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Abstract— Neural prosthetic technology has moved from
the laboratory to clinical settings with human trials. The
motor cortical control of devices in such settings raises impor-
tant questions about the design of computational interfaces
that produce stable and reliable control over a wide range
of operating conditions. In particular, non-stationarity of
the neural code across different behavioral conditions or
attentional states becomes a potential issue. Non-stationarity
has been previously observed in animals where the encoding
model representing the mathematical relationship between
neural population activity and behavioral variables such
as hand motion changes over time. If such an encoding
model is formed and learned during a particular training
period, decoding performance (neural control) with the model
may not be consistent during successive periods even when
the same task is repeated. It is critical in both laboratory
experiments and in clinical settings to be able to evaluate
whether the representation of movement encoded by a neural
population has changed or not. Such information can be used
as a cue to retrain the system or as feedback to an adaptive
decoding algorithm. To that end, we develop a statistical
methodology to evaluate changes in the neural code over time
using a generative probabilistic decoding model. The changes
are evaluated by comparing the likelihoods of firing rates
given similar distributions of 2D hand kinematics collected
while a primate periodically performs a manual cursor control
task. A comparison is performed by measuring a distance
between probabilistic encoding models trained at different
times. The statistical significance of the distance measure-
ments are justified with a systematic statistical hypothesis
test. The experimental results demonstrate that the likelihood
changes over different periods with the change being greater
when more distant periods are compared.

Index Terms— Non-stationarity, Neural prostheses, Gener-
ative model, Distance measure, Hypothesis test

I. INTRODUCTION

Neural motor prostheses directly connect the central
nervous systems of severely disabled patients to external
devices such as computer cursors or robot arms. A great
deal of scientific and clinical progress has been made as
the result of new microelectrode recoding technology that
enables the chronic recording of populations of tens or
hundreds of cortical neurons. The current success of motor
cortical brain-machine interfaces (BMIs) has also been
driven by an understanding of how the brain encodes infor-
mation about body pose and motion and by new algorithms
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for transforming neural activity into a reliable control
signal. To decode the intended action from the electrical
activity recorded from motor cortical neural populations a
number of statistical methods have been proposed including
multidimensional linear filters [1], [2], Bayesian models
using the Kalman filter [3] or the particle filter [4], [5],
population vector coding [6], nonlinear neural networks [7],
[8], [9], and support vector machines [10].

These methods model the functional mapping between
neural activities and kinematic parameters (e.g. 2D hand
position and velocity) using stationary statistical assump-
tions (i.e. model parameters are estimated based on the
assumption that functional mapping is time invariant).
They may suffer from poor generalization or deteriorating
performance after training due to the intrinsic dynamics
of the functional mapping. It is well known that neuronal
tuning properties can change due to plasticity [11], [12].
There have also been a number of BMI studies reporting
the reorganization of functional properties of neural popu-
lations [13], or temporal changes of neuronal tuning prop-
erties [14]. These non-stationary characteristics of neural
populations become critical to practical aspects of neural
prostheses, especially for the design and implementation
of decoding algorithms. In particular, if the functional
mapping between neural activity and kinematic parameters
changes over time, the approximation of the mapping by
a decoding model learned during a certain time period
may not be as accurate at some future time. Therefore,
it is important to identify when and how the functional
mapping temporally changes such that the decoding models
can adapt to it or the model can be retrained. However, the
identification of such dynamics of neural populations is still
an open problem.

In this paper, we do not address the issue of the
identification of neural dynamics, but propose a basic
methodology to examine the non-stationary properties of
neural populations. This work supports the findings from
many other researchers regarding the time-variant func-
tional mapping between neural activity and kinematics.
With the proposed methodology, the statistical significance
of changes can be determined. This methodology is based
on the Bayesian decoding model that has been successfully
applied to BMIs. This model-based methodology will help
to advance the present decoding models such that they can
be applied more readily to non-stationary environments.

