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In this paper we consider a class of human activities—atomic
activities—which can be represented as a set of measurements over a
finite temporal window (e.g., the motion of human body parts during
awalking cycle) and which has a relatively small space of variations
in performance. A new approach for modeling and recognition of
atomic activities that employs principal component analysis and an-
alytical global transformations is proposed. The modeling of sets of
exemplar instances of activities that are similar in duration and in-
volve similar body part motions is achieved by parameterizing their
representation using principal component analysis. The recognition
of variants of modeled activitiesis achieved by searching the space of
admissible parameterized transformations that these activities can
undergo. This formulation iteratively refines the recognition of the
class to which the observed activity belongs and the transformation
parameters that relate it to the model in its class. We provide several
experiments on recognition of articulated and deformable human
motions from image motion parameters. © 1999 Academic Press

1. INTRODUCTION

Activity representation and recognition are central to the in-
terpretation of human movement. There are several issues that
affect the development of models of activities and matching of
observations to these models:

e Repeated performances of the same activity by the same
human vary even when all other factors are kept unchanged.

e Similar activities are performed by different individuals in
slightly different ways.

¢ In the modeling stage, defining the activity from onset to
offset can sometimes be challenging. While in the recognition
stage the onset and ending of an activity must be determined in
conjunction with activity identification.

e Similar activities can be of different temporal durations.

e Different activities may have significantly different tempo-
ral durations.

There are also imaging issues that affect the modeling and
recognition of human activities:

¢ QOcclusions and self-occlusions of body parts during activ-
ity performance.

e The projection of movement trajectories of body parts de-
pend on the observation viewpoint.

¢ The distance between the camera and the human affect
image-based measurements due to the projection of the activity
on a 2D plane.

An observed activity can be modeled using vectors of mea-
surements at discrete time instants that capture the motion of
body parts. The objective of this paper is to develop a method for
modeling and recognition of these temporal measurements while
accounting for some of the above variances in activity execution.

Consider as an example Fig. 1 (see Appendix for computa-
tion details), which shows both selected frames from an image
sequence of a person walking in front of a camera and the model-
based tracking of five body parts (i.c., arm, torso, thigh, calf, and
foot [11]). The figure also shows two motion parameters recov-
ered for each of the five body parts (horizontal translation and
rotation in the image plane).

In this paper we address a class of activities that we label
“atomic” activities. These are defined to be human movements
that satisfy the following:

¢ The movements are structurally similar over the range of
performers. For example, a cycle of walking is an atomic activ-
ity since its execution steps are quite similar among people and
its speed varies within known ranges defined by physical con-
straints. In contrast, a “jump” movement does not have a single
structure since people may jump on their left, right, or both legs,
or vertically only or horizontally and vertically.

e The movements are mapped onto a finite temporal window.
For example, a cycle of walking is an atomic activity since it can
be mapped onto a finite temporal window that is bounded by a
maximal walking speed. Periodic movements are not atomic
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FIG. 1. Frames from an image sequence of walking (top row), five parts tracking of the visible human body parts (arm, roso, thigh, calf, and foot, second row),
and two sets of five signals (out of 40), horizontal translation and image rotation that are recovered during the activity (torso, thigh, calf, foot, and arm).

since they can be composed of many cycles and thus are not
time bounded.

Modeling and recognition of atomic activities are most chal-
lenging when the activities have both structural similarities and
similar temporal durations (e.g., “walking” versus “marching”
cycles). In this case, a comprehensive modeling and recognition
strategy is needed. In this paper we focus on these activities
and provide two sets of atomic activities that humans regularly
perform; the first involves articulated movements such as “walk-
ing,” “kicking,” and “marching,” while the second involves de-
formable mouth motions during single letter utterances.

In the remainder of this paper we show that a reduced
dimensionality model of activities such as “walking” can be con-
structed using principal component analysis (PCA, or an eigen-
space representation) of example signals (“exemplars™). Recog-
nition of such activities is then posed as matching between
the principal component representation of the observed activity
(“observation”) to these learned models that may be subjected to
“activity-preserving” transformations (e.g., change of execution
duration, small change in viewpoint, change of performer, etc.).

