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Abstract

While research on articulated human motion and pose estimation has progressed rapidly in
the last few years, there has been no systematic quantitative evaluation of competing methods
to establish the current state of the art. Current algorithms make many different choices about
how to model the human body, how to exploit image evidence and how to approach the inference
problem. We argue that there is a need for common datasets that allow fair comparison between
different methods and their design choices. Until recently gathering ground-truth data for
evaluation of results (especially in 3D) was challenging. In this report we present a novel
dataset obtained using a unique setup for capturing synchronized video and ground-truth 3D
motion. Data was captured simultaneously using a calibrated marker-based motion capture
system and multiple high-speed video capture systems. The video and motion capture streams
were synchronized in software using a direct optimization method. The resulting HumanEva-
I dataset contains multiple subjects performing a set of predefined actions with a number of
repetitions. On the order of 50,000 frames of synchronized motion capture and video was
collected at 60 Hz with an additional 37,000 frames of pure motion capture data. The data
is partitioned into training, validation, and testing sub-sets. A standard set of error metrics
is defined that can be used for evaluation of both 2D and 3D pose estimation and tracking
algorithms. Support software and an on-line evaluation system for quantifying results using the
test data is being made available to the community. This report provides an overview of the
dataset and evaluation metrics and provides pointers into the dataset for additional details. It
is our hope that HumanEva-I will become a standard dataset for the evaluation of articulated
human motion and pose estimation.

1 Introduction

The recovery of articulated human motion and pose from video has been studied extensively
in the past 20 years with the earliest work dating to the early 1980’s [10, 22]. A variety of
statistical [1, 2, 3, 6, 12, 36, 37, 38] as well as deterministic methods [21, 41, 35] have been
developed for tracking people from single [1, 2, 7, 12, 15, 20, 21, 25, 26, 27, 29, 37] as well as
multiple [3, 6, 9, 36] views. All these methods make different choices regarding the state space
representation of the human body and the image observations required to infer this state from
the image data. Despite clear advances in the field, evaluation of these methods remains mostly
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heuristic and qualitative. As a result, it is difficult to evaluate the current state of the art
with any certainty or even to compare different methods with any rigor. This technical report
describes a database of human motion and evaluation metrics that can be used to address these
problems.

Quantitative evaluation of human pose estimation and tracking is currently limited due to
the lack of common datasets with “ground truth” with which to test and compare algorithms.
Instead qualitative tests are widely used and evaluation often relies on visual inspection of
results. This is usually achieved by projecting the estimated 3D body pose into the image (or
set of images) and visually assessing how the estimates explain the image [6, 7, 27]. Another
form of inspection involves applying the estimated motion to a virtual character to see if the
movements appear natural [38]. The lack of the quantitative experimentation at least in part
can be attributed to the difficulty of obtaining 3D ground-truth data that specifies the true pose
of the body observed in video data.

To obtain some form of ground truth, previous approaches have resorted to custom action-
specific schemes (or tricks); e.g. motion of the arm along the circular plate of known diameter
[14]. Alternatively synthetic data has been extensively used [1, 2, 9, 35, 38] for quantitative
evaluation. With packages such as Poser (e frontier, Scotts Valley, CA), semi-realistic images
of humans can be rendered and used for evaluation. Such images, however, typically lack realistic
camera noise, often contain very simple backgrounds and provide simplified types of clothing.
While synthetic data allows quantitative evaluation (given known 3D pose), current datasets
are still too simplistic to capture the complexities of natural images of people and scenes.

For 2D human pose/motion estimation, quantitative evaluation is more common and typi-
cally uses hand labeled data [12, 25, 26]. While quantitative evaluation does occur, the datasets
are typically unique to each research group, preventing direct comparison of methods. Further-
more, for both 2D and 3D methods, no standard error metrics exist and results are reported
in a variety of ways which prevent direct comparison; e.g. average root-mean-squared (RMS)
angular error, silhouette overlap, joint center distance, etc.