In this study, we analyze experimental data in which a



primate performs a cursor control task. During a recording
session, however, the primate does not always attend to
the control task and is occasionally distracted. (See [15]
for the analysis of these data showing that the attentional
states could be discriminated by classifying the temporal
sequence of firing rates.) Therefore, the data can be di-
vided into multiple disjoint attentional periods. We seek
to investigate if the functional mapping between neural
firing rates and hand kinematics changes between those
periods. The functional mapping is specified by a likelihood
function that models the probability of neural firing rates
conditioned on hand kinematics. The difference between
likelihood models trained during different periods is mea-
sured by two distance measures: the Bhattacharyya distance
and the Kullback-Liebler (KL) divergence. In order to
determine whether the measured distance is statistically
significant, a hypothesis test is employed with a bootstrap-
type random sampling procedure. The overall testing pro-
cedures and simulation results are reported in the following
sections. Note also that for this comparison of likelihood
models to be valid, the statistics of the hand motion in the
different periods must be the same; care is taken to ensure
this in Section II.B.

While previous studies have addressed changes in the
neural code using simple properties such as the “preferred
direction” of cells [11], our approach leverages a richer
probabilistic model of cortical coding. In particular, the
Bayesian encoding model captures the statistical variation
in the population activity as it relates to multiple behav-
ioral variables. Since such a model captures the statistical
variation in the neural activity it provides a principled foun-
dation on which to build an analysis of non-stationarity.

II. MODELING LIKELIHOOD OF FIRING RATES

A. Data Descriptions

The proposed approach is investigated using neural activ-
ity and hand kinematics recorded while monkeys performed
a sequential reaching task. We used one dataset from
each of 2 monkeys, denoted hereafter by monkey-1 and
monkey-2. The task and recording setup used to make the
recordings for both data sets were similar to that used in
[15]. Briefly, the monkey sat in a primate chair and held
a 2-link manipulandum which constrained movements to
the horizontal plane. Reach targets and a hand position
feedback cursor were presented on a video screen in front
of the animal. When a reach target was presented the
animal’s task was to move the manipulandum so that the
feedback cursor moved into the target and remained in the
target for 500ms, at which time that target was extinguished
and a new reach target was presented in a different location.
This was repeated for up to 10 targets per trial. Upon
successful completion of a trial the animal received a
juice reward. Hand kinematics and neural activity were
simultaneously recorded while the animal performed the
task. Spikes were manually isolated off-line. Firing rate
was estimated by binning spikes into 70 msec time bins,
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Fig. 1. A sample of the x, y hand trajectory: a monkey periodically
attends to a 2D hand motion task. Note several sections in the data where
the hand position remains perfectly constant. In these intervals the monkey
has removed their hand from the manipulandum and is not performing
the task.

and hand position and velocity were computed every 70
msec.

During a typical recording session each monkey spent
only a portion of the time actually performing the task.
Periodically they were distracted from the task, often
letting go of the manipulandum and performing natural
arm movements. When the monkeys were not gripping the
manipulandum no motion was recorded. These periods of
inactivity are easy to identify by inspection as depicted in
Fig. 1 where the x-, and y-coordinates of one monkey’s
hand position trajectory are displayed for a brief segment
of the data.

The determination of whether or not a monkey was per-
forming the task was made by detecting significant regions
of constant manipulandum position and zero velocity. Since
we have no record of what monkeys were doing during
such segments, we only use the task-related movement
segments for training models of neural coding.

B. Modeling a mapping between firing rates and hand
kinematics

Our goal in this study is to investigate temporal changes
to the mapping between firing rates and hand kinematics
and to develop a principled mathematical model for de-
tecting any such changes. Here we exploit previous work
on Bayesian decoding in which a linear Gaussian model
was used to relate neural activity to hand kinematics.
Such a “likelihood” model can be combined with a prior
probability model of hand kinematics to enable recursive
Bayesian decoding of motor cortical activity [3]. Here our
focus is not on decoding but rather on how the neural
encoding may change over time. Consequently we focus
on the likelihood term which represents the neural code.

Let X = {~x1, ~x2, . . . , ~xN} be a time ordered sequence
of hand kinematic parameters such as position, velocity
and acceleration and let Z = {~z1, ~z2, . . . , ~zN} be a
corresponding sequence of firing rates where each ~zi =



[z1
i , z2

i , . . . , zM
i ]T is a vector of the firing rates of M single

units or multi-units. For simplicity, we assume E[~x] = 0
and E[~z] = 0 by centering X and Z, respectively.

