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Recently, the assumed goal of computer vision, reconstructing
a representation of the scene, has been critcized as unproductive
and impractical. Critics have suggested that the reconstructive
approach should be supplanted by a new purposive approach that
emphasizes functionality and task driven perception at the cost of
general vision. In response to these arguments, we claim that the
recovery paradigm central to the reconstructive approach is viable,
and, moreover, provides a promising framework for understanding
and modeling general purpose vision in humans and machines.
An examination of the goals of vision from an evolutionary perspec-
tive and a case study involving the recovery of optic flow support
this hypothesis. In particular, while we acknowledge that there
are instances where the purposive approach may be appropriate,
these are insufficient for implementing the wide range of visual
tasks exhibited by humans (the kind of flexible vision system pre-
sumed to be an end-goal of artificial intelligence). Furthermore,
there are instances, such as recent work on the estimation of optic
flow, where the recovery paradigm may yield useful and robust
results. Thus, contrary to certain claims, the purposive approach
does not obviate the need for recovery and reconstruction of flexible
representations of the world. © 1994 Academic Press, Inc.

1. INTRODUCTION

Young disciplines often experience moments of doubt:
“‘Are we doing the right thing?”’ or “‘Is this approach
viable?”’ [1]. Nowhere is this better exemplified than in
the study of computer vision [2]. While progress has been
made, the goal of general vision, on the order of human
visual perception, remains elusive. Recently, this has led
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to the suggestion that the entire endeavor is flawed, that
we should discard the dominant paradigm, and that it
should be replaced with a new, more practical alterna-
tive.! While this position may not qualify as a ‘‘paradigm
shift’’ 3], it certainly advocates a substantial change in
direction. To justify this radical deviation, proponents of
the new, so-called purposive approach muster three lines
of support: first, that machines fall far short of the visual
capabilities of humans; second, that current computer
vision systems cannot actually do very much that is useful
in the way of visual perception; and, third, that the purpos-
ive approach is consistent with the notion that biological
organisms have evolved brain machinery composed of
independent processes, each devoted to solving a particu-
lar visual task [4].

Contrary to these arguments, we take an entirely con-
servative posture, suggesting that the presently dominant
reconstructive approach is viable, and, moreover, that
there are well-grounded computational and evolutionary
reasons for its current, as well as possible future, suc-
cesses. In support of these claims, two kinds of evidence
are presented: first, a general examination of the goals of
vision in both artificial and biological systems and, sec-
ond, a case study of current trends in the recovery of
optic flow that illustrates the continuing viability of the
reconstructive approach. This evidence leads us to con-
clude that the reconstructive approach does provide a
framework for understanding both human and machine
vision and that, in particular, there are already instances

! This is reminiscent of proposals that the entire field of artificial
intelligence should be scrapped, for instance, see [53] or [54], or that
cognitive phenomena should be reduced to neural explanations, for
instance, see [55] or [56].
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where successes have led to useful and robust vision sys-
tems. Moreover, this is not at the exclusion of the purpos-
ive approach, but rather suggests a common ground that
we believe to be more fertile than either approach alone.

2. UNDERSTANDING VISION

In understanding vision, one must begin with the fact
that many problems in visual perception are considered
to be “‘ill-posed’’ [5] and that in order to find a solution,
inference and constraint must be introduced. While these
constraints may be phrased in general terms, for instance
the “‘rigidity’’ constraint of Ullman’s [6] structure-from-
motion algorithm, it is also possible to narrow the domain,
positing specialized constraints dependent upon the visual
task at hand. This constitutes the crux of the purposive
approach. Moreover, there are instances in the natural
world where the notion of narrow constraint is obviously
applied. In a now classic (but once ridiculed) paper, Lett-
vin et al. [7] demonstrated that a frog’s retina contains
special purpose hardware sensitive to small moving black
spots, commonly understood to be ‘‘bug detectors.”
Clearly, this adaptation provides great advantages to the
amphibian so equipped: frogs mostly eat bugs and their
effective detection, even at the cost of an occasional false
alarm, is presumably a key to frog survival. However,
what is good for frogs is not necessarily good for humans
or otherwise “‘intelligent’” machines. In particular, it may
be impossible to identify the specific tasks appropriate to
this level of constraint in such complex systems. Marr
[8] raises precisely this point with regard to the level at
which knowledge or hypothesis is brought to bear on
visual perception. For while such constraints may not
be ‘‘general but particular and true only of the scene in
question,”’ this suggests that ““any very general vision
system must command a very large number of such
hypotheses and be able to find and deploy just the one
or two demanded by the particular situation.”” Moreover,
“this prospect casts a whole (new) complexion on the
vision problem”’ [8, p. 271]. We contend that, couched
in terms of the purposive approach, the number of func-
tionally independent human visual behaviors, as well as
their consequential constraints, is too large a number to
represent efficiently. Indeed, we doubt whether human
visual behavior, or for that matter the operation of any
general purpose vision system, can be understood within
such a narrow context.

