learning a coupled, dy-
namic model of two people swing dancing. Then given
a new sequence of one of the dancers' motions, we can
approximate the appropriate motion of their partner.

2 Previous Work

This paper is related to previous work on symmetric
and asymmetric PCA. It is beyond the scope of the pa-
per review all possible applications of PCA, therefore
we just briey describe the theory and point to related
work for further information.
Let D = [d1 d2 ::: dn] = [d1 d2 ::: dd]T be a matrix

D 2 <d�n 1, where each column di is a data sample

1Bold capital letters denote a matrix D, bold lower-case let-

(or image), n is the number of training images, and d

is the number of pixels (variables) in each image. We
assume that D is zero mean and then generalize to
non-zero mean data later in the paper. Let the �rst k
principal components of D be B = [b1; :::;bk] 2 <

d�k.
The columns of B span the subspace of maximum vari-
ation of the data D. Although a closed form solution
for computing the principal components (B) can be
achieved by computing the k largest eigenvectors of
the covariance matrix DDT [8], here it is useful to ex-
ploit work that formulates PCA as the minimization
of an energy function [7, 8, 9, 11, 21, 25, 27]. Related
formulations have been studied in various communi-
ties: machine learning [21, 25], statistics [9, 11], neural
networks [8] and computer vision [7, 27]. In spirit,
all these approaches essentially minimize the following
energy function (although with di�erent noise models,
deterministic or Bayesian frameworks, or di�erent met-
rics for the error):

Epca(B;C) =

nX
i=1

jjdi �Bcijj
2
2 (1)

where jj:jj2 denotes the L2 norm and C = [c1 c2 � � � cn]
where each ci is a vector of coeÆcients used to recon-
struct the data vector di.
If the e�ective rank of D is much less than d, we can

approximate the column space of D with k << d prin-
cipal components. The data di can be approximated
as a linear combination of the principal components as
dreci = BBTdi where ci = BTdi are the linear coef-
�cients obtained by projecting the training data onto
the principal subspace (B is an orthogonal matrix);
substituting them in (1) gives as

Epca(B) =

nX
i=1

jjdi �BBTdijj
2
2: (2)

This formulation is common in the neural network
community [8, 27].

Many methods exist for minimizing (1) (Alternated
Least Squares (ALS), criss-cross regression [11] or
Expectation-Maximization (EM) [21, 25]), but in the
case of PCA, share the same basic philosophy. These
algorithms alternate between solving for the coeÆ-
cients C with the bases B �xed and then solving for

ters a column vector d. dj represents the j-th column of the
matrix D and dj is a column vector representing the j-th row

of the matrix D. dij denotes the scalar in row i and column j

of the matrix D and the scalar i-th element of a column vector
dj . dji is the i-th scalar element of the vector dj . All non-bold
letters represent scalar variables. Æ represents the Hadamard
(point wise) product. jjdjj

W
denotes the weighted L2 norm of

the vector d, that is dTWd.
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the bases B with C �xed. Typically, both updates are
computed by solving a linear system of equations.

On the other hand, when two (or more) related data

sets D̂ 2 <d1�n and D 2 <d2�n with an equal num-
ber of observations are available, a natural question
which arises is how to exploit the correlations between
them (e.g. to estimate one set from the other). An
example of this is the modeling of both the shape and
appearance of human faces [4, 5]. In many cases, the
dimensionality, complexity, and energy of the data sets
is di�erent. These issues in conjunction with high di-
mensional data sets present a number of challenges.

A common approach is to construct a joint model
by concatenating the two data sets into a new matrix
�D =

�
D

D̂

�
and perform PCA in the augmented ma-

trix �D (several variations of this technique are possible
[4, 5]). With appropriate normalization of the data
sets, this approach could be suÆcient for jointly repre-
senting the data for reconstruction or recognition. For
prediction of one data set from the other (the asym-
metric case), this approach is not optimal. At this
point, observe that the subspace found by joint PCA
(or joint Singular Value Decomposition, SVD) will be
obtained by minimizing the following energy function,
Esvd(B; B̂;C):

Esvd =

nX
i=1

jjdi �Bcijj
2
2 +

nX
i=1

jjd̂i � B̂cijj
2
2 (3)

where the coeÆcients are shared but the bases are spe-
cialized to the di�erent data sets. Note that this ap-
proach constrains the model such that the maximum
possible rank of the individual subspaces is the same.

