
 
 

 

  

Abstract—A direct neural interface system (NIS) promises to 
provide communication and independence to persons with 
paralysis by harnessing intact motor cortical signals to enable 
controlling prosthetic devices. An intracortical NIS aims to 
achieve this by sensing extracellular neuronal signals through 
chronically implanted microelectrodes and by decoding the 
spiking activity of neurons into prosthetic control signals. In 
non-human primate studies, decoding has been performed by 
finding a relationship between neuronal signals and actual limb 
movements. However, such decoding approaches face challenges 
in the case of paralyzed persons where there is no true movement 
information. Specifically, we have focused on dealing with 
several key questions in decoding of neural activity in humans 
with paralysis: what movement parameters should be decoded?; 
which decoding algorithms lead to more accurate estimation of 
movement parameters?;  how do we train decoding algorithms 
without observing actual movement parameters?; and how 
many control parameters can be decoded from a single neural 
ensemble? In this paper, we summarize our recent studies to 
address these questions to improve decoding performance, which 
enables a human with tetraplegia to drive a 2D computer cursor 
to an arbitrary position and execute a “click” on the area of 
interest.  

I. INTRODUCTION 
neural interface system (NIS) promises to restore some 
lost function to persons with paralysis who suffer from 

“locked-in” syndrome, aiming to provide communication and 
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independence. The fundamental concept in an NIS is to 
connect the intact cortical signals of a person with paralysis 
directly to external prosthetic devices, bypassing damaged, 
diseased or missing structures. An intracortical NIS aims to 
achieve this by sensing extracellular neural signals in the 
motor cortex using chronically implanted microelectrodes and 
translating those signals into motor control parameters to 
actuate prosthetic devices. A pilot clinical study for feasibility 
of a human NIS began in 2004 (Investigational Device 
Exemption). The first report from this study by Hochberg et 
al. [1] demonstrated that an intracortical NIS could detect 
movement-related signals from the motor cortex of a person 
with spinal cord injury years after injury and that these signals 
could be used for voluntary control of external devices, 
including a robotic hand, a computer cursor and other physical 
and virtual devices. In particular, computer cursor control has 
been a primary application since it provides a foundation for a 
variety of direct communication tools. 

Central to this study and underlying the effective 
functioning of the NIS, is the understanding of the coding of 
movement-related information in the activity of cortical 
neurons. Spikes (or action potentials) are known to be an 
important information signal of neurons and spike activity can 
be closely related to movement parameters, such as movement 
speed or direction. A number of studies in non-human 
primates have explored how neural spiking activity is 
modulated when planning, executing and adjusting limb 
control. However, neural control for prosthetic devices 
without knowing true limb movements raises a new question: 
how can we decode the observed neural spiking activity only 
with the unobservable intention of movement? This question 
leads to several issues in the development of an NIS for 
paralyzed persons: Which kinematic parameters in the 
imagined movement are most naturally represented in 
neuronal ensemble activity? Which mathematical algorithms 
should we use to decode neural spiking activity? How can we 
generate training samples only with imagined movements to 
optimize the parameters of decoding algorithms? How many 
control variables can we extract from a single neuronal 
ensemble? In this paper, we summarize how we addressed 
some of these issues and what we have found from the study of 
decoding neural activity in humans with tetraplegia for 
prosthetic control.   

Previous non-human primate studies have shown that 
motor cortical neurons encode various movement parameters, 
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including hand position, hand velocity, limb force and joint 
torques [2-9]. We have studied how some of these movement 
parameters were correlated with neural activity when a person 
imagined cursor movement. We have found that cursor 
velocity was more correlated with neural activity than other 
parameters such as position and acceleration in two 
participants [10].  

A number of mathematical algorithms have been developed 
to decode movement parameters from neural activity (see 
[11-12] for review). In particular, some studies suggested that 
the decoding algorithms based on probabilistic Bayesian 
inference estimated arm/hand kinematic parameters better 
than simple direct estimators such as linear filters [13-16]. 
Accordingly, we used the Kalman filter [13-14], to decode the 
movement of a computer cursor from neural activity in 
humans with tetraplegia. We have demonstrated that the 
Kalman filter improved decoding of cursor velocity when 
compared with a linear filtering method [10]. 