Figure 2 illustrates the framework for modeling and recog-
nition of activities. The right side of the figure shows exemplar
activities (i.e., instances 1..k of M different atomic activities,
k > M) where each instance of an activity has a set of six sig-
nals of temporal measurements. These activities can be modeled
using a PCA-based representation as a set of g “activity bases,”
g X k (see lower right part of the figure). The left side of the
figure shows an observed activity that is a translated and scaled
version of an instance of one of the modeled activities. In this pa-
per we propose an algorithm for recovering the translation, time
scale, and magnitude scaling of the observed activity given that
it is represented in the joint space of activity bases. This algo-
rithm recovers a set of expansion coefficients (i.e., ¢y, . . ., ¢, in
Fig. 2) that is used in determining the closest matching activity
from the exemplars used in learning.

2. PREVIOUS WORK

Approaches that have been recently employed for modeling
and recognizing activities can be divided into data fitting (e.g.,
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FIG.2. The parameterized modeling and recognition of measurement signals
of activities.

neural networks [17], dynamic time warping (DTW) [9, 10], re-
gression [14]), feature localization (e.g., scale-space curve anal-
ysis [1, 16]), and statistical approaches (e.g., hidden Markov
models (HMMs) [8, 13, 19]). It is common in these approaches
to develop a separate model for each activity, match an ob-
served activity to all models, and choose the model that explains
it best.

Activity recognition using HMMs was reported in [8, 13, 19]
based on motion and appearance parameters. In these cases, a set
of hidden states was specified a priori and examples were used to
estimate the transition probabilities between states. Bobick and
Wilson [6] proposed a state-based approach to representing the
parameters in an image sequence of gestures. The states were
augmented by a time parameter to preserve temporal ordering.
Activity recognition was posed as a search in a space of states
representing configurations of gestures using dynamic program-
ming. Some activities have a fine grain continuous structure, not
well represented by sparse discrete states. An HMM in which
each time instant is represented by a state is more comparable
to the representation we develop in this paper.

Recognition of activities subject to “admissible” transforma-
tions (e.g., time scaling) enhances the performance of a recog-
nition algorithm since it quantifies the relationship between an
instance of an activity and previously encountered instances of
that activity. While the above approaches are able to locally han-
dle temporal variability in the data stream of an observed activity,
they lack a global detailed model to capture these variabilities.
Consequently, it may be difficult with these approaches to ex-

YACOOB AND BLACK

plicitly recover and recognize a class of parameterized temporal
transformations of an observed activity with respect to a learned
model.

Some activities are cyclic, thus requiring that several cycles
be observed for recognition. Allmen and Dyer [1] proposed
a method for detection of cyclic motions from their spatio-
temporal curves by tracking high curvature points of the curves.
Also, Polana and Nelson [15] proposed an approach to detecting
and recognizing activities by low-level spatio-temporal analy-
sis using Fourier transforms. The approach exploits the cyclic
nature of some activities to model and recognize them from im-
age motion (normal flow) measured in image sequences. Seitz
and Dyer [18] proposed an approach for determining whether
an observed motion is periodic and computing its period. Their
approach is based on the observation that the 3D points of an ob-
ject performing affine-invariant motion are related by an affine
transformation in their 2D motion projections.

The approach we propose in this paper is time-contiguous and
global; therefore, it is an explicit representation of activities.
This representation is amenable to matching by global trans-
forms (such as the linear transformation we consider). Also, this
global feature allows recognition based on partial or corrupted
data (including missing onset or offset data). The most closely
related work to the work reported here is that of Bobick and
Davis [7] and Ju et al. [11]; both proposed using principal com-
ponent analysis to model parameters computed from activities
but did not demonstrate modeling and recognition of activities.
Also, Li et al. [12] proposed a PCA-based modeling and recog-
nition approach that exploited entire image sequences of people
utterances.

3. MODELING ACTIVITIES

Activities will be represented using examples from various
activity classes (walking, running, etc.). Each example consists
of a set of signals. For training, we assume that

¢ all exemplars are less than or equal to a constant duration
e all examples from a given class are temporally aligned.

The jth exemplar from class i is a function from [0...T] on
R",

el(t):10..T] = R", €8]

where n is the number of activity parameters (e.g., translation,
rotation, etc.) measured at frame ¢ of the image sequence of
length T'. So, [ei] ()] is a column vector of the n measurements
associated with the jth exemplar from activity class i at time
t. Let & =1e/]!_, represent the n7" column vector obtained by
simply concatenating the e/ () for t =0,..., T into a 1 x nT
column vector. The set of all j and i of & is used to create
the matrix A of dimensions nT x k, where k is the number of
instances of all M activities, k <nT .
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Matrix A can be decomposed using singular value decompo-
sition (SVD) as