Here we describe a database of human activity with associated ground truth that can be
used for quantitative evaluation and comparison of both 2D and 3D methods. We hope that
the creation of this database, which we call HumanEva-I1, will advance the state of the art
in human motion and pose estimation by providing a structured, comprehensive, development
dataset with support code and quantitative evaluation metrics. The motivation behind the
design of the HumanEva-I dataset is that, as a research community, we need to answer the
following questions:

• What is the state-of-the art in human pose estimation?

• What is the state-of-the art in human motion tracking?

• What algorithm design decisions effect human pose estimation and tracking performance
and to what extent?

• What are the strengths and weaknesses of different pose estimation and tracking algo-
rithms?

• What are the main unsolved problems in human pose estimation and tracking?

In answering these questions, comparisons must be made across a variety of different methods
and models to find which choices are most important for a practical and robust solution. To
support this analysis, the HumanEva-I database contains a number of subjects performing 3
repetitions (trials) of a varied set of predefined actions. The database is broken into training,
validation, and test datasets (for which the ground truth data is withheld and an on-line eval-
uation system is made available). A set of error metrics is defined and made available as part

1The “I” in HumanEva-I is an acknowledgment that the current database has limitations and what we learn from
this first database will most likely lead to improved database in the future. Consequently we leave open the possibility
of future, improved, HumanEva datasets.

2



of the dataset. These error metrics are general enough to be applicable to most current pose
estimation and tracking algorithms and body models. Support software for manipulating the
data and evaluating results is also made available as part of the HumanEva-I dataset. This
support code shows how the data and error metrics can be used and provides an easy-to-use
Matlab interface to the data. This allows different methods to be fairly compared using the
same data and the same error metrics.

In systematically addressing the problems of articulated human pose estimation and tracking
using the HumanEva-I database, other related research areas may benefit as well, such as, for
example, foreground/background segmentation, appearance modeling and voxel carving.

It is worth noting that similar efforts have been made in related areas including the devel-
opment of datasets for face detection [23, 24], human gait identification [31] and dense stereo
vision [32]. These efforts helped advance the state-of-the-art in the respective fields. Our hope
is that the HumanEva-I dataset will lead to similar advances in articulated human pose and
motion estimation.

2 Related work

Classically the solutions to articulated human motion estimation fall into two categories: pose
estimation and tracking. Pose estimation is usually formulated as the inference of the ar-
ticulated human pose from a single image (or in a multi-view setting, from multiple images
captured at the same time). Tracking, on the other hand, is formulated as inference of the
human pose over a set of consecutive image frames throughout the image sequence. Tracking
approaches tend to make strong assumptions about existence of the initial pose of the body at
the first frame and only concern themselves with evolution of this pose over time. In recent
years progress has been made towards combining these two sets of approaches [36, 38], such
that tracking can benefit from automatic initialization and failure recovery in the form of static
pose estimation and pose estimation in turn can benefit from temporal coherence constraints.

It is important to note that both tracking and pose estimation can be performed in 2D,
2.5D, or 3D corresponding to different ways of modeling the human body. In each case, the
body is typically represented by an articulated set of parts corresponding naturally to body
parts (limbs, head, hands, feet, etc.). Here 2D refers to models of the body that are defined
directly in the image plane or in the world plane parallel to the image plane. 2.5D approaches
tend to model the body in the image plane but also allow the model to have relative depth
information. Finally 3D refers to approaches that model the human body as a 3-dimensional
structure which is often composed of simplified parts represented as cylinders or superquadrics.
A short summary of different approaches with evaluation and error metrics employed (when
appropriate) can be seen in Table 1; for a more complete taxonomy, particularly of older work,
we refer readers to [8] and [19].

3 Summary of the data

The HumanEva-I database consists of 4 subjects performing a set of 6 predefined actions three
times (twice with video and motion capture, and once with motion capture alone). A description
of the actions is provided in Table 2. The dataset includes separate training, validation and
test sets. To test the generalization ability of algorithms, we provide some test sets for which
the actions are not in the training or validation set. We also withhold all the activities of one
subject for testing. Details of the data and evaluation methods are provided in Section 6.