In non-human able-bodied primate studies, decoding 
algorithms can be trained to associate neural activity with limb 
movements using training samples generated by 
simultaneously recording both movement and neural signals. 
In the study of humans with paralysis, however, training of a 
decoding algorithm must be achieved in the absence of 
physical movement. In Hochberg et al. [1], a combination of 
open-loop and closed-loop training methods was used that 
enabled subjects to gain control of a “neural cursor”. In this 
training approach, a subject viewed a cursor moving on a 
monitor and was instructed to imagine moving the cursor. 
Then the cursor movement kinematics and synchronized 
neural signals were used to train a decoding algorithm. We 
modified this procedure by adding a new training task for 
velocity-based decoding algorithms, emphasizing velocity in 
the design of cursor motion [10]. We also extended it to 
generate new training data that were used for training a 
multi-state decoder [19].  

A practical neural cursor interface should provide the utility 
of a computer mouse.  This combines the ability to move a 
cursor to an arbitrary screen location, hold the cursor still, and 
execute a click action to make a selection at that location. A 
central question to point-and-click cursor control is whether 
multi-state signals (i.e. both a continuous state for pointing 
and a discrete state for clicking) can be simultaneously 
decoded from a single neuronal ensemble. Based on 
non-human primate studies that demonstrated multi-state 
signals could be decoded from the motor cortical activity of 
monkeys [17-18], we have modified a previous probabilistic 
decoding model [18] to make it feasible for real-time 
performance. Our recent study has shown that we could 
successfully decode both continuous and discrete states from a 
single neuronal ensemble in a human [19]. We have 
demonstrated in this study that a human with tetraplegia could 
use the NIS with the multi-state decoder to point to and click 
on targets. 

In the remainder of this paper, we present more details of 
the issues and findings in decoding neural activity of humans 
with paralysis. In the section III, we illustrate training methods 
for the decoding algorithms. In section IV, we describe the 
correlation between neural activity and imagined cursor 
movements. In the section V and VI, we review the decoding 
algorithms and demonstrate closed-loop neural cursor control 
performance using each of the decoding algorithms. In the 
section VII, we describe how we enabled point-and-click 
cursor control. In the final section, we summarize on-going 
challenges and how we will address them. 

II. NEURAL INTERFACE SYSTEM PILOT STUDY 

A. Pilot Study 
A pilot clinical study of the BrainGate Neural Interface 

System was initiated by Cyberkinetics Neurotechnology 
Systems, Inc. under a Food and Drug Administration (FDA) 
Investigational Device Exemption (IDE) and with 
Institutional Review Board (IRB) approvals; the studies began 
in May, 2004. “Caution: Investigational Device. Limited by 
Federal Law to Investigational Use” 

B. Participants 
Clinical trial sessions of the BrainGate NIS (Cyberkinetics 

Neurotechnology Systems, Inc.) were conducted by 
Cyberkinetics technicians with two participants with 
tetraplegia (paralysis of both arms and both legs). Participant 
S3 was a 54 year old woman who had thrombosis of the basilar 
artery and extensive pontine infarction nine years prior to trial 
recruitment. Participant A1 was a 37 year old man with 
amyotrophic lateral sclerosis (ALS, motor neuron disease), 
recruited to the trial six years after being diagnosed with ALS. 
Both participants were right hand dominant, and the 
intracortical array was placed in the left precentral gyrus in the 
region of the arm representation [1]. 

C. Recording Sessions 
During each recording session, neural signals were 

recorded from the motor cortex of the participants using a 
chronically-implanted 96-channel Cyberkinetics 
microelectrode array and the BrainGate NIS. After 
digitization (30 kHz per channel), real-time, 
amplitude-thresholding software was used to identify different 
waveshapes on each channel [20]. Single neurons and 
multi-neuron activity with consistent waveforms [20] (both 
referred to here as ‘units’) were accepted or rejected for 
inclusion in the study at the beginning of each session based 
on visual inspection of the isolated waveforms. No further 
criteria were applied to identify single neurons. During neural 
recording, participants viewed a computer monitor that 
displayed task information related to various cursor control 
tasks as described below. 



 
 

 

III. TRAINING DECODING ALGORITHMS 
The overall training procedure was composed of a series of 

short periods, called “blocks,” each of which lasted 1-1.5 min. 
We devised two types of training blocks: open-loop (OL) and 
closed-loop (CL). In OL blocks, a training cursor (TC) was 
displayed on a computer monitor and moved to reach a target, 
generating cursor movement trajectories. The training cursor 
was moved either manually by a technician or automatically 
by a computer program. During the presentation of the TC 
movement on the monitor, the participants were instructed to 
imagine moving their dominant arm or hand as if they were 
moving the TC. Following the execution of multiple OL 
blocks, we trained a decoding algorithm using neural signals 
together with the TC kinematic data. Afterwards, in CL 
blocks, we presented not only the TC but also a feedback 
cursor (FC) whose movement was decoded from the 
participant’s neural activity using the previously trained 
decoding algorithm. We hypothesized that showing the FC 
would prompt the participant to adjust their neural activity to 
improve cursor control by sensing the error between the TC 
and the FC. The decoding algorithm was iteratively trained 
after every other CL block to incorporate the potential 
adjustment of neural activity into the parameter estimation.  