An alternative approach is to reduce the dimension-
ality of each set independently and then learn the re-
lationship between the coeÆcients of each data set us-
ing some non-linear �tting methods [20]. The problem
with this approach is that information discarded in the
residual subspaces (the n � k smallest eigenvectors)
of each data set may provide signi�cant information
about the relationship between the two sets.

In contrast, the purpose of this paper is to explore
the use of linear models for learning relations between
two (or more) given data sets while coupling the coeÆ-
cients in various ways. This problem has been studied
in the signal processing community [14, 22] and neural
network community [8] and it is known as reduced rank
Wiener �ltering [22] or Asymmetric PCA (APCA) [8].
These can be formulated as the minimization of

E(B; B̂) =

nX
i=1

jjd̂i � B̂BTdijj
2
2: (4)

Observe that if d̂i = di and B = B̂T then minimizing
(4) leads to the standard (symmetric) PCA [8]. Ob-
serve also, that APCA imposes a rank restriction on
the mapping BB̂T which is advantageous when work-
ing with high dimensional data such as images.
Closed form solutions to this problem typically as-

sume thatD has full rank andDDT is invertible [8, 22],
which in the case of images is often not true due to the
lack of training samples. It can also be solved with the
generalized singular value decomposition of the matri-
ces D̂DT and DT . Again this can be impractical for
high dimensional data as images.
In the following section we address many of these

problems by extending this approach further and for-
mulating it robustly. We refer to this method as ACCA
and show how it can be extended to learn linear dy-
namics in the hidden parameter space of coeÆcients.
The approach essentially regularizes temporal data and
we refer to it as Dynamic ACCA (DACCA).

3 Beyond PCA

In this section, following previous work on asymmetric
PCA [8] and reduced rank-Wiener �ltering [22], we ex-
tend APCA to model linear dependencies between two
data sets, D and D̂, in the hidden parameter space
of coeÆcients. In order to take into account possi-
ble missing data and outliers which occur at a pixel
level in D̂ (we refer to these as intra-sample outliers
[7]), we formulate the problem in the context of robust
statistics.

3.1 Robust Asymmetric CCA

Let D̂ 2 <d1�n and D 2 <d2�n be two multidimen-
sional simultaneous observations of a particular event
(e.g. two people dancing, multi-view images, shape
and appearance, etc). ACCA should �nd the linear

transformations B̂ 2 <d1�k1 which reduce the dimen-
sionality of D̂ and simultaneously �nd the linear trans-
formation B 2 <d2�k2 which makes D correlated with
D̂ in the hidden parameter space. In the simplest case
we will assume k1 = k2. To achieve this we �rst re-
place BTdi in (2) with the explicit coeÆcient ci and
then impose a new constraint on these coeÆcients

Eacca(B; B̂;C) =
nX
i=1

jjd̂i � B̂cijj
2
2 + �

nX
i=1

jjci �BTdijj
2
2: (5)

Minimizing this gives the bases B̂ for reconstructing
the column space of D̂ and the bases B on which we
project the data set D. The constant, �, weights the
importance of each term in the energy function and
is related to the noise in both datasets (although not
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in a straightforward manner because the noise of d is
�ltered by the matrix B).
After the model has been learned, estimating, or pre-

dicting, d̂i from di is simply done by projecting di on
the the bases (BTdi) and using the resulting coeÆ-

cients to reconstruct the data using the bases B̂.
In contrast to the previous Wiener �lter [14, 22] and

asymmetric PCA [8], we have explicitly introduced the
coeÆcients C. Explicitly solving for the coeÆcients
C, allows an easy generalization to the dynamic case
and can also permit the addition of prior information
over the coeÆcients; for example, one could impose
sparseness constraints [18]. Experimentally, we have
observed that minimizing (5) gives faster convergence
than minimizing (2) for the same initial conditions.
We further generalize (5) by removing the assump-

tion that the data is zero mean and by replacing the L2
norm with a robust function. This robust formulation
can account for possible pixel-level outlying data in D̂
(see [7] for the bene�ts of the robust formulation). This
necessitates robust estimates of the means � and �̂.
Consequently we minimize Eracca(B; B̂;C;�; �̂;�; �̂)
where this is de�ned as

Eracca =

nX
i=1

d1X
p=1

�(d̂pi � �̂p �

k1X
j1=1

b̂pj1cj1i; �̂p)

+�
nX

i=1

k1X
j1=1

�(cj1i �

d2X
j2=1

bj2j1(dj2i � �j2); �p):

(6)