The likelihood p(~zi|~xi) of the observed firing rates
conditioned on the hand kinematics can be derived from
the following generative model of neural activity:

~zi = f(~xi) + ~wi. (1)

where ~wi corresponds to noise in the observations. If we
assume that f(·) is a linear function and ~wi follows a
multivariate Gaussian distribution with zero mean vector
and covariance W , (1) can be written as

~zi = H~xi + ~wi, (2)

where H is a linear projection matrix. Note that the firing
rates are normally distributed: ~zi ∼ N(H~xi,W ).

H and W can be estimated from training data using least
squares such that [16]

Ĥ = argminH

∑

i

∥∥~zi −H~xi

∥∥2 (3)

Ŵ =
1

N − 1

∑

i

(~zi − Ĥ~xi)(~zi − Ĥ~xi)T (4)

Here we focus on a simplified model in which the error
covariance matrix Ŵ is taken to be a diagonal matrix,
assuming conditional independence between units. This
reduces the chance of overfitting when the training data is
limited as it is in our experiments. The ideas developed here
however are fully general and apply when a full covariance
matrix can be estimated. Note that in the diagonal case the
sum of diagonal entries represents the total error variance
which can be used to evaluate how well the linear model
fits the data.

The linear Gaussian encoding model used here has
proven useful for decoding. Combining the likelihood with
a linear Gaussian prior over hand kinematics yields a
recursive Bayesian decoding method (the Kalman filter)
[3]. The approach provides accurate and efficient estimates
of hand kinematics from neural firing rates.

III. STATISTICAL EXPERIMENT DESIGN

A. Distance between Likelihoods

In order to investigate the temporal changes of the func-
tional mapping between firing rates and hand kinematics,
we compare the likelihood of observations given hand
kinematics from different attentional segments. Specifically
we train a linear Gaussian model pj(~z|~x) using the data in
each segment j in which the monkey is attending to the
task. A comparison between models can be accomplished
by measuring a distance between each pj(~z|~x). There are
numerous methods to measure the distance among which
we opt for using the well-generalized measures such as the
Bhattacharyya distance [17] and the Kullback-Leibler (KL)
divergence [18].

Consider two distributions p1(~y) and p2(~y) with means
~µ1 and ~µ2 and covariances Σ1 and Σ2, respectively. As we
approximate the likelihood based on the linear Gaussian

generative model, the Bhattacharyya distance B12 between
two Gaussian distributions is given by

B12 =
1
8
(~µ1 − ~µ2)T

(Σ1 + Σ2

2

)−1

(~µ1 − ~µ2)

+
1
2

log
|(Σ1 + Σ2)/2|√
|Σ1|

√
|Σ2|

. (5)

Since the mean of the Gaussian likelihood is zero, only
the second term including covariances need be considered
such that

B12 =
1
2

log
|(Σ1 + Σ2)/2|√
|Σ1|

√
|Σ2|

. (6)

Next, the KL divergence between p1(~y) and p2(~y) is
defined by

D(p1‖p2) =
∫

~y

p1(~y) log
p1(~y)
p2(~y)

. (7)

For two M -dimensional Gaussian distributions, the KL
divergence can be expressed as

D(p1‖p2) = tr(Σ−1
2 Σ1) + log|Σ2| − log|Σ1| −M. (8)

where tr(·) represents the trace of a matrix. Since the orig-
inal KL divergence is asymmetric, a symmetrized version
of the distance may be required which can be defined by

Ds(p1‖p2) =
1
2
(
D(p1‖p2) + D(p2‖p1)

)

=
1
2
(
tr(Σ−1

2 Σ1) + tr(Σ−1
1 Σ2)

)−M(9)

B. Statistical Methodology

While the above measures give a distance between two
likelihoods and hence two encoding models they do not
directly tell us whether the neural coding is the same or not.
For this, we evaluate whether the difference between mod-
els is statistically significant by developing a hypothesis
test. This test can be done in such a way that the temporal
variation of the likelihood is examined; given multiple
disjoint attentional segments, the earliest one is set as a
basis to which the rest of the segments are compared using
the statistical test. This reveals how much the likelihood
changes over time.