A=UxVT, 2

where U is an orthogonal matrix of the same size as A repre-
senting the principal component directions in the training set. X
is a diagonal matrix with singular values o7y, 0», .. ., 0y, sorted
in decreasing order along the diagonal. The & x k matrix V7
encodes the coefficients to be used in expanding each column
of A in terms of principal component directions. It is possible to
approximate an instance of activity € using the largest ¢ singular
values 01, 02, ..., gy, so that

9
exe =) al, 3)
I=1

where €* is the vector approximation and ¢; are scalar values that
can be computed by taking the dot product of & and the column
Uy, that is, by projecting the vector € onto the subspace spanned
by the g basis vectors. The approximation can be viewed as a
parameterization of the vector € in terms of the basis vectors
Uy =1..q),tobe called the activity bases, where the param-
eters are the ¢;’s.

4. ACTIVITY RECOGNITION

Recognition of activities involves matching an observation
against the exemplars, where the observation may differ from
any of the exemplars due to variations in imaging conditions and
performance of activities as discussed earlier. We model varia-
tions in performance of an activity by a class of transformation
functions 7. Most simply, 7" might model uniform temporal
scaling and time shifting to align observations with exemplars.

Let D{#) : [1..T] — R” be an observed activity and let [D]
denote then nT column vector obtained by first concatenating the
n feature values measured at ¢, for each D(r) and then concate-
nating P(7) for all ¢. Let also [D]; denote the jth (j=1..nT)
element of the vector [D]. By projecting this vector on the activ-
ity basis we recover a vector of coefficients, ¢, that approximates
the activity as a linear combination of activity bases.

Black and Jepson [3] recently pointed out that projection
gives a least squares fit which is not robust. Instead, they em-
ployed robust regression to minimize the matching error in an
eigenspace of intensity images. Adopting robust regression for
recovering the coefficients leads to an error minimization of the
form

nT q
E(E)=Zp<<{n]j —chul,,) ,cf), “
j=1 =1

where p(x, o) is a robust error norm over x and o is a scale
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parameter that controls the influence of outliers. In the experi-
ments in this paper we use

2
px,0) = el
This robustness is effective in coping with random or structured
noise. Black and Jepson [3] also parameterized the search to
allow an affine transformation of the observation to be used to
improve the matching between images and principal images. In
our context, a similar transformation allows an observation to
be better matched to the exemplars. Let 7(d, t) denote a trans-
formation with parameter vector d that can be applied to an
observation B(¢) as D(t +7(d, t)).

Given an observed activity D(¢), the error minimization of
Eq. (4) now becomes

nT q
EGay=) p <[D(r +7T@, ) — Y al;, a) NG
-

J =1

Equation (5) is solved using simultaneous minimization over
the coefficient vector ¢ and the transformation parameter vector
a. It should be noticed that a more general transformation on
D(z) is possible, specifically 7 (I}(¢)) instead of D(t + 7(d, 1)).
We chose the latter transformation since it imposes “signal con-
stancy” in terms of the range of values of D(¢) and defines ex-
plicitly a “point motion” transformation that is controlled by the
model of 7(a, t).

The transformed D(¢ 4+ 7(d, 1)) can be expanded using a first
order Taylor series

D(t +7(a, 1) ~D@)+ D)7 (a, 1), (6)

where D, is the temporal derivative. Equation (5) can be approx-
imated as

nT q
EGay=Y p <[D<r>] j+DiOT @ 01 =) el a) :
=1

J I=1

T

Equation (7) can be minimized with respect to ¢ and ¢ us-
ing a gradient descent scheme with a continuation method that
gradually lowers o (see [2]). Initial projection of the observa-
tion on the eigenspace provides a set of coefficients ¢ that are
used to determine an initial estimate of @ that is used to warp
the observation into the eigenspace. The algorithm alternately
minimizes the errors of the eigenspace parameterization and the
transformation parameterization. Due to the differential term in
Eq. (7) it is possible to carry out the minimization only over.
small values of the parameters. To deal with larger transfor-
mations a coarse-to-fine strategy can be used to compute the
coefficients and transformation parameters at coarse resolution
and project their values to finer resolutions similar to what is
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described in [3]. This coarse-to-fine strategy does not eliminate
the need for approximate localization of the curves even at coarse
levels.

Upon recovery of the coefficient vector, ¢, the normalized
distance between the coefficients, ¢;, and coefficients of ex-
emplar activities coefficients, m;, is used to recognize the ob-
served activity. The Euclidean distance, d, between the distance-
normalized coefficients is given as

q
d* =3 (/2] = mi/|mlly, ®)
fe=1

where m is vector of expansion coefficients of an exemplar ac-
tivity. The exemplar activity with the coefficients that score the
smallest distance is considered the best match to the observed
activity.