Even when one considers higher primates such as
vervet monkeys, there is little evidence that their mental
representations are generally as abstract and as flexible
as our own [9]. While it is true that ‘‘many animals are
specialists, performing skills with much greater sophisti-
cation in some contexts than in others™ [9, p. 310], this
is not the hallmark of human cognition. For example,

many species of birds acquire knowledge of bird song
through domain specific ‘‘tunable blueprints,”’ an innate
special-purpose acquisition mechanism, while human
children seem to acquire domain specific knowledge
through the operation of general acquisition mechanisms
that are rooted in flexible representational structures [10].
Without such representations, knowledge will remain
compartmentalized and inaccessible, leaving the mental
system without the capacity to extend knowledge from
one context to another [9]. In particular, it is this ability
that distinguishes human information processing from that
of other species.

3. RELIGIOUS RECONSTRUCTIONISM? AND
FANATICAL PURPOSIVISM

It is flexibility that distinguishes this reconstructive ap-
proach from the purposive approach. Reconstruction, or
the recovery paradigm, focuses on deriving functional
descriptions of the visible world including its geometric
properties and the physical properties of the visible sur-
faces. The goal then is to build a symbolic, possibly non-
spatial, description of the scene. Once derived, symbolic
descriptions may be used in a variety of ““cognitive’” oper-
ations, such as visual reasoning, planning, or proposi-
tional thought. Stated succinctly, “‘the goal of a percep-
tion system, whether biological or machine, is to create
a model of the real world and to use this model for inter-
acting with the real world”’ [2, p. 116].

To a large degree, what the reconstructive paradigm
has meant, from the artificial intelligence perspective, is
that perception can be effectively ignored; that vision is
a self-contained problem which will produce symbolic
input to Al programs [11]. Hence, expert systems, pro-
duction systems, and other traditional AI domains have
assumed an entirely input-driven perspective on visual
reconstruction—one that disdains any interaction be-
tween a perceiver’s knowledge base and perceptual mech-
anisms. We contend that this viewpoint is unfortunate,
first because both vision algorithms and AI programs may
benefit from some degree of interaction, and second be-
cause it places an unnecessary burden upon the recon-
structive approach. For there is nothing inherent in the
goal of reconstructing the scene that suggests that ‘‘higher
level” task-specific and contextual knowledge should not
be utilized in recovering information from the environ-
ment. Indeed, there are numerous examples from human
psychophysics where so-called “‘top-down’’ processing
influences our perception. For instance, it has been dem-
onstrated that humans recover shape from shading
through the interaction of sensory information with high-
level knowledge, for example, by assuming a single over-
head light source [12]. Similar approaches, many specifi-

? We thank Jitendra Malik for suggesting this wonderful phrase.
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cally motivated by biological models, may also be found
in computer vision, where there has been a recent trend
toward ‘‘active vision’’ [13, 14]—a computational ap-
proach in which vision and higher level control processes
are closely coupled.

Interestingly, because both the active and the purposive
approaches emphasize the use of task-specific con-
straints, the two have often been associated. However,
the underlying theoretical axioms of these two approaches
are quite dissimilar. Specifically, the goal of the active
approach is to reformulate traditionally static vision sys-
tems in terms of the dynamic exploration of the environ-
ment (e.g., by using a mobile camera and/or multiframe
algorithms). Not only does the introduction of an active
perceiver facilitate the application of previously acquired
information to relevant ensuing contexts, but some seem-
ingly intractable vision problems may be solved by the
imposition of such constraints and by the availability of
richer visual input [13]. Thus, active vision is an appealing
and promising technique for developing robust vision al-
gorithms (as well as understanding biological vision [15]).
But is should be emphasized that these advantages do not
dictate a necessary shift in the end-goals of the perceptual
system. Rather, active vision algorithms are fundamen-
tally independent of whether the computational objective
is scene reconstruction (with ensuing task performance)
or simply task completion. Therefore, reformulating cur-
rent algorithms in terms of active vision does not entail
the reduction of vision to a set of task-specific problems.

