
Chumpy Documentation
Release 1.0

Matthew Loper

July 02, 2014

CONTENTS

1 What does Chumpy do? 1
1.1 Easy problem construction . 1
1.2 Easy access to derivatives . 2
1.3 Easy local optimization . 2
1.4 Numpy is still useful! . 3

2 Advanced Topics 5
2.1 Basic Characteristics . 5
2.2 Visualizing your Terms . 6
2.3 Implementing Chumpy Objects . 7
2.4 Caching helpers . 8

i

ii

CHAPTER

ONE

WHAT DOES CHUMPY DO?

Chumpy is a Python-based framework designed to handle the auto-differentiation problem, which is to evalute an
expression and its derivatives with respect to its inputs, with the use of the chain rule. Auto-differentiation is neither
purely symbolic, nor “differentation by finite differences.”

Chumpy is intended to be “Numpy made differentiable:” it supports mostly the same interface as that supported by
the popular Numpy library for scientific computing. Many alternative autodifferentiation frameworks exist; Chumpy
was written for ease of use. By allowing the transparent, concise specification and optimization of objectives, we hope
that Chumpy can help people solve problems. Other frameworks should be considered if second-order derivatives or
compilation (to CPU or GPU) is important.

Both Numpy and Chumpy allow working with arrays: specifically creating, assigning, operating on, and doing lin-
ear algebra with arrays. At a high-level, Chumpy makes construction and local minimization of objectives easier.
Specifically, it provides:

• Easy problem construction by using Numpy’s application interface

• Easy access to derivatives via autodifferentiation

• Easy local optimization methods (12 of them: most of which use the derivatives)

Better Numpy tutorials are available elsewhere, but hopefully this will serve to introduce you to some of what is
possible, both in Numpy and Chumpy. Much of this tutorial will be by example.

(Disclaimer: Chumpy relies heavily on Numpy and Scipy, and would not exist without them.)

1.1 Easy problem construction

Consider the construction of this quadratic function:

f(x, y,A) = xTAx+ y2

In Numpy, the energy f can be expressed as follows, with some arbitrary initializations given to {x, y,A}:

import numpy as np
x, y, A = np.array([10,20,30]), np.array([5]), np.eye(3)
z = x.T.dot(A).dot(x)
f = z + y**2

In Chumpy, it can be expressed in the same way:

import chumpy as ch
x, y, A = ch.array([10,20,30]), ch.array([5]), ch.eye(3)
z = x.T.dot(A).dot(x)
f = z + y**2

1

http://en.wikipedia.org/wiki/Automatic_differentiation
http://www.numpy.org
http://www.autodiff.org/?module=Tools
http://wiki.scipy.org/Tentative_NumPy_Tutorial
http://www.numpy.org
http://www.scipy.org

Chumpy Documentation, Release 1.0

But whereas Numpy is operating on (and assigning to) arrays in memory, Chumpy internally builds structures to
facilitate differentiation and optimization.

Much more complicated functions can be expressed with both Numpy and Chumpy, including vectors, matrices,
tensors, selection, and linear algebra. Over 100 functions in Numpy are also available and differentiated through in
Chumpy, including SVD, least squares, determinants, tensor multiplication, and matrix inversion. Functions not yet
available in Chumpy include eigenvalue decomposition, QR decomposition, and Kronecker products.

1.2 Easy access to derivatives

Now let us compute ∂f
∂x . With Chumpy, this requires only one additional line:

df_x = f.dr_wrt(x)

Derivatives with respect to the other variables (intermediate and otherwise, vectors and matrices) are also easy to
compute:

df_y = f.dr_wrt(y)
df_A = f.dr_wrt(A)
df_z = f.dr_wrt(z)

Of course, for this example, computing derivatives by hand is easy. The problem comes when more complex energies
(or combinations of energies) is required; differentiation for each minor change to the objective, by hand, is not always
a good use of time.

Depending on the constructed function, the Jacobian may take three forms:

• A 2D SciPy sparse matrix

• A 2D Numpy dense array

• “None”, if an object is not differentiable with respect to the requested object

Answers to related questions (such as “why is the Jacobian 2D”, or “why is the Jacobian sometimes dense and some-
times sparse”) are available in Chapter 2.

1.3 Easy local optimization

Local optimization methods can benefit greatly from having built-in derivatives. Performing local optimization of f is
also designed to be easy, and requires one more line:

ch.minimize(f, [x, y], method=’bfgs’)

Note that the independent variables here are not required to be {x, y}, but can be any subset of {x, y,A}.