5. EXPERIMENTS

In this section we discuss implementation issues and demon-
strate our approach on two different activity domains, articulated
and deformable body motions. We show the effectiveness of the
proposed approach on large data sets.

In the first set of experiments, the temporal motion parameters
recovered during tracking of a human performing an activity
observed from different viewpoints are modeled and then the
recognition performance evaluated. The second set focuses on
modeling and recognition of four activities as seen from the same
viewpoint. Finally, the third set demonstrates the modeling and
recognition of speech-reading from visual motion information.
Thirteen letters of a single speaker are modeled and recognized
using the optical-flow of the mouth motion. In total, several
hundred long image sequences of complex activities were used.
In these experiments we assume that the objective is recognition
of the activity from one cycle (or less) of its performance while
ignoring periodicity.

5.1. Modeling and Recognition of Walking

We employ a recently proposed approach for tracking human
motion using parameterized optical flow [11] (see Appendix).
This approach assumes that an initial segmentation of the body
into parts is given and tracks the motion of each part using a
chain-like model that exploits the attachments between parts to
achieve tracking of body parts in the presence of nonrigid de-
formations of clothing that cover the parts. The work reported
emphasized the low-level tracking component and suggested a
possible recognition strategy of the temporal parameters subject
to changes of viewpoint and imaging parameters. In this sub-
section we employ our proposed approach to demonstrate the
recognition of activities under varying viewpoints and imaging
parameters. We assume that a viewer-centered representation is
used for modeling and recognition of several activities. Let D(z)
be the n dimensional signals of an observed activity. A total of
five body parts (arm, torso, thigh, calf, and foot) were tracked
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using eight motion parameters for each part (i.e., n =40).In[11]
it was suggested that the following transformation does not
change the activity D(¢):

S+ D(at + L). 9)

This transformation captures the temporal translation, L, of the
curve and the scaling, S, in the magnitude of the signal in ad-
dition to the speedup factor . The magnitude scaling, S, of the
signal accounts for different distances between the human and
the camera (while the viewing angle is kept constant) and the
anthropometric variation across humans. The temporal scaling
parameter o > 1.0 leads to a linear speed up of the activity and
a < 1.0 leads to its slow down. Figure 3 describes the effect of
each parameter on a single signal.

Recognition of activity D(¢) as an instance of a learned activity
requires minimizing the error:

nT q
E(a,L,S)= ‘Zp([s «D(at +L)]; = Y _ali, a) . (10)
j=1 =1

J

This equation can easily be rewritten and solved as in Eq. (7),
where

T L,H)=t+@—-1Dr+L (11)
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nT
E@a,L,S)= p|IS+@D ()T (e, L,0)

Jj=1

q
+ D)~ Y alij.o (12)
=1

Since the error minimization involves a nonlinear term we sim-
plify the computation by observing that the multiplication by a
constant § can be substituted by dividing the coefficients c; by S,
and therefore in actuality the recovered coefficients are correct

up to a scaling factor (i.e., recovering ¢; /S). The matching of

coefficients is done as in Eq. (8). Upon finding the best match
the coefficients ¢; /S are compared with the matching exemplar
coefficients to compute the scaling factor S. Since computing S
is overconstrained (g equations with one variable), the mean of
§ is taken as the scaling factor (i.e., S = (Z?zl(ci/mi))/q).
The value of § is greater than 1.0 if (a) the activity is viewed
at a closer distance than in training (therefore the perception of
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“larger quantities” is a result of the projection) or (b) there is
an actual faster execution of the activity (which also leads to a
temporal scaling for o).

5.2. Synthetic Experiment

In the following experiment we demonstrate the recovery of
the parameters of the linear model for a walking sequence. We
show that unregistered data, with respect to the exemplars, can
be aligned using the linear transformation.