We utilized two different cursor movement tasks depending 
on the decoded kinematic parameter: a random 
pursuit-tracking task, which can generate a wide range of 
cursor position data, was used for cursor position decoding 
and a center-out-and-back task, which can provide 
well-defined cursor velocity data, was used for cursor velocity 

decoding. In the latter case, the cursor speed followed a 
bell-shaped profile. Figure 1 illustrates the training procedure 
and tasks.  

IV. NEURAL CORRELATION WITH CURSOR KINEMATICS 
The correlation between neural firing rates and cursor 

kinematic parameters, including position and velocity, was 
measured for every neuronal unit recorded during the 
open-loop (OL) training blocks. The OL blocks were chosen 
because neural activity was directly related to visualized 
cursor kinematics and not associated with any particular 
decoding algorithm. We evaluated correlation using the 
Pearson correlation coefficient (CC) which provides a direct 
measure without employing an explicit model to find a 
mapping between firing rates and kinematic parameters. In 
computation of the CC, we searched over multiple time lags 
between each unit’s firing rate and the kinematic parameter 
and found the optimal lag yielding the maximum CC value. 

From the CC measures across multiple recording sessions 
in S3 and A1 (17 sessions, >1000 units), we found that 
neuronal correlation with cursor velocity was stronger than 
with cursor position, more units showed correlation with 
velocity, and >90% of all the recorded units were statistically 
correlated with at least one of velocity or position [10].  Figure 
2 shows some results of this correlation analysis. These results 
suggest that decoding cursor velocity, which is more 
correlated with neural activity, may yield better neural cursor 
control than decoding cursor position. 
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Fig. 1.  (a) Training and testing procedure for human neural interface 
systems (NISs). A neural cursor control trial session is composed of 
training and testing phases. The training phase is further divided into 
open-loop (OL) and closed-loop (CL) training. In OL training, the 
training cursor (TC) is moved on the monitor by a technician or a 
computer program to reach a target. In CL training, a feedback cursor 
(FC) is shown together with the TC to provide feedback of how well 
cursor movement is decoded from neural activity. In the testing phase, 
only a neurally controlled cursor (NC) is shown and moved by the 
participant to acquire a target. (b) Cursor movement tasks. A random 
pursuit-tracking task is used to generate training data for position 
decoding algorithms and a center-out-and-back task is used for 
velocity decoding algorithms. (Kim et al. [10]). 
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Fig. 2.  (a) Correlation coefficients between individual units’ firing 
rates and cursor kinematic parameters – position (white) or velocity 
(gray). The median with 25% and 75% percentiles are presented for 
each recording session. (b) The number of units showing significant 
correlation (p < 0.01, t-test) with cursor velocity or position (Kim et al. 
2008). Trial day indicates the day of recording session after 
implantation. (Kim et al. [10]) 



 
 

 

V. DECODING ALGORITHMS 
A decoding algorithm built for an NIS extracts the 

movement intention of a subject from their neural activity and 
converts it to the kinematic parameters required to control a 
prosthetic device. Such decoding algorithms draw on 
mathematical models describing the (causal) relationship 
between neural activity and kinematics. Most decoding 
algorithms have their own parameters which need to be 
determined through a training procedure. Here, training refers 
to a process through which, a decoding algorithm, or more 
precisely the parameters of the algorithm, are trained to model 
a neural motor mapping. In this paper, we compare two 
decoding algorithms, the linear filter and the Kalman filter, 
both of which have been widely used in many human and 
non-human brain-computer interface studies. We derive these 
two algorithms from a probabilistic framework and illustrate 
main differences between them. 

Suppose xt is a D×1 vector of cursor kinematics such as 
position [px, py]T or velocity [vx, vy]T in the x (horizontal) and y 
(vertical) coordinates, sampled at a discrete time instant t. Let 
zt be an N×1 vector of firing rates of N units. The firing rate of 
a unit was estimated as the number of spikes in a fixed-size 
time window (e.g. 100ms) in our study. A goal in decoding is 
to find the most probable value of xt when we observe the 
entire history of firing rates, z1:t-j where j denotes a time lag 
between xt and zt. This can be represented as modeling a 
conditional probability, p(xt | z1:t-j).  

