

Unify MoCap Datasets

LCCV 2019

Seoul, Korea

Context:

- Deep-learning of human motion requires large datasets with natural variation
- Optical marker-based MoCap records human motion with high fidelity

Problem:

- Every MoCap dataset uses different markers and a different representation of body pose

Idea:

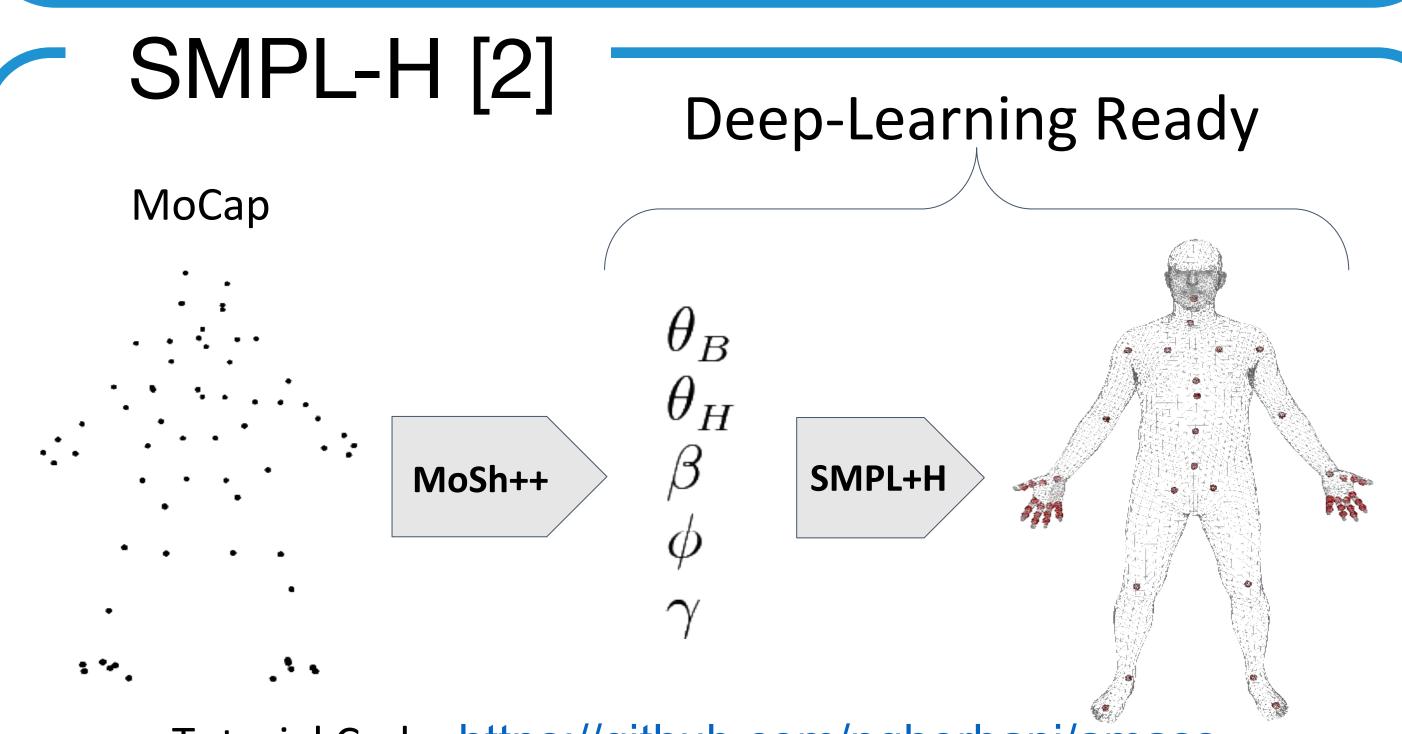
- Fit a body model to all MoCap sequences to obtain a single, common parameterization

Approach:

- MoSh++

Contribution:

- Unified dataset with 43 hours of human motion and growing; already used to train a human pose pior [4]



Tutorial Code: <u>https://github.com/nghorbani/amass</u>

- ACCAD BMLmc BMLrul CMU Dfaust EKUT Eyes Ja
- Human
- KIT
- MPI H
- MPI Mo
- Pose P
- SFU
- SSM
- TCD Ha
- Total C
- Transit

If you had an interesting MoCap dataset we can add it to AMASS.