The robust function, �(x; �p), downweights outlier
data at the pixel level and here is taken to be the
Geman-McClure error function [12] given by �(x; �p) =

x2

x2+�2p
, where �p is a parameter that controls the con-

vexity of the robust function and is used for determin-
istic annealing in the optimization process [7].
To derive the learning algorithm, we formulate the

robust M-estimation problem in (6) as an iteratively re-
weighted least-squares [16] optimization problem and
minimize:

Ewacca =

nX
i=1

�
jjêijj

Ŵi
+ �jjeijjWi

) (7)

=

k1X
p=1

jjêpjj
Ŵp

+ �

d1X
p=1

jjepjj
Wp (8)

where êi represents the columns of the data error ma-
trix Ê = D̂ � B̂C 2 <d1�n and ê

p the rows of the
same matrix. Similarly ei and the matrix E 2 <k1�n

represent the error C � BTD. Ŵ 2 <d1�n is a real
positive matrix containing the weights of each pixel of

D̂. Ŵi 2 <
d1�d1 = diag(ŵi) is a diagonal matrix con-

taining the weighting coeÆcients for the data sample
di, and Ŵ

p 2 <n�n = diag(ŵp) are diagonal matrices
containing the weighting factors for the p-th pixel over
D̂. The matrix Ŵ is calculated for each iteration as a
function of the previous residuals Ê and is related to
the \inuence" [13] of pixels on the solution. See [7] for
more detailed information. W is constructed similarly
for the second term in (7) and (8).
In the more general case (arbitrary weight matrices

W and Ŵ), equations (7) or (8) do not have a closed
form solution in terms of eigenvectors of a weighted
covariance matrix. However, observe that the func-
tion Ewacca is convex in each of the parameters, but
it is no longer convex as a joint function of these vari-
ables. Therefore, for solving the previous equations we
use the Alternated Least-Squares technique which up-
dates one parameter while the others are �xed. This
technique will monotonically reduce the cost function
Ewacca, although is not guaranteed to converge to the
global minimum.
Di�erentiating Ewacca w.r.t. its parameters we ob-

tain the necessary conditions for the minimum. The
derivatives of Ewacca (7) w.r.t. �; ci and b

p, give the
following closed form updates:

�̂ = (
Pn

i=1 Ŵi)
�1
Pn

i=1 Ŵi(d̂i � B̂ci) (9)

(CŴj1CT )b̂
j1
= CŴj1(d̂

j1
� �̂d1n) 8 j1 (10)

(B̂TŴiB̂+ �Wi)ci = (B̂TŴid̂i + �WiB
Tdi)8i (11)

where i = 1 : : : n and j1 = 1 : : : d1. Equation (9) and
(10) are uncoupled equations between data sets. How-
ever the optimal coeÆcients ci (11) are a weighted com-
bination of the information of the two sets.
Similarly, di�erentiating (7) w.r.t the columns of B

gives:

DWpDTbp = DWpcp 8 p = 1 : : : k1 (12)

At this point observe that computing a closed form so-
lution for B will involve solving k1 linear systems of d2
equations and d2 unknowns which may be prohibitive
in space and time. Therefore, we incrementally update
B with a gradient descent method with the following
learning rules:

Bn+1 = Bn + �D
�
(DTBn �CT ) ÆW

�
(13)

�
n+1 = �

n + �B
Pn

i=1Wi(ci �BT (di � �
n)): (14)

After each update of B or �, we update the error E
and weights W. � is set up by hand to control the
rate of convergence. Typically several iterations for
each update of B or � are needed. Observe that the
computational cost of one iteration is O

�
nk2d2

�
.
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4 Robust Dynamic ACCA

Modeling the dynamics of the hidden states (coeÆ-
cients C) has proven to be useful in many applications
such as recognition or tracking. In this section, we tem-
porally couple the coeÆcients over time; this coupling
will act as a regularization term for smoothing the hid-
den values. Assuming linear temporal dynamics, the
DACCA formulation becomes

Edwacca = Ewacca + �2

n�1X
i=2

jj�eijj �Wi
(15)

where �ei = ci � Aci�1, A is the dynamic transition
matrix that must be estimated, and analogous to the
static case, �W are the weights. This e�ectively couples
the hidden parameters ci over time imposing a linear
transformation between two time instants.
Taking derivatives of Edwacca w.r.t. the parameters,

the resulting equations for B and B̂ are the same as
Ewacca. However for C, now we have additional terms
due to the coupling of coeÆcients c over time which
have to be taken into account. The resulting system of
equations to update C and A are:
2
6666664