In contrast, the goal of the purposive approach is to
build systems that will accomplish particular domain-spe-
cific tasks, the output of which is successful task comple-
tion. The study of vision in general is reduced to the
study of the ‘‘tasks that organisms possessing vision can
accomplish’ [4, p. 349]; independent of such tasks, the
study of the general problem of vision is not even thought
to be possible. To present a concrete example, the stan-
dard goal of model-based object recognition is supplanted
by a framework in which objects are viewed in terms of
their roles, functions, or purposes. It is these properties,
not the object’s geometry, that serve as the basis for its
visual recognition [16]. Specifically, ‘‘a chair is an object
on which a person can sit. . . . To recognize a chair, we
should check for the presence of the functional primitive
(the surface patch) just defined”’ [16, p. 124] (this example
is reminiscent of Gibson’s [15] idea of objects ‘‘affording”’
their functions). But these arguments belie the nature of
complex visual information processing and the stated
goals of computer vision/artificial intelligence.>* More-

3 Any attempt to understand recognition at this level is also plagued
by the fact that even seemingly well-defined concepts such as “‘even
number’’ appear to be neither definitionally nor prototypically repre-
sented [57]. Thus, for more complex concepts, such as ‘‘chair’’ or
“fruit,”” it may be difficult, if not impossible, to operationalize their
core functions or purposes.

over, there are no a priori reasons for supposing that
general purpose vision is impossible: unquestionably, the
evolution of vision in humans offers an existence proof
for the development of precisely the kind of flexible, per-
ceptual system to which the discipline of artificial intelli-
gence often aspires.

Of course, in specifying end goals that entail the recon-
struction of the scene one could argue that computer vi-
sion is barking up the wrong tree altogether.* Some propo-
nents of the purposive approach have done just that,
asserting that the goal of computer vision should not be
to build systems that mimic human vision or to serve
as general purpose perceptual systems, but to provide
answers to the question, ‘“What am I going to use this
visual ability for?”’ [4, p. 348]. Yet this conception is at
odds with one of the major tenets of the purposive ap-
proach, that machine perception is not up to snuff with
human visual capabilities. For while there is no denying
that this is the current state of affairs, this comparison
leads to a different research agenda than does the notion
that we should give up trying to build “‘intelligent’” vision
systems and instead concentrate on simpler domain spe-
cific problems.’ The commonly understood goal of the
reconstructive approach is both explaining and imple-
menting complex visual behaviors [17]; changing the goal
does not solve this problem, it simply avoids it. Taken
together, these arguments suggest that the purposive ap-
proach does not really provide an alternative explanation
to the reconstructive approach, but rather simply offers
an alternative goal for computer vision—one that cannot
hope to explain or accomplish many of the commonly
held objectives of artificial intelligence, cognitive psychol-
ogy, Or neuroscience.

4, EVOLUTIONARY PERSPECTIVES

It would be iniquitous to suggest that advocates of the
purposive approach completely ignore evolutionary con-
siderations. Indeed, Aloimonos [4] suggests that the pur-
posive approach is ‘‘consistent with evolution’ (p. 348)
in that individual visual abilities, such as avoiding danger,
locating food, and recognizing kin, would seem to have
been selected for independently of each other. Brooks
[11] makes a similar argument in favor of simple physically
grounded systems, speculating that the relatively recent
arrival of Homo sapiens on the evolutionary scene indi-
cates that complex problem solving behavior, language,
and other uniquely human traits are essentially out-
growths of more fundamental sensing and reactive abili-

4 And concurrently much of human psychophysics; indeed, Gibson
[15] would most likely concur with this argument.

5 Of course, this ignores the less extreme viewpoint that “‘intelligent’
behavior may be understood as an emergent property of simpler pro-
cesses (e.g., [17, 51]).
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ties common to many species. These points are reiterated
by Cheney and Seyfarth [9] when they state that ‘‘natural
selection, it appears, has acted not on general skills but
on behavior in more narrowly defined ecological do-
mains’’ (p. 310). In this instance, we concur and set forth
the hypothesis that the characterization of natural selec-
tion as a ‘‘tinkerer’’ (e.g., [18]) provides strong reasons
to believe in some version of information-processing mod-
ularity [19] in the evolution of complex systems. How-
ever, this conception of independent mechanisms should
not be confused with the purposive agenda of decompos-
ing visual problems into continually simpler tasks. Be-
queathing modularity upon a particular subsystem in no
way entails that it is in any way purposive, but rather that
it may be generally characterized as modality specific,
innately specified, hard-wired, autonomous, and not as-
sembled [19]. Note that all of these properties are orthogo-
nal to the information-processing goal of the module.
Computational objectives need to be specified indepen-
dently and may take almost any form, including the recov-
ery of scene attributes or the purposeful execution of a
specific visual task.