One must be careful however that the statistical differ-
ence between likelihoods is not the result of a difference
in the hand kinematics between the two segments. To
ensure that the statistics of the hand motions are the same
in each segment we impose conditions on the training
data such that the distributions of the hand kinematics
in different segments are approximately identical. This is
obviously a very strong constraint due to the fact that the
hand trajectory of a monkey may be a nonstationary time
series. Consequently we randomly sample hand motions
from each segment such that the distributions of motions
from each segment are the same. The training data then
empirically satisfies the condition that the hand motions
must be drawn from identical distributions. Then, the
statistical test of the likelihood difference is performed
only on sample sets that have similar hand kinematic



distributions. With this preprocessing, the temporal changes
of the likelihood will specifically indicate the change of the
functional properties of neural populations.

An overall procedure of the statistical test is as follows;
from two given segments, two disjoint sample sets are
randomly selected. A statistical test for identical hand kine-
matic distributions is performed between the two selected
sets. If the test reveals that hand kinematic distributions
are not statistically different, the likelihood for each set
is modeled using equations (3) and (4) and the distances
between the likelihood models are measured; otherwise,
new sets are randomly selected again. This process is
repeated by running Monte Carlo simulations to generate
the empirical distribution of the distance measurements,
similar to the bootstrap approach. The generation of dis-
tribution is performed 1) within the basis segment, and 2)
between one of the rest of the segments and the basis,
respectively. For this pair of empirical distributions, a
statistical test is performed with the null hypothesis that
two distributions are not statistically different. If this null
hypothesis is rejected at a given significance level, we can
state that the likelihood approximated from a given segment
is statistically different from the one in the basis segment.
This test is performed for each of the rest of the segments.

Now, let us describe our statistical methodology in detail.
Let {~z1i, ~x1i}N1

i=1 and {~z2i, ~x2i}N2
i=1 be disjoint randomly

selected sample sets both from the basis segment, or one
from the basis segment and the other from a different
segment. Before proceeding to model the likelihood, the
similarity of p(~x1) and p(~x2) must be examined. Here,
we employ another statistical hypothesis test to see if
the two distributions are equal to each other. Suppose
the hand kinematics follow a multivariate Gaussian dis-
tribution, which has been widely assumed in generative
decoding models, such that p(~x1) ∼ N(~µ1,Σ1) and
p(~x2) ∼ N(~µ2, Σ2). Then, a comparison of mean and
covariance is sufficient to check if p(~x1) and p(~x2) are
equally distributed. Hence, we first employ the likelihood
ratio test for the multivariate Gaussian distributions to test
equal covariance matrices [19]. The null hypothesis for the
test is given by

H0 : Σ1 = Σ2 = Σ. (10)

Let Q1 and Q2 be defined by

Qk =
Nk∑

i

(~xki − x̄k)(~xki − x̄k)T , k = 1, 2 (11)

where x̄k is the maximum likelihood estimate of mean,
i.e. x̄k = 1

Nk

∑
i ~xki for k = 1, 2. Then the maximum

likelihood estimate of Σ1 and Σ2 are determined as

Σ̂k =
1

Nk − 1
Qk, k = 1, 2. (12)

The joint likelihood function for two distributions is defined
as the product of two individual likelihood functions,
where each likelihood function is represented as a Gaussian
density function. If we substitute the maximum likelihood

estimates of mean and covariance obtained above into
each Gaussian density function, we obtain the maximum
likelihood joint likelihood function represented as

L12(~̂µ1, ~̂µ2, Σ̂1, Σ̂2) =
exp(−NM

2 )

(2π)
NM

2 |Σ̂1|
N1
2 |Σ̂2|

N2
2

(13)

where L12 denotes the joint likelihood function of ~x1

and ~x2, M is the dimension of ~x and N = N1 + N2.
The alternative maximum likelihood function with the null
hypothesis, i.e. Σ1 = Σ2 = Σ, can also be similarly
represented as

L12(~̂µ1, ~̂µ2, Σ̂, Σ̂) =
exp(−NM

2 )

(2π)
NM

2 |Σ̂|N
2

, (14)

where Σ̂ is the maximum likelihood estimate of Σ, deter-
mined as Σ̂ = 1

N−1 (Q1+Q2). The likelihood ratio statistic
is then given by

` =
L12(µ̂1, µ̂2, Σ̂, Σ̂)

L12(µ̂1, µ̂2, Σ̂1, Σ̂2)

=
|Σ̂|−N

2

|Σ̂1|−
N1
2 |Σ̂2|−

N2
2

= c12
|Q1|−

N1
2 |Q2|−

N2
2

|Q1 + Q2|−
N1+N2

2

, (15)

where

c12 =
N

NM
2

N
N1M

2
1 N

N2M
2

2

. (16)

Using the large sample theory, it is shown that −2 log `
approximately follows χ2

M(M+1)/2. Then, we can apply
the χ2 test for the null hypothesis.