�1 0 0 � � � 0
�2 �2 	2 � � � 0
0 �3 � � � 0 0
0 0 � � � 0 0
0 0 � � � �n�1 	n�1

0 0 � � � 0 �n

3
7777775

2
664
c1
c2
� � �
cn

3
775 =

2
664
� 1

� 2

� � �
�n

3
775

(16)

(Ct�1 �Wi(C
t�1)T )aj1 = (Ct�1 �Wi(C

t)j1) (17)

where j1 = 1 : : : k1 and

� i =
�
B̂TŴid̂i + �WiB

Tdi
�

(18)

�i = 	T
i =

�
��2 �WiA

�

�i =
�
B̂TŴiB̂+ �Wi + �2( �Wi +AT �WiA)

�

Ct�1 = [c1 c2 : : : cn�2] Ct = [c2 c3 : : : cn�1]:

Observe that �i is the same expression as left hand
side of (11) with the additional regularization term
�2( �Wi+A

T �WiA), but now due to the temporal cou-
pling of the coeÆcients equation (16) results in a large
sparse system of equations of size (nk1�nk1). If �2 = 0
we obtain a uncoupled (diagonal) system of equations
in (11). We use a \blocked" version of the iterative
Gauss-Seidel method [26] for solving it; the solution
can be solved iteratively as:

cn+1i = ��1i (� i �	ic
n+1
i�1 ��ic

n
i+1) 8 i = 2 : : : n� 1

The initial solution is chosen to be the uncoupled one,
that is, when 	i = �i = 0. In our experimental re-
sults the Gauss-Seidel method has always converged,

Figure 2: Faces are modeled using separate regions for
the eyes and mouth.

however in the more general case it is not guarantee to
do so. A necessary and suÆcient condition for the al-
gorithm to converge requires that the largest (in abso-
lute value) eigenvalue of the iteration matrix be smaller
than 1 [26]. Observe that in this case, in order to com-
pute the coeÆcients ci in new test data, we have to
jointly estimate all the coeÆcients (eq. 16).

5 Experimental Results

The methods described here are useful for learning low-
dimensional models in situations where (i) there are
multiple, high-dimensional, data sets that provide in-
formation about the same event, (ii) the inherent di-
mensionality of these data sets may di�er, (iii) the
noise in each set may di�er, (iv) the data may have
temporal dependencies, and (v) the data may be cor-
rupted by noise. After training, the method is specif-
ically useful for predicting one data set from another.
The approach assumes that the data and the depen-
dencies can be well approximated by linear models.
It is interesting to note that linear models have been
successful for modeling complex data that is, in fact,
non-linear (e.g. [24]).

5.1 Learning Coupled Facial Appearance
Models

In this experiment we test the ability of ACCA to learn
the relationship between two sets of faces of two dif-
ferent people performing similar facial expressions. In
general it is hard to model and animate faces, even
when they are cartoons characters. Usually complex
models encoding the physical underlying musculature
of the face are used (e.g. Candide model [1, 10]). Re-
cently De la Torre [6] has used eigenfeatures [15, 17]
to automatically learn person-speci�c appearance face
models and dynamically animate them. The face is
modeled using separate eigenfeatures since facial fea-
tures such as the eyes and mouth undergo almost in-
dependent changes in appearance [6, 17]. The facial
feature appearance models are automatically learned
from an input image sequence given the starting re-
gions in the �rst frame (Figure 2) [6].
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Given two sets of faces of dimensions (d̂ 2 <21128�1

and d 2 <27858�1), we manually select all pairs of
corresponding images and store the image pixels for
a given region from each image in d and d̂. Once we
have D and D̂, we compute ACCA by simultaneously
minimizing (9), (11), (10), (14) and (13). In this case
we have empirically chosen � = 0:1.

Given an ACCA model, and a new test sequence, we
can compute the coeÆcients of the test sequence and
derive the coupled coeÆcients for the other face. Fig.
4 shows frames of a virtual female face animated by the
appearance of the input male face. The �rst column
shows the original input stream (d̂); the second one,
(d), is the result of animating the face with ACCA plus
the aÆne motion of the head. As we can observe this
approach allows us to model the rich texture present
on the face providing fairly realistic animations.