Figure 4 shows the first two principal components of one pa-
rameter of the walking cycle, horizontal translation ag (however,
the 40 parameters are modeled in the principal components) for
sample walking cycles from 10 subjects viewed from the same
viewpoint. Also, the figure shows the ratio of captured infor-
mation, Y_, A7/ 3°F_, A7 (A, is the /th largest eigenvalue), as
a function of the number of principal components used in re-
construction (five components are needed to capture 90% of
the information while the first component alone captures about

2]
0.8}

Horl

ive Coptured Inf
bod
o
T

3 4 5 6
Number of Principal Components

-0.01¢
~0.02F

-0.03f "
\

{
od
13

Horizontal Transiation

J L L L s s N
20 40 80 80 100 120 140 160 180
{frame number

0.06

Horizontai Translation
o
2

-0.01

-0.02f

~0.03 : " s . s " L L
0 20 40 60 80 100 120 140 160 180
frame number

FIG. 4. The cumulative information captured as a function of the number of principal components (top) and the first and second principal components (left and
right, respectively) for 10 different people walking from a single view for the horizontal translation parameter of the five body parts, (torso, thigh, calf, foot, and

arm).



238

YACOOB AND BLACK

Herizontal Transiation
o
T

L i 2

: 1 . L
1020 1040 1060 1080

. 1
1100 1120 1140 1160 1160
frame number

60 1 ' L s 1 L 1 1
1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1085
Starting Frame

0.12 T T T T T T T T
R
0.08

0.06 ]
~0.02} ‘ E
-0.04F ‘

_0.06} :'L/\/“'/\/\f\-/\-"’r\/\’\/ I\\V AN \/-.\/‘ \/’J

-0.08 . L ' L . L L L
1015 1020 1025 1030 1035 1040 1045 1050 1055
Starting Frame

s
1060 1065

FIG. 5. The horizontal motion parameter ag of the five tracked body parts of a test sequence used in recognition and evaluation (left graph) and temporal
translation and time scale recovery for the “walking” input curve starting at frame 1015 until frame 1065 (i.e., translated).

70%). This suggest that a single component can capture walking
well if viewed from a single viewpoint.

Figure 5 shows five temporal curves of one parameter ap of a
test sequence of a new subject. In this experiment we show the
online recovery of transformation 7 for walking. We artificially
start the recognition at different frames during the walking test
sequence (specifically from frame 1015) and recover the trans-
lation L and speed «. Notice that the tested activity begins about
35 frames into the walking model (Fig. 5). A translation of 35
frames will align the tested activity with the model. The other
two graphs in Fig. 5 show the recovered translation L and scaling
(o — 1) parameters of the walking activity as a function of the
starting frame. Notice that at frame 1015 adisplacement of about
two frames leftward is needed to align the curve of Fig. 5 to the
walking activity model described in Fig. 4. This displacement
is increased as the input curve is translated in time. The scaling
parameter indicates that the test activity is about 6% faster than

the mean “walking” activity. This experiment also shows the
effectiveness of the robust norm since it facilitates recognition
even when some of the data is inaccurate due to noise or because
itis missing (e.g., all parameters between frares 1015 and 1045
are zero).

Figure 7 shows the cumulative captured information by the
principal components for a single person’s walking as viewed
from 10 different viewing directions (see Fig. 6). The angles
include walking perpendicular to the camera (toward and away
from it). In this case six principal components are needed to
capture 90% of the information in the motion trajectory of a
multi-viewpoint observation of walking. Figure 8 shows frames
from test sequences for four walking directions.

A set of 44 sequences of people walking in different direc-
tions was used for testing. The model of multiview walking was
constructed from the walking pattern of one individual while the
testing involved eight subjects. The first six activity bases were
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used. The confusion matrix for the recognition of 44 instances
of walking-directions are shown in Table 1. Each column shows
the best matches for each sequence. The walkers had different
paces and stylistic variations, some of which where recovered
well by the linear transformation. Also, time shifts were com-
mon since only coarse temporal registration was employed prior
to recognition. The classification shown in Table 1 was based
on the closest distance of the tested data set to a trained viewing
direction based on the estimated coefficients.
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TABLE 1
Confusion Matrix for Recognition of Walking Direction

Perpendicular  Perpendicular

Walking direction ~ Parallel Diagonal away forward
Parallel 11 2
Diagonal 3 14 1
Perpendicular away
Perpendicular forward 1 1 1 4
Total 15 17 7 5

5.3. Recognition of Four Activities

In this section we illustrate the modeling and recognition of a
set of activities that we consider challenging for recognition. We
chose four activities that are overall quite close in performance:
walking, marching, line-walkingl, and kicking while walking.
Each cycle of these four activities lasts approximately 1.5 s.