Once the null hypothesis of equal covariance is accepted
at a significance level α, the next test for equal means
given equal covariance can be done with a relatively simple
method, called a Hotelling T 2 test [19]. The null hypothesis
for the mean is set to

H0 : ~θ = ~µ1 − ~µ2 = ~0. (17)

Let Sp ≡ (Q1 + Q2)/(N1 + N2 − 2). The the null T 2

statistic is calculated as

T 2
0 =

N1N2

N1 + N2
(x̄1 − x̄2)T S−1

p (x̄1 − x̄2). (18)

H0 is rejected at the α significance level if

T 2
0 ≥

M(N1 + N2 − 2)
N1 + N2 −M − 1

Fα
M,N1+N2−M−1. (19)

If the above hypotheses of equal mean and covariance are
accepted for p(~x1) and p(~x2), then we can move on to
approximate the likelihood from each sample set. If at least
one of them is rejected, new random sets are sampled and
tested again.

After approximating likelihoods, the Bhattacharyya dis-
tance and the symmetrized KL divergence between two
likelihoods are measured. This procedure is repeated
through Monte Carlo simulations, generating a set of



distance measurements. After simulations, we obtain the
set of distances within the basis segment if two data
sets are sampled from the same basis segment. The same
procedure can be performed for two data sets one of
which is sampled from the basis segment and the other
is sampled from a different segment. Then, we can test
if there is a significant difference between two distance
measurement sets. Since the distribution of distance is
unknown (and possibly non-normal), the nonparametric
one-sided Kolmogorov-Smirnov (KS) test is used to test
the null hypothesis given by

H0 : F1(d) ≤ F2(d) (20)

where d is a random variable representing the distance
measure (Bhattacharyya or symmetrized KL divergence)
and F (d) is the cumulative density function (cdf) of d.
Here we set F1(d) as the cdf of the distances within the
basis segment and F2(d) as the cdf of the distances between
the basis segment and another segment. This hypothesis
is tested by the empirical cdf F̂1(d) and F̂2(d) created
from given samples, with a test statistic of the maximum
difference between F̂1(d) and F̂2(d). The rejection of
H0 means that F1(d) > F2(d); this indicates that the
differences between distributions are much smaller for
samples drawn from the basis. Consequently, the distance
between different segments is statistically larger than the
distance within the basis segment. With this test, we can
justify the change of the likelihood of firing rates given
hand kinematics over subsequent attentional segments.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The spike counts of 44 single/multi units recorded from
monkey-1 and 53 single/multi units from monkey-2 are
used. All these units are recorded from the M1 cortical area
of each monkey. The spike counts and the hand kinematic
data are centered to have zero mean. Four subsequent
attentional segments are extracted from each monkey’s
data, respectively. The intervals from the basis segment to
the remaining segments are as follows; [210, 568, 1,715]
(seconds) for monkey-1, and [235, 588, 786] for monkey-2.
From each segment, N = 500 samples including bin count
and hand kinematic parameters (the x-, and y-coordinates
of position and velocity, respectively) are randomly se-
lected. The significance levels for the likelihood ratio test,
the T 2 test and the KS test are all set to 0.05. 10,000 Monte
Carlo runs are performed for each comparison.

B. Results

1) The KS Test: Table I displays the mean and standard
deviation of the Bhattacharyya distance and the sym-
metrized KL divergence measured for each segment. Note
that the statistics in the first row are obtained from two
sample sets within the basis segment, and the other statis-
tics in the remaining rows are between the corresponding
segment and the basis. The null hypothesis of the KS test
described in (20) is always rejected in every case; no matter
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Fig. 2. The average angles (in degrees) between the linear projection
vectors for position and velocity are evaluated over multiple attentional
segments from two recording sets: monkey-1 (left) and monkey-2 (right).

what distance we measure between the basis segment and
any other segment.