As discussed in Section 2, another possible solution
would involve computing PCA separately onD and D̂,
projecting the data into each independent PCA basis
and calculating the linear regression between the co-
eÆcients. Alternatively, we could compute the joint
SVD. However in these cases the resulting reconstruc-
tion of d given just one sample of d̂ will result in a
larger error. For instance, the normalized reconstruc-
tion error in the test sequence for the mouth area (9
basis) is 0:045 for ACCA, 0:12 for the joint SVD and
0:11 for the independent PCA plus linear regression
between coeÆcients. Moreover, ACCA provides a for-
malism which allows us to incorporate regularization
terms (as in DACCA) or to extend it to several train-
ing sets.

5.2 Can you dance without me?

Learning models of how humans move, has been an
active area of research during the last decade. Several
approaches have been proposed in the literature for
learning human motion based on linear dynamics [3],
switching linear models [19] and more complex non-
linear methods [2]. In this section we explore learning
linear dependencies between two dancers and illustrate
ACCA by animating one dancer knowing the motion
of the other. In this case we make use of DACCA since
temporal smoothness is a reasonable assumption given
the continuity of the motion.

The training and test data consist of joint angles of
professional dancers gathered with a motion capture
system. The human body con�guration is determined
by 25 parameters. Six parameters represent to the 3D
translation and 3D rotation of the body and the re-
maining 19 parameters correspond to the relative joint
angles between connected limbs (see [23]).

In this experiment we assume that there is no cor-
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Figure 3: (a) Correlation between the x-translation
and y-translation. (b) Correlation between x-
translation and joint angle of the left hand

relation between the 3D translation, 3D rotation and
the rest of the parameters describing the joint angles.
Figure 3a shows the correlation between the x and y
translation, as we can observe there is a correlation
between these two variables. However the same phe-
nomenon does not hold for the x translation and any of
the joint angles, where the joint distribution over the
angles is roughly spherical, see Figure 3b.

We train DCCA, minimizing (15), on the �rst 2700
samples and use the rest (around 700 samples) for test-
ing purposes. Figure 5a shows some frames of the test
sequence where two people are dancing. In Figure 5b
just one of the dancers is given to the algorithm and
we can seen DACCA infers a reasonable estimate of
the pose of the other dancer. In this case the pre-
dicted dancer is the low intensity one, the closer to the
camera in the �rst frame.

6 Conclusions and Future work

In this paper, following previous work on asymmetric
PCA, we have proposed ACCA for learning dependen-
cies between two data sets by coupling them in the
hidden parameter space. ACCA can be especially use-
ful when working with high dimensional spaces, since a
�rst common step in many algorithms is to reduce the
dimensionality (usually with the arbitrary PCA coordi-
nate frame), and afterwards to perform the processing
in this low dimensional space. Experiments with fa-
cial avatars suggest that the linear model may suÆce
for these arguably complex data sets (provided that a
good training set is given).

Our current work is exploring a Bayesian formula-
tion of the problem which can give a probabilistic in-
terpretation and can exploit statistical methods and
provide formal ways to automatically determine, all
the parameters of interest (e.g. �).

Also we are working on two extensions to the case
of symmetric coupled component analysis. That is,
in order to construct a joint model where we can do
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predictions bidirectionally, we could minimize:

E(B;C; B̂; Ĉ) =
Pn

i=1 jjdi �Bcijj
2
2 + �jjd̂i � B̂ĉijj

2
2

+�2jjci � B̂T d̂ijj
2
2 + �3jjĉi �BTdijj

2
2

This is just one of many possible extensions. We are
exploring the use of another symmetric formulation,
that can be posed as the minimization of

E(B;C; B̂; Ĉ;�; �̂;H) =

nX
i=1

jjdi �Bcijj
2
2 +

�jjd̂i � B̂ĉijj
2
2 + �1jjci � �hijj

2
2 + �2jjĉi � �̂hijj

2
2

This method can be useful as a continuous model for
recognition or joint representation when both data sets
are presented. Observe that we have introduced a hi-
erarchical structure in the coeÆcients, in which local
coeÆcients ci and ĉi reconstruct each of the sets (with
di�erent dimensionality, rank) and coeÆcients hi re-
construct both sets. This could be useful in the case of
modeling the shape and texture [4], where it is likely
that the dimensionality of the shape space is lower than
then dimensionality of the texture.
Another obvious extension of this work would em-

ploy a more complex, non-linear model of the coupling
between coeÆcients (e.g. mixture of Gaussians, multi-
layer perceptron, radial basis functions, etc.). Finally,
the method can be extended to model the dependences
in more than two data sets.
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a b

Figure 4: a) Original face. b) Animated virtual face.

a b

Figure 5: a) Original data of the test set. b) Predicted
data(see text).