Figure 9 shows several frames from a performance of each
activity by a subject and the tracking of body parts. We acquired
tens of sequences of subjects performing these four activities
as observed from a single viewpoint. Temporal and stylistic
variabilities in the performance of these activities are common.
Clothing and lighting variations also affected the accuracy of the
recovery of motion measurements from these image sequences.
The training sequences were temporally registered so that the
beginning of all activities is equal in terms of the perceived con-
figuration of body parts.

Table 2 shows the total number of activities used for both
modeling and recognition. The training instances of activities
were used to construct the activity basis for the four activities.
This activity basis is used in the testing stage on new instances
of these activities in which new performers and performances
were employed.

Figure 10 (left) shows the percentage of cumulative informa-
tion captured by the principal components as a function of the
number of the principal components for 28 instances of four ac-
tivities. It also shows how the first three principal components
(which capture about 60%, while the fourth principal component
captures only 4%) could classify the four activities (see Fig. 10
(right), in which the first three expansion coefficients are shown
for the 28 activities; the interactivity variation exceeds the intra-
activity variation). Recall that the coefficients of the training ex-
amples are computed by projecting each activity in the training
set onto each one of the basis activities using scalar multiplica-
tion. The labels point to the four types of activities used in the
training set. In the following recognition experiments, however,
we use 15 activity bases to capture most of the information about
the activities.

Table 3 shows the confusion matrix for recognition of a set of
66 test activities. These activities were performed by some of the

! A form of walking in which the two feet step on a straight line and spatially
touch when both are on the ground.
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TABLE 2
List of Activities and the Number of Occurrence of Each

PARAMETERIZED MODELING OF ACTIVITIES

in Training and Recognition

Activity Number of training sequences Number of test sequences
Walking 7 15
Line-walking 7 28
Marching 7 11
Walking to kick 7 12

TAELE 3
Confusion Matrix for Recognition Results

241

Activity Walking  Line-walking ~ Walking to kick ~ Marching
Walking 11 3
Line-walking 24 1
Walking to kick 12
Marching 1 1
Total 15 28 12 11

sl

FIG.9. Frames from image sequences of walking, marching, kicking, and line walking and five part tracking (top to bottom, respectively).
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(right) in which classification among activity is clearly visible (c1, c2, and c3 are shown with the respective delineation of the type of activity in the training set).

same people who were used for model construction as well as
other performers. Variations in performance were accounted for
by the linear transformation. Up to 30% speedup or slowdown
as well as up to 15 frames temporal shift were accounted for by
the linear transformation used in the matching.

54. Modeling and Recognition of Speech

In this section we demonstrate the modeling and recognition
of speech from visual information using optical flow measure-
ments computed over long image sequences.

The training set for this experiment consists of 130 image se-
quences containing a single speaker who utters thirteen letters
ten times (Fig. 11). The duration of each utterance is 25 frames.
We computed the image motion for each sequence in the training
set using a robust optical flow algorithm [2]. The robust method
is essential as it allows violations of the brightness constancy
assumption that occur due to the appearance/disappearance of
the teeth, tongue, and mouth cavity. We then randomly chose
a subset of 793 flow fields form the training set of 3120 flow
fields and derived a low-dimensional representation using prin-
cipal component analysis (for a detailed description, see [5] and
Appendix).

Since the image motion of the mouth in our training sequence
is constrained, much of the information in the training flow fields
is redundant and hence the singular values drop off quickly. For
the training data here, the first eight basis flow fields account for
over 90% of the information in the training set and are shown in
Fig. 12.

Image motion is represented as a linear combination of the
basis flow templates: Z§=1 m; M;(x) (M, is a flow template de-
fined over a fixed rectangular region). Using this model, we
estimate the motion coefficients m; as described in [5]. We then
use the eight motion coefficients computed between consecu-
tive images to construct a joint temporal model for the letters.
We consider each spoken letter to be an activity of 25 frames
in duration where eight measurements are computed at each
time instant. The 130 image sequences are used to construct a
low-dimensional representation of the 13 letters. These 130 se-
quences can be represented by a small number of activity bases,
as shown in Fig. 13. Fifteen activity bases, capture 90% of the
temporal variation in these sequences.

Figure 14 shows the eight recovered parameters (i.e., the
motion-template expansion coefficients) for each letter through-
out a single image sequence using a test sequence not in the

Example frames for one letter in the training set.