Recent studies on the evolution of complex informa-
tion-processing mechanisms in humans underscore this
point [20]. For instance, Pinker and Bloom [21] have ar-
gued that natural language is the result of traditional Dar-
winian selective pressures. In particular, they suggest that
human language satisfies two important criteria for when
a trait should be attributed to natural selection: first, com-
plex design for some function (e.g., the computational
objective), in this instance ‘‘the communication of propo-
sitional structures over a serial channel’’ [21, p. 712]; and,
second, the absence of alternative explanations for such
complexity. Similarly, we surmise that when human vi-
sion is judged by the same two criteria it too should be
considered the product of selective evolutionary pres-
sures.

First, it seems incontrovertible that the human visual
system exhibits complex design. But for what functions?
Itis here that we believe the traditional goals of the recon-
structive approach come into play, setting forth two clear
objectives: the reconstruction of the scene and the recog-
nition of objects within the scene.® There are numerous
lines of admittedly introspective evidence that human vi-
sion is adapted for fulfilling precisely these functions: for
example, the perception of object properties for recogni-
tion has implications for kin recognition, social interac-
tion, visual communication, predator avoidance, tool
making, and food identification; likewise, the reconstruc-

8 Contrary to the view espoused by several prominent theories of
object recognition, e.g., [58], recognition does not entail reconstruction,
see [59]; the converse is also true. Aloimonos [4] points out that recon-
struction does not entail recognition, and moreover, that the tasks ac-
complished by each may be considered independently.

tion of a symbolic representation of the visual scene has
implications for danger avoidance, navigation, food loca-
tion, tool use, and visual reasoning.

Second, we are dubious as to whether the purposive
approach provides an alternative explanation for the evo-
lution of such complex behaviors. Essentially, the purpo-
sive approach offers a ‘‘divide and conquer’’ explanation
in which *‘the machinery of the brain devoted to vision
consists of various independent processes that are de-
voted to the solution of specific visual tasks”’ [4, p. 348].7
Although these abilities may be based on common princi-
ples, they are hypothesized to have evolved at separate
times and within different neural hardware. While this
independence reduces the complexity of the behaviors
that an organism must acquire (or develop) during its
lifetime, it increases the complexity of evolving such be-
haviors—necessitating the repeated derivation of com-
mon design principles for many related adaptive tasks.
In contrast, the reconstructive approach assumes that
each independent mechanism contributes to a common
representation that suffices for general purpose vision.
Consequently, a solution to a particular computational
problem need only arise once in order to be employed
across a wide range of visual processes. Of course, recon-
struction mechanisms may have likewise originated in
particular task-specific abilities (indeed, they almost cer-
tainly did), but as generally adaptive visual principles
they were coopted for many purposes.®

Note that human visual cognition clearly displays some
of the attributes that one would expect to find in a flexible,
general purpose vision system. For instance, it is well
documented that humans use mental imagery—a sophisti-
cated subsystem for performing visual reasoning via sym-
bol manipulation over spatial representations [22]. The

.use of mental imagery has been implicated in a variety of

problem solving domains; not only is it useful for solving
the piano mover’s problem, but there is evidence that it
is used in scientific reasoning, creative discovery, and
navigation [23]. Moreover, the flexibility of these pro-
cesses facilitate their extension to many other visual do-
mains: for instance, there is behavioral evidence that the
mental imagery mechanism referred to as ‘‘mental rota-
tion™’ is also sometimes used in object recognition [24].
Anthropologists have also speculated that an ‘‘increased
ability to think in—and communicate by means of—spe-

7 This element of the purposive approach is quite similar to Brooks’
‘‘subsumption architecture’ [11], e.g., a collection of independent be-
haviors that connect ‘‘perception to action.”