Participation in the collection process was voluntary and each subject was required to read,
understand, and sign an Institutional Review Board (IRB) approved consent form for collection
and distribution of data.2

2A copy of the consent form for the “Video and Motion Capture Project” is available by writing to the authors.
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Table 1: Short summary of the human motion and tracking algorithms. Works are listed in the
chronological order by the first author. Type refers to the type of the approach, where (P) corresponds
to the pose-estimation and (T) to tracking. Approaches that employ (�) and (��) evaluation metrics
are consistent with the evaluation metrics proposed in this paper.

Year First Author Model Type Parts Dim Type Evaluation Metric

1983 Hogg [10] Cylinders 14 2.5 T Qualitative
1996 Ju [13] Patches 2 2 T Qualitative
1996 Kakadiaris [14] D Silhouettes 2 3 T Quantitative
1998 Bregler [5] Ellipsoids 10 3 T Qualitative*
2000 Rosales [30] Stick-Figure 10 3 P Synthetic �a

2000 Sidenbladh [34] Cylinders 2/10 3 T Qualitative
2002 Ronfard [29] Patches 15 2 P Hand Labeled
2002 Sidenbladh [33] Cylinders 2/10 3 T Qualitative
2003 Grauman [9] Mesh N/A 3 P Synthetic/Poser �
2003 Ramanan [26] Rectangles 10 2 T,P Hand Labeled �
2003 Shakhnarovich [35] Mesh N/A 3 P Synthetic/Poser ‡
2003 Sminchisescu [39, 40] Superquadric Ellip. 15 3 T Qualitativeb

2004 Agarwal [1, 2] Mesh N/A 3 P Synthetic/Poser †
2004 Deutscher [6] R-Elliptical Cones 15 3 T Qualitative
2004 Lan [16] Rectangles 10 2 T,P Qualitative
2004 Mori [21] Stick-Figure 9 3 P Qualitative
2004 Roberts [28] Prob. Template 10 2 P Qualitative
2004 Sigal [36] R-Elliptical Cones 10 3 T,P Motion Capture ��

2005 Balan [3] R-Elliptical Cones 10 3 T Motion Capture ��
2005 Felzenszwalb [7] Rectangles 10 2 P Qualitative
2005 Hua [12] Quadrangular 10 2 P Hand Labeled �
2005 Lan [15] Rectangles 10 2 P Motion Capture �
2005 Ramanan [25] Rectangles 10 2 T,P Hand Labeled �
2005 Ren [27] Stick-Figure 9 2 P Qualitative
2005 Sminchisescu [38] Mesh N/A 3 T,P Synthetic/Poser †
2006 Lee [17] R-Elliptical Cones 5/10 3 T,P Hand Labeled ��c

2006 Li [18] R-Elliptical Cones 10 3 T Motion Capture ��
2006 Sigal [37] Quadrangular 10 2 P Motion Capture �

� - Mean squared distance in 2D between the set of M = 15 virtual markers corresponding to the joint
centers and limb ends. Measured in pixels (pix).

D(X,X̂) = 1
M

∑M
i=1 ‖ xi − x̂i ‖, where xi ∈ R2 is location of 2D marker i, and X = {x1, x2, ..., xM}.

�� - Mean squared distance in 3D between the set of M = 15 virtual markers corresponding to the joint
centers and limb ends. Measured in millimeters (mm).

D(X,X̂) = 1
M

∑M
i=1 ‖ xi − x̂i ‖, where xi ∈ R3 is location of 3D marker i, and X = {x1, x2, ..., xM}.

† - Root mean square (RMS) error in joint angle. Measured in degrees (deg).

D(θ, θ̂) = 1
M

∑M
i=1 |(θi − θ̂i)mod ± 180◦|, where θ ∈ RM is the pose in terms of joint angles.

‡ - Normalized error in joint angle. Measured as a fraction from 0 to 1.

D(θ, θ̂) =
∑M

i=1 1 − cos(θi − θ̂i), where θ ∈ RM is the pose in terms of joint angles.
� - Pixel overlap threshold results in binary 0/1 detection measure.
� - Mean distance from 4 endpoints of quadrangular shape representing the limb.

aError units were in fraction of the subject’s height.
bWhile only qualitative analysis of the overall tracking performance was presented. A quantitative analysis of the

number of minima in the posterior was given.
cAdditional per limb weighting is applied to downweight the error proportionally to the size of the limb.
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Action Description
Walking Subjects walked in an elliptical path at the edge of the capture space.
Jog Subjects jogged (slow running) in an elliptical path at the edge of the

capture space.
Gesture Subjects were instructed to perform “hello” and “good-bye” gestures in

repetition.
Throw/Catch Subjects tossed and caught a baseball with the help of the lab assistant

(who stood outside the capture volume). Subjects were instructed to
explore a variety of styles (e.g. overhead throw, under arm).