That function can use one of 12 methods for optimization, each of which is implemented by SciPy’s minimize method,
and which can be specified by the inclusion of a ‘method’ parameter to ch.minimize. Those methods include Nelder-
Mead, Powell, CG, BFGS, Newton-CG, Anneal, L-BFGS-B, TNC, COBYLA, SLSQP, trust-ncg. To be clear: with
the exception of “dogleg”, optimization is “outsourced” to SciPy, but a simple interface is provided so that function
and derivative callbacks don’t require explicit definition.

This also avoids the packing and unpacking (of both parameters and residuals) often necessary in the construction of
callbacks for nonlinear optimization.

2 Chapter 1. What does Chumpy do?

Chumpy Documentation, Release 1.0

1.4 Numpy is still useful!

First: Chumpy uses Numpy a lot under the hood, and wouldn’t exist without it. Even so, one might wonder: can I
replace all my Numpy code with Chumpy code? Will everything just work and be better?

Here are some considerations:

• Chumpy always casts integers to floating-point, because it depends on values changing smoothly. Using
Chumpy to store indices doesn’t make much sense, so indices are best kept as Numpy arrays.

• Although Chumpy supports some interesting functions (svd, tensorinv, inv, lstsq), it certainly does not
support all. Eigenvalue related functions, for example, are not yet differentiated through with Chumpy.

• Because it behaves more functionally (as in functional programming) than Numpy, results may be different.

• Complex numbers are not supported.

At a more abstract level, if you don’t want derivatives and you don’t want to optimize an objective, using Chumpy
probably doesn’t make sense.

1.4. Numpy is still useful! 3

Chumpy Documentation, Release 1.0

4 Chapter 1. What does Chumpy do?

CHAPTER

TWO

ADVANCED TOPICS

First, we will state some technical characteristics of Chumpy. Next we’ll show a way of visualizing the structure of an
expression. Finally, we’ll introduce some examples of how to define (rather than compose) differentiable primitives
with Chumpy.

2.1 Basic Characteristics

Chumpy is primarily a forward-mode, Jacobian producing autodifferentiation framework. Reverse-mode is partially
supported, but much slower than it should be because some basic functions need implementation. Values and Jacobians
are computed on demand, and recomputed in a lazy fashion: when assignment at the leaves of an expression tree
occurs, caches in dependent parents are invalidated. Second-order and higher-order derivatives are not supported.

Its origin as a forward-mode framework comes partially from its use for Gauss-Newton Hessian approximation in
least-squares nonlinear optimization, where the Jacobian is required. Reverse mode is “simulated” by Jacobian multi-
plication where not yet explicitly implemented.

Numpy is more procedural than Chumpy. In Numpy, operations on arrays result in new arrays that don’t retain
references to operands. Chumpy, on the other hand, constructs a tree out of the expressions you give it, and the values
of some objects may change when others do. For example:

x = ch.array(5)
y = ch.array([5,7])
z = x + y
x[0] = 6 # This changes "z" in Chumpy, but not in Numpy!

This can be considered good or bad, but (given all the talk of Numpy compatibility) it must be considered as a “gotcha”
in the case that Numpy and Chumpy code are expected to behave in the same way.

One question that may arise is why the Jacobian is always 2D. The answer is that sparse libraries available in Python
do not have good support for sparse tensors. This means that if the input (or output) of a function is multidimensional,
the rows (or columns) correspond to values as they would be unwrapped by row, i.e. row-major order.

One might also wonder why both dense and sparse matrices are needed. If Chumpy only returned sparse or dense
matrices, this would restrict performance: sparse and dense matrices are fast in different scenarios. For example,
differentiating through the addition of two vectors produces Jacobians that take the form of the identity, so instead of
returning a contiguous dense Jacobian with mostly zeros, a sparse matrix is returned in this case. But interesting ex-
pressions are typically composed of many operations. Currently, the rule is that if any dense matrices are encountered
in a chain, the resulting Jacobian becomes dense, but other heuristics are possible.

5

Chumpy Documentation, Release 1.0

2.2 Visualizing your Terms

As expressions become more complicated, you may want ways of visualizing their structure. One simple method for
doing so is as follows (note: this expression is nowhere near complicated, but is useful for illustration):

a, b, c, d = Ch(5), Ch(6), Ch(7), Ch(8)
y = a+b/(c*d)
y.show_tree() # pops up a window

Figure 2.1: An expression tree.

Because Python doesn’t track variable names well, the names in the tree are unrelated to the names you gave them.
This makes it more difficult to decipher the tree. For that reason, you may wish to label parts of the expression, and
show it again:

a.label = ’cats’
b.label = ’dogs’
c.label = ’kittens’
d.label = ’goats’
y.show_tree()

Figure 2.2: An expression tree with labeled items.