§ It may be argued that certain procedures are optimal and therefore
will be likely to reoccur. However, this appears to be true only at the
most general level, for instance in the homology between human and
octopus eyes or between bird and bat wings. The specific underpinnings
of these homologous structures are not based upon the same evolution-
ary history and therefore vary along many dimensions.
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cific visual images’’ and ‘‘an emerging consideration of
design possibilities by way of two- and three-dimensional
images’’ may have helped to spur the rapid development
of new tools and weapons in human evolution. Further-
more, while the actual initiation of image-based represen-
tations may not be attributable to ‘‘the crossing of a neuro-
logical threshold,”” there is no doubt that certain types of
neural hardware (and coincident information-processing
capabilities) are a prerequisite [25, pp. 98-99]. Thus, with-
out the presence of such flexible visual representations,
one of the most distinctive signatures of human behavior,
tool use, might have been impossible.

5. COMPUTATIONAL CONSIDERATIONS

Where then does the necessary inference and constraint
arise if not from the purposive approach? In fact, the
seeds for solving this problem may be found in Marr’s [8]
formulation of the problem of vision. This perspective has
been reiterated by Marr’s collaborator Whitman Richards
who states, ““The success of the perceptual act is inti-
mately coupled with the observer’s ability to build internal
representations whose assumptions reflect the proper
structure and regularities present in the world. . ..
Fundamental to perception is thus the notion that there
is indeed structure in the world’’ [26, p. 11]. The recon-
structive approach is no more mired in the ill-posed nature
of visual perception than is the purposive approach! Con-
straints are introduced, but at the level of the physical
world rather than at the level of a specific task.

Indeed, some of the assumptions of the purposive ap-
proach appear to be restatements of constraints already
found in recovery algorithms. For instance, structure-
from-motion algorithms have often introduced the con-
cept of multiple frames [27], a constraint that is often
construed in a manner akin to the idea of ‘‘active’’ vision
[13]. In particular, using the types of assumptions found in
active vision, structure-from-motion algorithms are more
robust. Exactly this point has often been raised in support
of the purposive approach, for example, stating that ‘‘one
can get more constraints on the motion parameters using
many frames’’ [4, p. 351]. Again we wish to emphasize
that this application of active vision in no way entails
purposiveness. In fact, many current instantiations of the
reconstruction paradigm implicitly make use of active vi-
sion and may benefit further by making this explicit. How-
ever, this is not the same level at which ‘‘purposivists’’
have sometimes proposed constraints be applied. For pos-
iting a multiple or even a many view constraint is entirely
consistent with the approach as espoused by even the
most ardent neo-Marrian reconstructionists.

6. DIRECTIONS IN RECONSTRUCTION: A CASE STUDY

We now turn to some of the specific criticisms leveled
against the reconstruction paradigm. In order to do this,

we have selected the problem of recovering optical flow,
a frequently cited example of the apparent failures of
reconstruction [4]. In particular, in a brief case study, we
attempt to address two of the most widespread concerns
that have been raised about current recovery algorithms:
(1) that they are not robust in the presence of noise and
(2) that they are irremediably inefficient. More generally,
both of these criticisms are rooted in the belief that the
reconstruction paradigm has failed to take into account
the computational demands of a real world perceiver.
Indeed, given the current state of the art, these charges
may be somewhat valid. However, in light of promising
advances in the field, we maintain that this does not render
the framework itself beyond repair, but rather suggests
new directions for future research.

We begin by considering the specific problem of recov-
ering a dense optical flow field. In addition to being the
subject of significant scrutiny by critics of the reconstruc-
tion paradigm, it provides an appropriate topic for study
because it traditionally has been a popular problem in
computer vision and is considered to be an important
mechanism in biological vision (e. g., [15]). From a com-
putational standpoint, results to date indicate that the
estimation of optical flow is too inefficient for robotic
applications and too unreliable to be useful for problems
such as structure-from-motion [4]. Yet based on human
psychophysical results, the recovery of optical flow is a
generally solvable problem. Therefore, robust formula-
tions must exist.

As mentioned, one general problem has been that algo-
rithms for optical flow have not taken into account the
real-time demands of an active perceiver, for instance, a
mobile robot. Indeed, this particular criticism has been
raised frequently, specifically suggesting that because the
computation of optical flow is ill-posed and requires regu-
larization, algorithms for computing it are inherently itera-
tive and ill-suited to real-time applications. The purposive
paradigm’s alternative to using optical flow is to find repre-
sentations that are easier to compute, for example, normal
flow or qualitative descriptions of the flow field.