PARAMETERIZED MODELING OF ACTIVITIES

——m————— it AN
SNNANNNY e
SSNNN\NLH 22

. R N N SR NN —~———————t O S
M Tesasnaants —— wr s

~nwmmmosrtrs

.
.
. s
P -- . o B o .
Zlaadnx 7720 NN :H[/é““l. PR ERE TS TR
~Ati e ({I. Ve PO | R LA NN
Attt s mmn—.n - Ve N Y M P
ettt PPl \\\-:;;::\‘, LR R R R R YDA R R R XY
et et o s AN TR 4 5 I M PPN v ppm

FIG.12. Firsteight basis flow fields computed by PCA. They account for 90%
of the information in the 793 training flow fields.

training set. This figure illustrates the complexity of the model-
ing and recognition of this large data set.

For the testing of recognition performance, we use 10 new
data sets of the same subject repeating the same 13 utterances. A
total of 130 sequences were processed. For each two consecutive
frames in the test sequences we computed the linear combination
of the motion templates that best describes the intensity variation
(see [3]) and use the linear coefficients for recognition.

The confusion matrix for the test sequences is shown in
Table 4. The columns indicate the recognized letter relative to
the correct one. Each column sums to 10 the number of each
letter’s utterances. The confusion matrix indicates that 58.5%
correct classification was achieved. When the recognition al-
lowed the correct letter to be ranked second in the matching
the success rate increased to 69.3%. Recall that it is well estab-
lished that visual information is ambiguous for discriminating
between certain letters. In this set of experiments we observe
some of these confusions. Nevertheless, this experiment shows
the effectiveness of the representation we propose for modeling
and recognition.

5.5. Discussion of Experimental Results

The above experiments have demonstrated the performance of
the proposed modeling and recognition approach. The following
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FIG. 13. Cumulative variation captured by 130 basis vectors of the 130

sequences.

summarizes our observations on the computational aspects of the
algorithm;

€ The complexity of the algorithm is a function of the num-
ber of free parameters, maximal length of activity bases, and
minimization parameters. In the reported experiments the num-
ber of estimated parameters (transformation parameters plus the
expansion coefficients) has been between 10-20. The length of
activity bases has been 160 frames multiplied by the 40 instan-
taneous parameters for articulated motion. Fifteen iterations of
gradient descent were performed. The overall complexity is pro-
portional to 20 = nT % 15 and is O(1).

¢ The parameter search may converge to local minima if the
initial alignment between the activity models and observed ac-
tivity is too far to be accounted for by the coarse-to-fine dif-
ferential formulation of the algorithm. To prevent local minima
selection the algorithm is started with several initial alignments
and the results are compared so that the global minimum of the

TABLE 4
Confusion Matrix for Recognition of 130 Sequences of 13 Letters

Recognized letter A B C D E

F G H I J K L M

Letter A 5

Letter B 9 1

Letter C 6

Letter D 1 1 2 5

Letter E 7
Letter F 2 2

Letter G 2 2 1
Letter H 1
Letter I 1 1
Letter J

Letter K

Letter L 1

Letter M

-
[\
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FIG. 15. Tracking and online recognition of a marching activity. Each frame describes the temporal translation, temporal speed, and distance of the observed

data with respect to the training examples (left, center, and right, respectively).

error function is chosen. Since the activity model duration is
160 frames for the articulated movement we found that start-
ing with eight points is sufficient. Points are selected at 0, 20,
40, 60, 80, 100, 120, 140 frames relative to the onset of the
model.

¢ The algorithm can be used for online activity recognition.
For example, once several tens of frames of an activity have been
acquired, recognition can be started and then repeated for each
incoming frame. Figure 15 shows a few frames from an online
experiment for recognition of marching. The figure shows that
a temporal translation of about seven frames and ordinary speed
are recovered (bottom left and center graphs, respectively, in
each frame). Also it shows for four sample frames the distance
of the observed activity from the closest sample in the train-
ing set of activities (see the bottom right graph in each frame).
This distance is initially large since there are only a few frames
of input (see the first 50-70 frames), then it decreases rapidly
as more frames are acquired and the approximation of the ob-
served data by the basis activities becomes closer to one of the
known activities (an activity from the training set). Eventually

this distance goes down to zero if the activity closely resembles
a training activity.

6. CONCLUSIONS

In this paper we proposed and tested parametric models for ac-
tivity modeling and recognition when a large number of tempo-
ral parameters are recovered from an image sequence. Principal
component analysis and linear transformations were employed
to economically represent these activities and effectively recover
and recognize instances of learned activities. This approach was
demonstrated on large sets of image sequences for recognition
of both articulated and deformable motions.