The linear filter achieves this goal based on the maximum 
likelihood estimation with the assumptions of a linear 
mapping and white noise: 
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Here we assume that xt is correlated only with L past values of 
zt-j.  Since εt is regarded as a Gaussian random variable with 
zero mean and variance of σ2, (1) is rewritten as, 
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where G(τ; μ, σ2) represents a Gaussian distribution of τ with 
mean μ and variance σ2. The parameters, {ai} are learned 
using maximum likelihood estimation. 

The Kalman filter models p(xt |z1:t-j) using a Bayesian 
formulation, 
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(3) 

where κ is a normalization constant. p(xt | z1:t-j) is inferred by 
finding the conditional mean of p(xt | xt-1) in terms of the 
previously estimated p(xt-1 | zt-1-j) and updating it by p(zt-j | xt) 
which carries information of newly observed zt-j. In the 
Kalman filtering algorithm, p(xt | xt-1) and p(zt-j | xt)  are 
approximated as linear Gaussian models. The parameters in 
these models are learned from training data using least 
squares.  

A key difference between these two filters is that the 

Kalman filter models the prior probability of xt in p(xt | xt-1) 
whereas the linear filter does not. This prior model may be 
advantageous to decoding for NISs especially when we need 
to devise movement models without the knowledge of true 
movements. 

VI. CURSOR CONTROL IMPROVEMENT BY KALMAN 
VELOCITY DECODING 

In this section, we demonstrate how neural cursor control 
was improved by choosing to decode cursor velocity (xt =[vx, 
vy]T) over position and choosing to use the Kalman filter over 
the linear filter. We evaluated cursor control performance in a 
four-target acquisition task across 14 recording sessions in S3 
and A1. The participants were asked to move the neural cursor 
(NC) from center to one of four radially located targets and to 
hold the NC on the target for 500ms. The participants 
performed this target acquisition trial approximately 80 times 
each session. In each trial, the participants had to acquire a 
target within 7s or the trial was deemed a failure. 

Figure 3 illustrates neural cursor control performance using 
the linear position filter versus the Kalman velocity filter. 
Cursor movement decoded with the Kalman velocity filter 
was much smoother and straighter than that decoded with the 
linear position filter. We quantified cursor control 
performance by a number of measures, including the number 
of directional changes and deviation of the cursor path from a 
straight line trajectory. These measures confirmed that the 
Kalman velocity filter exhibited fewer directional changes and 
smaller deviations than the linear position filter [10]. In 
addition, the participants demonstrated more accurate target 
acquisition performance with the Kalman velocity filter, 
increasing the acquisition rate by ~10%.  The time taken to 
reach the target was similar for both filters. In fact, the cursor 
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Fig. 3.  Neural cursor trajectories during four-target center-out task. 
Targets were acquired when the cursor dwelled on it for > 0.5s. Each 
line shows a cursor trajectory starting from the center of the monitor to 
each of four targets (yellow squares). n denotes the number of units 
used in the decoding filter. (a) Examples of three sessions where the 
neural cursor position was decoded by the linear filter (b) Examples of 
three sessions where the neural cursor velocity was decoded by the 
Kalman filter. (Kim et al. [10]) 



 
 

 

decoded by the linear position filter generally moved faster 
but its erratic and curved motion meant it take long to reach 
and hold on the target.  

We further examined whether the performance 
improvement of the Kalman velocity filter over the linear 
position filter was achieved due to the choice of kinematic 
parameter or the choice of decoding algorithm. The 
participant S3 performed two center-out tasks, one with the 
linear velocity filter and the other with the Kalman velocity 
filter, in a single session (performed three times over multiple 
days). The results demonstrated that the linear velocity filter 
generated smoother and more stable cursor movements than 
the linear position filter, whereas the Kalman velocity filter 
yielded slightly better performance than the linear velocity 
filter. This suggests that choosing to decode cursor velocity 
may contribute more to cursor control improvement than 
choosing to use the Kalman filter. 

VII. POINT AND CLICK CURSOR CONTROL 
To enable “point-and-click” cursor control from neural 

activity, we have addressed a key question of whether it is 
possible to decode multiple states (i.e. a continuous pointing 
state and a discrete click state) simultaneously from a single 
neural population.  

We first revised the above training method by adding a new 
training phase for click states [19]. In this phase, the 
participant was asked to imagine a specific arm/hand 
movement (e.g. squeezing the hand) whenever a click cue was 
shown on the monitor.  