Do the previous inadequacies of optical flow algorithms
imply that the endeavor should be abandoned? We think
not. First, motion provides important structural informa-
tion about the world, and it should be exploited—as evi-
denced by examples from biological organisms. Second,
recent work using robust and dynamic algorithms ad-
dresses the main criticisms lodged by advocates of the
purposive paradigm. Therefore, we believe it is too soon
to dismiss optic flow as unusable. In fact, there are indica-
tions that we are entering an exciting period in which
robust approaches are being developed and the issues
of incremental processing in a dynamic environment are
being taken seriously. In the sections that follow, we
consider how these new trends in optical flow research
answer some of the criticisms of the purposivists.
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6.1. Robust Optical Flow

First, we address the criticism that many current ap-
proaches to estimating optical flow are not robust. Typi-
cally, optical flow algorithms embody a set of idealized
assumptions about the scene, camera motion, and image
noise that, in practice, are frequently violated. Most cur-
rent algorithms are non-robust in that they are sensitive
to such violations and, moreover, their performance does
not degrade gracefully. However, there are a number of
promising techniques for increasing robustness, including
the use of robust statistics, better models of optical flow,
long image sequences, and analysis of the reliability of
flow estimates.

One approach for dealing with the problems of ro-
bustness involves the use of robust statistical techniques
[28] to deal with motion discontinuities and noise. For
example, the work of Schunck [29] uses a robust cluster-
ing of constraint lines to determine optical flow. Black
[30] has used robust techniques to develop a framework
for robust estimation of optical flow and has shown sig-
nificant improvements over standard least-squares formu-
lations. Correlation-based approaches can also benefit
from robust techniques which reduce the effects of outli-
ers at motion discontinuities [31].

One of the most commonly violated assumptions ef-
fecting the robust recovery of optical flow is that of spatial
smoothness. Traditional regularization schemes for re-
covering smooth flow fields have the detrimental effect
of over-smoothing at motion boundaries. If the recovery
of structure is our goal, then these boundaries are likely
to be important. There are now many approaches that
attempt to solve this problem. The most notable are the
Markov random field (MRF) approaches [31-33] in which
motion discontinuities are represented either explicitly
using “‘line processes’’ [34] or implicitly using weak conti-
nuity constraints [35].

Recently, there has also been interest in achieving more
robust and accurate motion estimates by adopting more
sophisticated parametric models of image motion within
aregion. In particular, affine models of optical flow have
been shown to be good local approximations to image
motion in many common situations [36]. Such models
constrain the local motion estimate more strongly than
traditional regularization (non-parametric) schemes and
allow the estimation of motion in regions with only sparse
image structure.

Finally, in cases where the flow estimates are poor or
uncertain, it is useful to have an estimate of the flow
vector’s certainty through the use of confidence measures
[371, probabilistic estimates [38], or estimation theoretic
techniques {39]. This work is an important contribution,
for it may allow processes that use optic flow to ignore
poor measurements and hence produce accurate results.

6.2. Temporal Persistence

The second main criticism of optical flow algorithms is
that their computational expense prevents them from be-
ing used under real world conditions. Many previous ap-
proaches have only considered the two-frame estimation
problem and those that have considered longer sequences
typically have done so in a batch fashion [40, 41]. There
have been recent advances on this front; in particular,
there are now a number of incremental approaches that
compute optic flow dynamically and refine the flow esti-
mates incrementally over an image sequence.

For instance, Singh [39] uses a Kalman filter base ap-
proach [42] to estimate optical flow incrementally. There
are a number of other analogous approaches for estimating
depth from motion [43, 44]. While there are problems
with the Kalman filter approach, it brings us closer to the
objective of dynamic optical flow. An alternative incre-
mental minimization approach [31] uses a robust formula-
tion and solves the difficult minimization problem incre-
mentally over a sequence of images. This approach is
unique in that it explicitly incorporates a temporal persis-
tence constraint in the formulation of the optical flow
equation. Temporal persistence provides a powerful addi-
tional constraint, at the level of the physical world, on
the interpretation of visual motion and results in increased
robustness.

In a different direction, various researchers have been
looking at the real-time computation of optical flow. Nota-
ble is the work on implementing optical flow equations
using analog devices [45] which incorporates the idea of
weak continuity for preserving motion discontinuities.
Others have built hardware to perform real-time correla-
tion for optical flow, depth map generation, and tracking
[46, 47].