6 Chapter 2. Advanced Topics

Chumpy Documentation, Release 1.0

2.3 Implementing Chumpy Objects

Many Chumpy primitives already exist (for addition, subtraction, matrix multiplication, on and on), but you may wish
to define your own: for efficiency or because it can’t be created by composing existing primitives.

Composing expressions from the bottom up is not always feasible or desirable. For that reason, you may wish to
define your own classes. For example, let us imagine for the moment that the Sin primitive does not exist. Here is an
implementation, which supports scalars, vectors and arrays:

from chumpy import Ch
import scipy.sparse as sp
class Sin(Ch):

dterms = (’x’,)

def compute_r(self):
return np.sin(self.x.r)

def compute_dr_wrt(self, wrt):
if wrt is self.x:

values = np.cos(self.x.r)
return sp.diags([values.ravel()], [0])

Doing this required subclassing Ch, defining a tuple of all the terms we’re differentiable with respect to, and defining
methods that compute values and derivatives. And one may use it as follows:

x1 = Ch(10)
result = Sin(x1) # or "result = Sin(x=x1)"
print result
print result.dr_wrt(x1)

Some classes may also have terms that they’re not differentiable with respect to. Although Chumpy already allows
selection, let us imagine it does not. The following example allows the specification of values and indices to select,
and returns the unraveled, selected input:

from chumpy import Ch
import scipy.sparse as sp
class Select(Ch):

dterms = (’x’,)
terms = (’indices’,)

def compute_r(self):
return self.x.r.ravel()[self.indices]

def compute_dr_wrt(self, wrt):
return sp.csc_matrix(((np.arange(self.x.size), self.indices), np.ones(self.indices.size)))

To summarize, our ‘dterms’ contains strings with attributes we declare ourselves to be differentiable with respect to,
and ‘terms’ includes strings with attributes we’re not differentiable with respect to. Assignment to anything in ‘terms’
or ‘dterms’ invalidates cache for an object and its parents.

And it can be used as follows:

x1 = ch.arange(20)/2.
selected = Select(x=x1, indices=[1,2,5])
print selected # prints .5, 1, 2.5
selected.indices = [10,20]
print selected # prints 5, 10

2.3. Implementing Chumpy Objects 7

Chumpy Documentation, Release 1.0

print selected.dr_wrt(selected.indices) # prints None
print selected.dr_wrt(selected.x) # returns sparse matrix

2.4 Caching helpers

One of the tenets of Chumpy is lazy execution. For that reason, some facilities have been added to allow computation
to happen only when absolutely necessary. Some of these happen behind the scenes; for example, the result and
derivatives of a Chumpy object are cached until one or more of its terms or dterms is changed.

But there are also some facilities directly exposed to the user.

The first is the use of the “depends_on” decorator. It exposes a property which is only recomputed on demand if one
or more of its dependencies is changed; each dependency is indicated by its string name. For example, in the last case,
the use of np.ones during every call implies repeated memory allocation for a vector whose contents may not change
often. We can change it as follows:

from chumpy import Ch
import scipy.sparse as sp
class Select(Ch):

dterms = (’x’,)
terms = (’indices’,)

def compute_r(self):
return self.x.r.ravel()[self.indices]

@depends_on(’indices’)
def ones(self):

return np.ones(self.indices.size)

def compute_dr_wrt(self, wrt):
return sp.csc_matrix(((np.arange(self.x.size), self.indices), self.ones))

Usage is the same as before.

Another is the use of the “on_changed’ method, which offers a different style. Say you have a hidden value that you
only want to recompute when an external term is changed, and only right before compute_r or compute_dr_wrt
is called. Here we use it for the same purpose as before: to recompute something when necessary:

from chumpy import Ch
import scipy.sparse as sp
class Select(Ch):

dterms = (’x’,)
terms = (’indices’,)

def compute_r(self):
return self.x.r.ravel()[self.indices]

def on_changed(self, which):
if ’indices’ in which: # which is always a nonempty list of strings

self.ones = np.ones(self.indices.size)

def compute_dr_wrt(self, wrt):
return sp.csc_matrix(((np.arange(self.x.size), self.indices), self.ones))

8 Chapter 2. Advanced Topics

Chumpy Documentation, Release 1.0

Note that on_changed is called only right before compute_r or compute_dr_wrt, not right when something is
changed.

2.4. Caching helpers 9

	What does Chumpy do?
	Easy problem construction
	Easy access to derivatives
	Easy local optimization
	Numpy is still useful!

	Advanced Topics
	Basic Characteristics
	Visualizing your Terms
	Implementing Chumpy Objects
	Caching helpers