Box Subjects imitated boxing. No instruction was given on how this action
should be performed.

Combo Subjects were instructed to perform a series of actions that consisted
of walking followed by jogging and then balancing on each one of two
feet. The series of actions were performed in sequence without
interruption.

Table 2: Summary of the 6 actions exhibited in the HumanEva-I dataset. For actions that did
not require subjects to move in the capture space (Gesturing, Throw/Catch, Box), with subjects
performed these standing roughly in the center of the viewing volume and facing toward camera C1
(see Figure 1).

To simultaneously capture video and motion information, our subjects wore natural clothing
(as opposed to motion capture suits, as is often done for pure motion capture sessions) on which
reflective markers were attached using invisible adhesive tape. Our motivation was to obtain
“natural” looking image data that contains all the complexity posed by moving clothing. One
negative outcome of this is that the markers tend to move more than they might with a tight-
fitting motion capture suit. As result, our ground truth motion capture data may not always be
as accurate as that obtained by more traditional methods; we felt that the trade-off of accuracy
for realism here was acceptable. We have applied minimal post-processing to the motion capture
data, steering away from the use of complex software packages (e.g. Motion Builder) that may
introduce biases or alter the motion data in the process. As a result, our motion capture data
for particular frames in some sequence may be missing markers or may be mislabeled. This
results in invalid poses for these frames. We made every effort to detect such cases and exclude
them from quantitative comparison. Note that the presence of markers on the body may also
alter the natural appearance of the body. Given that the marker locations are known, it would
be possible to provide a pixel mask in each image covering the marker locations; these pixels
could then be excluded from further analysis. We felt this was unnecessary since the markers
are often barely noticeable in the video data and hence will likely have an insignificant impact
on the performance of image-based tracking algorithms.

Example images of two different subjects jogging and boxing are shown in Figure 3. Data
from 7 synchronized video cameras is shown with an overlay of ground truth motion. More
detailed descriptions of the collection process and the hardware employed are given in the next
section.

Subjects were informed that the data, including video images, would be made available to the research community
and could appear in scientific publications.
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4 Data collection

4.1 Hardware

Ground truth motion of the body was captured using a commercial motion capture (MoCap)
system from ViconPeak (http://www.vicon.com/). The ViconPeak MoCap system is an indus-
try standard for optical marker-based motion capture and has been successfully employed in a
variety of entertainment applications for over 10 years. The system uses reflective markers and
six 1M-pixel cameras to recover the 3D position of the markers and thereby estimate the 3D
articulated pose of the body.

Video data was captured using two commercial video capture systems. One from Spica
Technology Corporation (http://www.spicatek.com/) and one from IO Industries (http://
www.ioindustries.com/). The Spica system captured video using four Pulnix (http://www.
pulnix.com/) TM6710 grayscale cameras. These were grayscale progressive scan cameras with
644x488 resolution and a frame rate of up to 120 Hz. The IO Industries system used three
UniQ (http://www.uniqvision.com/) UC685CL 10-bit color cameras with 659x494 resolution
and a frame rate of up to 110 Hz. The raw frames were re-scaled from 659x94 to 640x480 by IO
Industries software. To achieve better image quality under natural indoor lighting conditions
both video systems were set up to capture at 60 Hz. The rough relative placement of cameras
is illustrated in Figure 1.

The motion capture system and video capture systems were not synchronized in hardware,
and hence a software synchronization was employed. The synchronization and calibration pro-
cedures are described in the next sections. Example images from the HumanEva-I database
are shown in Figure 3. The appearance of the 4 subjects is illustrated in Figure 2.