The modeling and recognition algorithm proposed is simple
to implement. The principal component analysis determines the
proper representation based on the data. Robustness to several
sources of variation in performance of activities is an important
issue that can be challenging to achieve. The employment of
linear transformations in the recognition allowed us to recognize
activities even when time scaling and shift were encountered.
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The formulation of an activity-preserving transformation can
potentially account for a wide range of variations of tempo-
ral parameters that result from viewpoint changes and imaging
parameters. In this paper we focused on variations of the well
understood linear model. The linear transformation, however, is
a uniform transformation and therefore is limited to capturing
global variations in the execution of activities. The formulation
we proposed allows future incorporation of nonuniform trans-
formations.

APPENDIX

Articulated Motion Estimation Algorithm

In the following we summarize the articulated motion esti-
mation model proposed in [11]. This model assumes that each
body part is a plane moving in a perspective scene. The optical
flow of each body patch is given by

(13)
(14)

ulx,y)=ap+aix +ay+ a6x2 + arxy,

v(x, y) = a3 + asx + asy + agxy + ary’,

where a = [ag, a1, a2, a3, a4, as, ag, a7} denotes the vector of pa-
rameters to be estimated, and w(x, a) = [u(x, y), v(x, y)]7 are
the horizontal and vertical components of the flow at image
point x = (x, y). The coordinates (x, y) are defined with respect
to the centroid of the whole body region (i.e., a shared center for
all parts).

To estimate the motion parameters, a;, for a given patch, s,
we make the assumption that the brightness pattern within the
patch remains constant while the patch may deform as specified
by the model. This brightness constancy assumption gives rise
to the optical flow constraint equation

VI-ux,a)+ 1, =0, VxeR,, (15)
where R denotes the points in patch s, I is the image bright-
ness function, and ¢ represents time. VI = [/, I,] and I, are the
partial derivatives of image brightness with respect to the spatial
dimensions and time at the point x.

For human articulated parts, we assume that each patch is
connected to only one preceding patch and one following patch;
that is, the patches construct a chain structure. For example, a
“thigh” patch may be connected to a preceding “torso” patch and
a following “calf” patch. Each patch is represented by its four
corners. We simultaneously estimate the motion parameters, a,,
of all the patches. The total error of the motions of the patches
- (from O to n) is

n

E= Zn:Es = Z Z p(VI -u(x, a,) + I, 0),
s=0

s=0 xeR;

(16)

where p is a robust error norm. Since the connected patches mo-
tions must agree at the points of attachment, a better constrained

YACOOE AND BLACK

equation is given by

- 1
E= 2:; <WE 1) lIx+ulx a) - ¥ —u, a’)nZ),

xeA

an

where |R| is the number of pixels in patch s, A controls rel-
ative importance of the two terms, A; is the set of articulated
points for patch s, & is the planar motion of the patch which is
connected to patch s at the articulated point x, and || || is the
Euclidean norm. The use of a quadratic function for the artic-
ulation constraint reflects the assumption that no “outliers” are
allowed. The second energy term (the “smoothness™ term) in
Eq. (17) can also be considered as a spring force energy term
between two points. In the examples shown in this paper we
track five body parts, thus recovering 40 parameters.

Deformable Motion Estimation Algorithm

In the following we summarize the deformable motion esti-
mation model proposed in [5]. The computation model consists
of two components: modeling principal flow templates and es-
timation of image motion using these templates. Consider the
case of mouth motion during speech; we assume that a region of
interest, /R, has been located and normalized in size to a desired
rectangular size (e.g., using the planar face registration in [4]).

The first component consists of two stages. In the first stage
the dense optical flow of image sequences with training samples
of the mouth motions is computed using [2]. In the second stage
a principal component analysis (PCA) of the instantaneous flow
fields of the training set of images is computed. The output
of this modeling component is a set of g basis flow templates
mi,i=1,...,q (g < number of input flow fields), each basis
vector consists of 2  n elements (# is the number of pixels in
the region of interest). The instantaneous flow between any two
consecutive images can be well approximated by

q
= -
fi= E cimy,
i=1

where the first n elements represent the horizontal flow and the
remaining 7 elements represent the vertical flow at the n pixels.
The second component formulates an objective function that
seeks to best explain brightness movement in a new image se-
quence using the set of basis flow templates. This is given by

q
E@) = Zp(VI : Zc,ﬁtl) +1,,a>, (19)
R i=1

where recovery of the ¢; coefficients that minimize the error E
is performed. Details of the minimization can be found in [5].
The coefficients ¢; are the parameters used in the recognition
experiments in Section 5.4.

(18)
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