Computational models of optic flow and, in particular,
the inclusion of the temporal persistence constraint, also
have important implications for understanding biological
vision. Tarr and Black [48] have demonstrated that tempo-
ral persistence produces systematic distortions in motion
recovery very similar to the patterns of distortion ob-
served in human behavioral studies of memories for mov-
ing objects [49]. While such results do not conclusively
demonstrate that similar algorithms are being used in the
human visual system, they do indicate that the level of
constraint and general approach is appropriate for devel-
oping successful algorithms.

6.3. Motion and Action

If the above trends do, in fact, lead to robust and effi-
cient algorithms for optical flow, one can still ask whether
this is a reasonable goal. One of the most damning criti-
cisms of the recovery paradigm is that it has often failed
to ask this question and, as a result, has developed in a
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partial vacuum, isolated from both high level problems
in artificial intelligence and the requirements of a dynamic
robot. The purposive approach has pointed out this omis-
sion and shown the importance of considering the rele-
vance of representations to the tasks a robot must actually
perform. As we have noted, the black box view of vision
is in no way fundamental to the recovery paradigm, but
merely reflects the simplifying choices necessary to attack
a difficult problem.

With the purposive approach, one begins with a nar-
rowly defined task and determines what information is
both necessary and easily computable to achieve the task.
This is a traditional engineering approach to robotics. In
contrast, consider the approach of Nishihara [47] that on
the surface appears very similar; as with the purposive
approach he attempts to solve simple tasks using robust
and efficient methods. Nishihara, however, begins with
a biologically motivated representation based on the sign
of Laplacian of Gaussian filtered images. He then defines
a correlation operation that is a simple, general computa-
tional mechanism for exploiting the representation. These
simple tools are general enough to support a wide variety
of tasks, including the computation of optical flow,
vergence, tracking, near/far discrimination, and stereo
depth recovery. Not only can many of these tasks be
implemented in real time, but the approach is appealing
in that some of the results are compatible with human
psychophysical data.

In a similar vein, Woodfill and Zabih [50] use an optical
flow field, computed in real-time, for the tracking of non-
rigid objects by an active camera. As hardware for the
real-time computation of optical flow becomes more com-
monplace, we expect that we will see more applications
of such representations to problems currently considered
to be in the domain of the purposive approach, e.g.,
tracking, collision avoidance, and heading estimation, as
well as to numerous other problems that are not so easily
captured by a purposive analysis, e.g., structure-from-
motion and motion-base segmentation.

7. FINAL THOUGHTS

We conclude by reiterating that we are not excluding
a role for the purposive approach in the study of vision,
but that we believe it is better suited for understanding
and mimicking the overall visual behavior of frogs rather
than humans. This is quite similar to the approach recently
taken by Brooks [11, 17, 51] in his development of simple
mobile robots that mimic insect behavior. There are also
some aspects of human visual behavior, particularly those
associated with ‘‘automatic’” processing, that may war-
rant a purposive analysis. For instance, a purposive analy-
sis of navigation or wayfinding problems may yield robust
algorithms which rely only on qualitative or partial infor-

mation about optical flow (for example, normal flow [52]).
Likewise, qualitative information about surfaces may suf-
fice for grasping an object. Indeed, to date much of the
actual research done within the purposive framework has
focused on similar problems [4]. Furthermore, some ele-
ments of these novel approaches, in particular the concept
of an active observer, seem to hold great promise for the
study of vision at all levels. Not only do such active
techniques provide new approaches to solving many dif-
ficult and ill-posed problems in computer vision but they
offer a new path for exploring the relationship between
computer and biological vision systems.

However, it is also our position that it is crucial that the
qualitative information provided by *‘purposive’” modules
be general enough that this same information may be
utilized in the reconstruction of the scene.’ Indeed, human
psychophysical studies indicate that this routinely occurs.
Therefore, if the purposive approach does have a role in
understanding general purpose vision, it seems likely to
be at the level of well-defined and narrowly constrained
tasks, but without obviating the need for recovery and
reconstruction. Moreover, the sometimes unstated goal
of much of computer vision, developing complex visual
processing systems capable of producing symbolic de-
scriptions that interact with more traditional Al systems,
is alive and well. This is true not only because of the
present day successes of the reconstructive approach in
computer vision (some of which we have discussed here),
but because we believe such an approach holds out the
best hope for ultimately understanding and duplicating
the adaptive nature of human vision.
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