4.2 Calibration

The motion capture system was calibrated using Vicon’s proprietary software and protocol.
Calibration of the intrinsic parameters for the two video capture systems was done using a
standard checker-board calibration grid and the Camera Calibration Toolbox for Matlab [4].
Focal length (Fc ∈ R

2), principle point (Cc ∈ R
2) and radial distortion coefficients (Kc ∈ R

5)
were estimated for each camera c ∈ {BW1, BW2, BW3, BW4, C1, C2, C3}. We assumed that
pixels were square and let the skew αc = 0 for all c.

The extrinsic parameters corresponding to the rotation, Rc ∈ SO(3), and translation, Tc ∈
R

3, of the camera with respect to the global (shared) coordinate frame were optimized over using
a semi-automated procedure to align the global coordinate axis of each video camera with the
global coordinate axis of Vicon motion capture system. A single moving marker was captured
by the video cameras and the motion capture system for a number of frames (> 1000) at the

same time. The resulting 3D tracked position of the marker Γ
(3D)
t , t ∈ {1..T (3D)} was recovered

using the Vicon software. The 2D position of the marker in video, Γ
(2D)
t , t ∈ {1..T (2D)}, was

recover using a Hough circle transform [11] that was manually initialized at the first frame and
subsequently tracked. Notice that T (3D) �= T (2D) because the video and motion capture systems
are not synchronized in hardware and have different frame rates.

The projection of the 3D marker position f(Γ
(3D)
t ; Rc, Tc) onto the image was then optimized

directly for each camera by minimizing

min
Rc,Tc ,Ac,Bc

T (2D)∑
t=1

δ(t; Ac, Bc)‖Γ(2D)
t − f(Γ

(3D)
t∗Ac+Bc

; Rc, Tc)‖2. (1)

In addition to optimizing over Rc and Tc we also optimized over the relative temporal scaling,
Ac ∈ R, between the video and Vicon cameras, and the temporal offset Bc ∈ R. In doing so
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BW3

Control Station

Capture SpaceC2 C3

C1

BW4

BW1 BW2

3 m

2 m

Figure 1: Camera setup for the HumanEva-I data acquisition. The bird’s eye view sketch is shown
with rough dimensions of the capture space and the placement of 7 video cameras. The color cameras
are labeled C1, C2, C3 and the grayscale cameras by BW1 to BW4.

we assume that the temporal scaling is constant3 and hence there is no temporal drift. The 3D
position f(Γ

(3D)
t∗Ac+Bc

; Rc, Tc) is linearly interpolated to cope with non-integer indices t∗Ac +Bc.
Finally, in Eqn. (1), δ(t; Ac, Bc) is defined as:

δ(t; Ac, Bc) =

⎧⎨
⎩

0 if t ∗ Ac + Bc > T (3D)

0 if t ∗ Ac + Bc < 1
1 otherwise.

(2)

4.3 Synchronization

While extrinsic calibration parameters and temporal scaling, Ac, can be estimated once per
camera (so long as the setup is not moved and Vicon system is not re-calibrated4), the temporal

3In practice Ac ≈ 2 since the frame rate of motion capture system is roughly 120 Hz and video system is 60 Hz.
4Calibration of the Vicon motion capture system changes the global coordinate frame and hence requires re-

calibration of extrinsic parameters of the video cameras as well.
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(S1) (S2)

(S3) (S4)

Figure 2: Sample images of the 4 subjects used in the HumanEva-I dataset. Notice that appearance
of the subjects varies significantly in the type, style, and color of clothing. We had 3 male and 1
female subject.

offset Bc will be different for every sequence captured. To synchronize the motion capture and
the video in software we manually labeled visible markers on the body for a small sub-set of
images (6 images were used with generally a couple of marker positions labeled per frame).
These labeled frames can be used in the optimization procedure above but with fixed values for
Rc, Tc, and Ac to recover a least squares estimate of the temporal offset Bc for every sequence
captured.

5 Evaluation Metrics

Various evaluation metrics have been proposed for human motion tracking and pose estimation.
For example, a number of papers have suggested using joint-angle distance as the error measure
(see Table 1). This measure however assumes a particular parameterization of the human body
and cannot be used to compare methods where the body models have different degrees of freedom
or have different parameterizations of the joint angles.