Next, we developed a new multi-state decoding algorithm 
based on the previous work by Wood et al. [18]. We 
simplified the probabilistic multi-state model proposed in [18] 
to be suitable for real-time applications. We represented the 
continuous cursor state as cursor velocity and the discrete 
state as one of two classes, {movement, click}. We used the 
Kalman filter to decode cursor velocity and a linear classifier 
to decode the discrete state. The Kalman filter was trained 
using the center-out task training samples (see Section III). 
The linear classifier was trained using the data collected 
during the click training phase described above. After 
training, multi-state decoding worked as follows: when the 
movement class was decoded from the classifier, the velocity 
signal from the Kalman filter was used to drive the cursor; 
when the click class was decoded, the cursor was forced to 
stop with zero velocity and a click signal was generated [19]. 

We tested whether the multi-state decoding algorithm and 
the revised training method could lead to point-and-click 
operation of a computer cursor in humans with tetraplegia 
[19]. Over multiple NIS study sessions, the participant (S3) 
performed a closed-loop target acquisition task using the click 
function generated by multi-state decoding. In this task, one of 
eight radially located targets was highlighted and the 
participant moved the neural cursor toward the target and 
clicked on the target to acquire it within a specified maximum 

time (e.g. 9s). Over three recording sessions, S3 successfully 
acquired ~97% of the targets by clicking on them, with errors 
occurring only due to time limit.  There were no false clicks on 
incorrect targets. False clicks on non-target screen regions 
were generated on average less than once per trial; many of 
these occurred close to the target.  Note that it was not possible 
to determine whether these false clicks were generated as a 
result of inaccurate discrete state decoding or because that the 
participant intended to click but the cursor was not correctly 
positioned on the target. Figure 4 illustrates neural cursor 
trajectories across three point-and-click sessions [19].  

VIII. FUTURE WORK 
We have summarized progress in neural decoding for 

intracortical NISs, enabling humans with tetraplegia to control 
arbitrary point-to-point movements of a computer cursor and 
click on specified target areas. There remain a number of 
scientific and engineering issues that need to be resolved in 
order to develop a more reliable and useful NIS. Here we 
discuss several on-going issues particularly related to neural 
decoding and our approaches to address them.  

First, only a few simple decoding models have been 
adopted so far for NISs, largely due to the fact that they are 
easily implemented in real time. These models assume a linear 
relationship between neural activity and kinematic parameters 
which does not generally hold when representing complex and 
nonlinear neural ensemble activity. There have been several 
studies showing that nonlinear decoding models produced 
more accurate estimates of kinematics from motor cortical 
signals [21-23]. Therefore, we are developing a nonlinear 
decoding model that better describes the relationship between 
neural and kinematic data and also runs effectively in a 
real-time computing system. Among many nonlinear 
approaches, we are particularly exploring the nonlinear 
representation and decoding of neural activity using Gaussian 
processes [24], nonlinear dynamic system models [25] and 
particle filters [15]. 

Second, the current decoding models and training 
paradigms have not explicitly focused on decoding cursor 
speed.  This may account for the somewhat slow cursor 
movement seen in our experiments. This problem is partially 
associated with the aforementioned linearity assumption. For 

 
trial day 292, n = 37 trial day 301, n = 38 trial day 303, n = 57trial day 292, n = 37 trial day 301, n = 38 trial day 303, n = 57

 
 
Fig. 4.  Neural cursor trajectories with point-and-click cursor control. 
Targets were acquired when the participant clicked on the target with 
their neural activity. Black lines are cursor trajectory from center to 
each of eight targets and yellow circles are targets. n denotes the 
number of units  (Kim et al. [19]) 



 
 

 

the Kalman filter case, the linear Gaussian model used to 
describe how movement changes in time appears to be too 
simple to represent cursor dynamics. Consequently, the 
velocity profile of the neurally controlled cursor movement is 
different from the idealized ballistic speed profile which is 
generally observed in real arm movements. To address this 
issue, we are seeking a new probabilistic movement prior 
model that may effectively represent cursor dynamics, 
resulting in cursor motion more responsive to the intention of 
a user.  

Finally, the current paradigm of training and using 
decoding models freezes the model parameters after training 
is finished. This paradigm assumes that the statistical and 
encoding properties of neural signals do not change 
significantly before and after the end of training. However, 
decoding performance could decrease if any of those 
properties significantly change after training. Our group has 
shown in an off-line non-human primate data analysis that the 
parameters of a linear function relating neural firing rates to 
kinematic parameters significantly changed over short-time 
periods [26]. We seek to address this non-stationarity by 
developing an adaptive decoding filter that constantly adjusts 
its parameters according to the change in the statistical and 
encoding properties of the neural signals. We believe that this 
adaptive decoding filter will enable NIS cursor control that is 
more robust to the non-stationarity of neural signals. 
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