TABLE I
DISTANCE MEASUREMENT MEAN (STANDARD DEVIATION)

Compared Monkey-1 Monkey-2

segments Bhatt. KL Div. Bhatt. KL Div.

1 vs 1 0.17(0.09) 1.64(1.55) 0.27(0.10) 2.45(2.58)

2 vs 1 0.76(0.19) 9.85(6.50) 0.78(0.22) 8.73(7.90)

3 vs 1 0.62(0.16) 6.58(3.73) 0.53(0.14) 5.03(2.45)

4 vs 1 2.05(0.22) 51.07(45.75) 0.42(0.17) 4.98(13.13)

2) Comparison of Linear Projections: A difference be-
tween encoding models is viewed in another way by
evaluating the angle between the linear matrices relating
hand kinematics to firing rates (Equation (1)). When we
estimate the linear matrices H1 and H2 from (2) for two
given sample sets, the angles between two corresponding
column vectors of H1 and H2 (i.e. linear mapping vectors
between the firing rates and individual hand kinematics)
are evaluated. The average of the angles over Monte Carlo
runs for each segment are illustrated in Fig. 2. These results
show that the linear projection vectors between firing rates
and each hand motion parameter including position and
velocity tend to change over attentional segments.

For reference, the mean squared errors of the likelihood
approximation in (3) evaluated from the basis segment to
the last segment are as follows; 0.08±0.01, 0.08±0.01,
0.07±0.01, 0.07±0.01 for monkey-1, and 0.08±0.01,
0.08±0.01, 0.08±0.01, 0.08±0.01 for monkey-2. This
demonstrates that the linear Gaussian fitting for every
segment is fairly consistent.

V. CONCLUSIONS, DISCUSSION AND FUTURE WORK

We have proposed a statistical approach for detecting the
changes in the neural code relating population firing rates
and hand kinematics. We have observed such changes occur
over time when monkeys sporadically perform a cursor
control task. Here we leverage a learned linear Gaussian
model of motor cortical coding and the fact that the learned
models in different segments of the data are statistically
different. This observed change in neural coding of hand



kinematics over different attentional periods is consistent
with previous observations of the temporal change of
neuronal tuning properties. Our approach however provides
a formal statistical method for analyzing such changes.

The result may have practical implications for neural
prosthetic systems. Such systems will have a calibration
or training phase and our statistical tests could be used to
detect changes in the neural population code that might
suggest the need to retrain the system. It is worth noting
however that our analysis is performed off-line. In an on-
line control task the neural population may change in
different ways that continue to allow, or even improve,
neural control of devices. While our statistical approach
could be used to detect such changes, their analysis remains
future work.

In our analysis, spiking activity was determined off-
line by a human using standard spike sorting software.
It remains an open question whether spike detection was
consistent across segments of the data. A change in spike
detection rates could result in a change in our linear model
and this would be detected as a change by our method. The
impact of spike sorting error on the non-stationarity of the
data deserves further study.

We would like to remark that the statistical results
demonstrated here are based on the linear Gaussian as-
sumption. While this has been shown to be useful in
practice [3], it is only an approximation of the neural
code. Hence, it would be interesting to see if similar
results are produced with different modeling schemes. One
might employ nonparametric approaches to approximate
the conditional likelihood of firing rates given hand kine-
matics. Then, an information theoretic measure such as
the symmetrized KL divergence can be easily estimated
for such nonparametric models. Among many possibilities,
one can estimate the probabilistic models using Parzen
windows from samples and adopt Renyi’s entropy to define
the KL divergence [20]. This approach could provide more
reasonable distance measures without requiring the linear
Gaussian assumption.

However, building our statistical approach upon a de-
coding modeling framework (e.g. the generative modeling
approach in this paper) is advantageous since the direct link
between our statistical analysis and decoding might help in
neural prosthetic applications. For instance, understanding
how the likelihood changes over time could be used to
develop adaptive decoding models that cope with non-
stationarity. This insight is a path towards future applied
research.
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