For this dataset we aim to define an error measure that will be (1) widely applicable and (2)
relatively fast to compute. Hence, we propose an error measure based on the sparse set of virtual
markers that correspond to the locations of joints and limb endpoints and that can uniquely
encode the pose of the body. This error metric was first introduced for 3D pose estimation and
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tracking in [36] and later extended in [3]. It has since been also used for 3D tracking in [18] and
for 2D pose estimation evaluation in [15, 37].

Assuming that we can represent the pose of the body using M virtual markers, we can
write the state of the body as X = {x1, x2, ...xM}, where xm ∈ R

3 (or xm ∈ R
2 if a 2D body

model is used) is the position of the marker m in the world (or image respectively). Notice,
that converting from any standard representation of the body pose to X is trivial. The error
in estimated pose X̂ to the ground truth pose X can then be expressed as the average absolute
distance between individual markers,

D(X,X̂) =
M∑

m=1

‖ xm − x̂m ‖
M

. (3)

To ensure that we can compare algorithms that use different numbers of parts we add a binary
selection variable per-marker ∆̂ = {δ̂1, δ̂2, ...δ̂M} obtaining the final proposed error metric,

D(X,X̂, ∆̂) =

M∑
m=1

δ̂m ‖ xm − x̂m ‖∑M
i=1 δ̂i

, (4)

where δ̂m = 1 if the proposed algorithm is able to recover marker m, and 0 otherwise.
For the sequence of T frames we can compute the average performance and the standard

deviation of the performance using the following:

µseq =
1

T

T∑
t=1

D(Xt, X̂t, ∆̂t), (5)

σseq =

√√√√ 1

T

T∑
t=1

[D(Xt, X̂t, ∆̂t) − µseq]2. (6)

Since many tracking algorithms are stochastic in nature, an average error and the standard
deviation computed over a number of runs is most useful. As a convention from previous
methods [3, 15, 37, 36] that have already used this error metric we compute the 3D error in
millimeters (mm) and 2D error directly in the image in pixels (pix).

Notice that for algorithms that model the posterior distribution using a unimodal distribution
over the pose of the body the mean over the posterior is likely to give a good estimate for the
pose X . For others, however, that may model the posterior using distributions that can be
multi-modal, better results can be obtained by choosing X̂ to be, for example, the most likely
sample from the posterior. This is discussed in greater detail in [3]. Alternative error metrics
that compute lower-bounds for sample- or kernel-based representations of the posterior are
discussed in [3].

6 Dataset structure

The HumanEva-I dataset contains 4 subjects performing a set of 6 actions each in 3 separate
trials (two with synchronized motion and video and one with motion capture alone). All video
data was captured in uncompressed format and later compressed using XviD codec5 (version
1.1.0) to make web distribution of the video data practical. The directory structure for the
dataset is as follows:

5An open source video codec that is based on MPEG-4. Both XviD and DivX evolved from the Mayo open source
project; however, DivX became a commercial product, while XviD (DivX backwards) is distributed under the GPL
license. For more information, visit www.xvid.org.
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〈Subject〉/Image Data/ - Contains image/video data. Each AVI file in
the directory has the following name structure,
〈Action〉 〈Trial〉 (〈Camera〉).avi.

〈Subject〉/Mocap Data/ - Contains Vicon motion capture data in C3D
format (http://www.c3d.org). Each C3D file
in directory has the following name structure,
〈Action〉 〈Trial〉.c3d.

〈Subject〉/Calib Data/ - Contains image/video calibration data. These
human-readable text .CAL files can be read using
the packaged software and contain intrinsic and
extrinsic calibration parameters for each video
camera.

〈Subject〉/Sync Data/ - Contain synchronization data between the im-
age and the motion capture streams expressed in
the human-readable text .OFS files (one for ev-
ery camera, action and trial). Each OFS file in
the directory has the following name structure,
〈Action〉 〈Trial〉 (〈Camera〉).ofs.

Background/ - Contains 3 sets of background template videos
that were taken in the beginning, at the end and in
the middle of a week-long capture session. These
videos can be used to derive rough silhouettes of
the body. In some actions foreign objects are used
and interactions with a lab assistant are required,
in these cases silhouettes will be poor. These chal-
lenging scenarios however will correspond to real-
istic real-world imaging conditions.

Release Code/ - Matlab sample code for loading and using the
data. Please carefully study this code. A GUI
for viewing the dataset and the code for the syn-
chronized motion capture and video viewer is pro-
vided, as well as example applications for loading
the data, and computing the error using the pro-
posed error metrics. See the README file in this
directory for details.

Release Docs/ - Documentation materials for the HumanEva-I
dataset.

In the above 〈 〉 designate variable names. The valid values for all mentioned variable names
are given bellow.

6.1 Training, validating, and testing

For convenience and fairness the HumanEva-I data is broken down into three disjoint sub-sets:
training, validation, and testing. The details of how the dataset is broken into the three sub-sets
is given in Table 4. For training and validation sets the motion capture is available and error
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Variable Valid (string) value
〈Subject〉 ∈ {S1, S2, S3, S4}
〈Action〉 ∈ {Box, Combo, Gesture, Jog, ThrowCatch, Walking}
〈Trial〉 ∈ {1, 2, 3}
〈Camera〉 ∈ {C1, C2, C3, BW1, BW2, BW3, BW4}

metrics are provided for the evaluation. Users of this dataset are free to use these as they like
though we recommend developing or training algorithms on the training set and saving the
validation set for initial testing. For quantitative evaluation of the test set ground-truth motion
capture data is withheld and an on-line evaluation tool is provided instead. The purpose of this
is to prevent parameter tuning on the test dataset6.

Notice, that trial 3 contains only motion capture data and is intended to be used by groups
interested in learning motion priors. Trial 1 contains synchronized motion capture and video
and is broken (equally) into validation and training segments. In all cases trial 2 is reserved in
its entirety for testing, and the motion capture for those trials is withheld7.

The data and the on-line evaluation is available from the project web page http://www.cs.

brown.edu/research/vision/humaneva/.

Sequence Set Partition Description
Subject Action Trial Validate Train Test FPS Video MoCap

S1 Walking 1 1− 590 591 − 1180 - 60 Hz
√ √

S1 Walking 2 - - 1 − 980 60 Hz
√

W
S1 Walking 3 - (1 − 3238) - 120 Hz × √
S1 Jog 1 1− 367 368 − 735 - 60 Hz

√ √
S1 Jog 2 - - 1 − 856 60 Hz

√
W

S1 Jog 3 - (1 − 3175) - 120 Hz × √
S1 Throw/Catch 1 1− 473 474 − 946 - 60 Hz

√ √
S1 Throw/Catch 2 - - 1 − 929 60 Hz

√
W

S1 Throw/Catch 3 - (1 − 3453) - 120 Hz × √
S1 Gesture 1 1− 395 396 − 790 - 60 Hz

√ √
S1 Gesture 2 - - 1 − 1059 60 Hz

√
W

S1 Gesture 3 - (1 − 2127) - 120 Hz × √
S1 Box 1 1− 385 386 − 770 - 60 Hz

√ √
S1 Box 2 - - 1 − 607 60 Hz

√
W

S1 Box 3 - (1 − 1653) - 120 Hz × √
S1 Combo 2 - - 1 − 2602 60 Hz

√
W

Total (S1) 2268 2266/(13095) 7172

S2 Walking 1 1− 438 439 − 877 - 60 Hz
√ √

S2 Walking 2 - - 1 − 1097 60 Hz
√

W
S2 Walking 3 - (1 − 1523) - 120 Hz × √
S2 Jog 1 1− 398 399 − 796 - 60 Hz

√ √
S2 Jog 2 - - 1 − 733 60 Hz

√
W

S2 Jog 3 - (1 − 1573) - 120 Hz × √
S2 Throw/Catch 1 1− 550 551 − 1101 - 60 Hz

√ √
S2 Throw/Catch 2 - - 1 − 1346 60 Hz

√
W

Table 4 Continued on next page –

6We will log evaluations and, if a group is abusing the test set in a manner consistent with parameter tuning, we
reserve the right to restrict their access to the test set and future versions of the HumanEva database.

7For fairness, the authors of this document will follow the same procedure as all other users and will only access
the test data through the on-line service. Logs of our access will be made available upon request (in fact, we may
make logs of all access to the evaluation data visible on the website).
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Table 4 – continued from previous page

S2 Throw/Catch 3 - (1 − 3340) - 120 Hz × √
S2 Gesture 1 1− 500 501 − 1000 - 60 Hz

√ √
S2 Gesture 2 - - 1 − 1025 60 Hz

√
W

S2 Gesture 3 - (1 − 3551) - 120 Hz × √
S2 Box 1 1− 382 383 − 765 - 60 Hz

√ √
S2 Box 2 - - 1 − 975 60 Hz

√
W

S2 Box 3 - (1 − 3108) - 120 Hz × √
S2 Combo 2 - - 1 − 1996 60 Hz

√
W

Total (S2) 2210 2206/(13646) 7033

S3 Walking 1 1− 448 449 − 896 - 60 Hz
√ √

S3 Walking 2 - - 1 − 806 60 Hz
√

W
S3 Walking 3 - (1 − 2358) - 120 Hz × √
S3 Jog 1 1− 401 402 − 803 - 60 Hz

√ √
S3 Jog 2 - - 1 − 842 60 Hz

√
W

S3 Jog 3 - (1 − 1973) - 120 Hz × √
S3 Throw/Catch 1 1− 493 494 − 987 - 60 Hz

√ √
S3 Throw/Catch 2 - - 1 − 967 60 Hz

√
W

S3 Throw/Catch 3 - (1 − 2074) - 120 Hz × √
S3 Gesture 1 1− 533 534 − 1067 - 60 Hz

√ √
S3 Gesture 2 - - 1 − 554 60 Hz

√
W

S3 Gesture 3 - (1 − 1789) - 120 Hz × √
S3 Box 1 1− 512 513 − 1024 - 60 Hz

√ √
S3 Box 2 - - 1 − 719 60 Hz

√
W

S3 Box 3 - (1 − 1573) - 120 Hz × √
S3 Combo 2 - - 1 − 1761 60 Hz

√
W

Total (S3) 2387 2385/(9767) 5649

S4 Walking 2 - - 1 − 670 60 Hz
√

W
S4 Jog 2 - - 1 − 593 60 Hz

√
W

S4 Throw/Catch 2 - - 1 − 776 60 Hz
√

W
S4 Gesture 2 - - 1 − 462 60 Hz

√
W

S4 Box 2 - - 1 − 577 60 Hz
√

W
S4 Combo 2 - - 1 − 1105 60 Hz

√
W

Total (S4) 4183

Total 6865 6857/(36508) 24037

Table 4: HumanEva-I composition of the Training, Validation and Test-
ing sets. “Set Partition” refers to the frames in the specified range that
disjointly corresponds to either one of the three sets. W indicates that
the motion capture data is Withheld for evaluation.

7 Background subtraction

Since the majority of the current pose estimation and tracking algorithms make use of silhouette
features, background images have been collected to allow foreground/background segmentation
of the scene. For each camera 3 sets of the background images have been collected; before, after
and in the middle of a week-long capture session. Since some parts of the scene are non-rigid
and may have moved slightly over the session (e.g. the carpet may have moved due to the
forces applied by the legs) all 3 sets should be used for a more robust background segmentation.
Obtaining good silhouettes in the case of color cameras is easier because the background is less
ambiguous; in the grayscale cameras good silhouette segmentation is challenging.
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Software for learning a per-pixel background model using a mixture of Gaussians and then
segmenting the image into foreground and background layers is provided as part of the software
package. While the background distribution modeled by a mixture density at every pixel is
learned from the collected background images using EM, the foreground object (person) is
assumed to have uniform distribution over all colors. This results in the classification criterion
for foreground/background.

8 Baseline algorithm

A baseline particle filtering algorithm [3] for tracking human pose with ground-truth initializa-
tion is under development and will be provided for quantitative performance comparison when
available at a future date.
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Figure 3: Example data from the HumanEva-I database. Example images of boxing from 7 syn-
chronized video cameras (three colored and four grayscale) are shown on top. The synchronized
motion capture data overlaid on the multi-view image data for walking of a different subject is shown
on bottom. Notice that motion capture is available for the top sequence as well, but is not shown
for clarity.
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