AMASS: Archive of Motion Capture as Surface Shapes

Naureen Mahmood¹, Nima Ghorbani², Nikolaus F. Troje³, Gerard Pons-Moll⁴, Michael J. Black² ¹Meshcapade, ²MPI for Intelligent Systems, ³York University, ⁴MPI for Informatics

amass@tue.mpg.de

	Markers	Subjects	Motions	Minutes
ACCAD	82	20	252	26.74
BMLmovi New	67	86	1801	168.99
BMLrub	41	111	3061	522.69
CMU	42	96	1983	543.49
Dfaust Synthetic	67	10	129	10.37
EKUT	51	4	349	30.71
Eyes Japan	37	12	750	363.64
Human Eva	39	3	28	8.48
KIT	100	55	4232	661.84
MPI HDM05	41	4	215	144.54
MPI MoSh	89	19	77	16.53
Pose Prior	53	3	35	20.82
SFU	53	7	44	15.23
SSM	86	3	30	1.87
TCD Hands	85	1	62	8.05
Total Capture	53	5	37	41.10
Transitions	49	1	110	15.10
AMASS (+growing)	-	440	13,195	2600.22

References

[1] M. Loper et al., MoSh: motion and shape capture from sparse markers, SIGGRAPH Asia, 2014

[2] J. Romero et al., "Embodied Hands: Modeling and Capturing Hands and Bodies Together, SIGGRAPH Asia, 2017

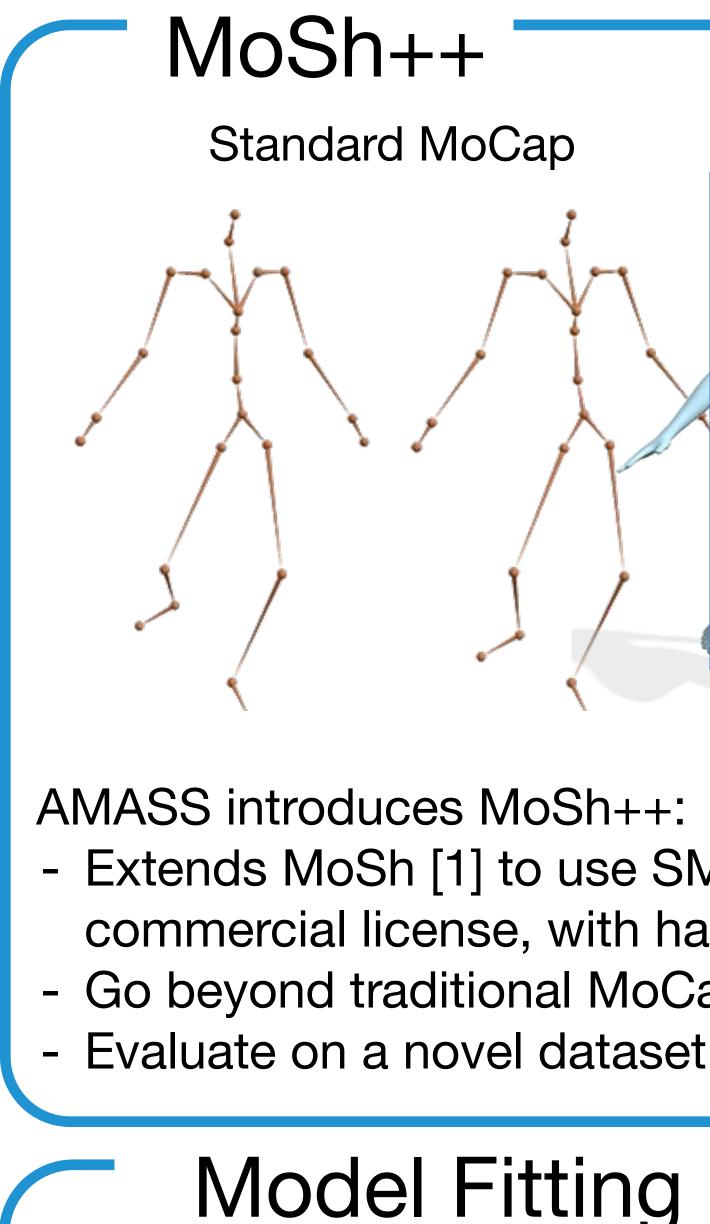
[3] G. Pons-Moll et al., Dyna: A Model of Dynamic Human Shape in

Motion, SIGGRAPH Asia 2015

[4] G. Pavlakos et al., Expressive body capture: 3D hands, face, and

body from a single image, CVPR 2019

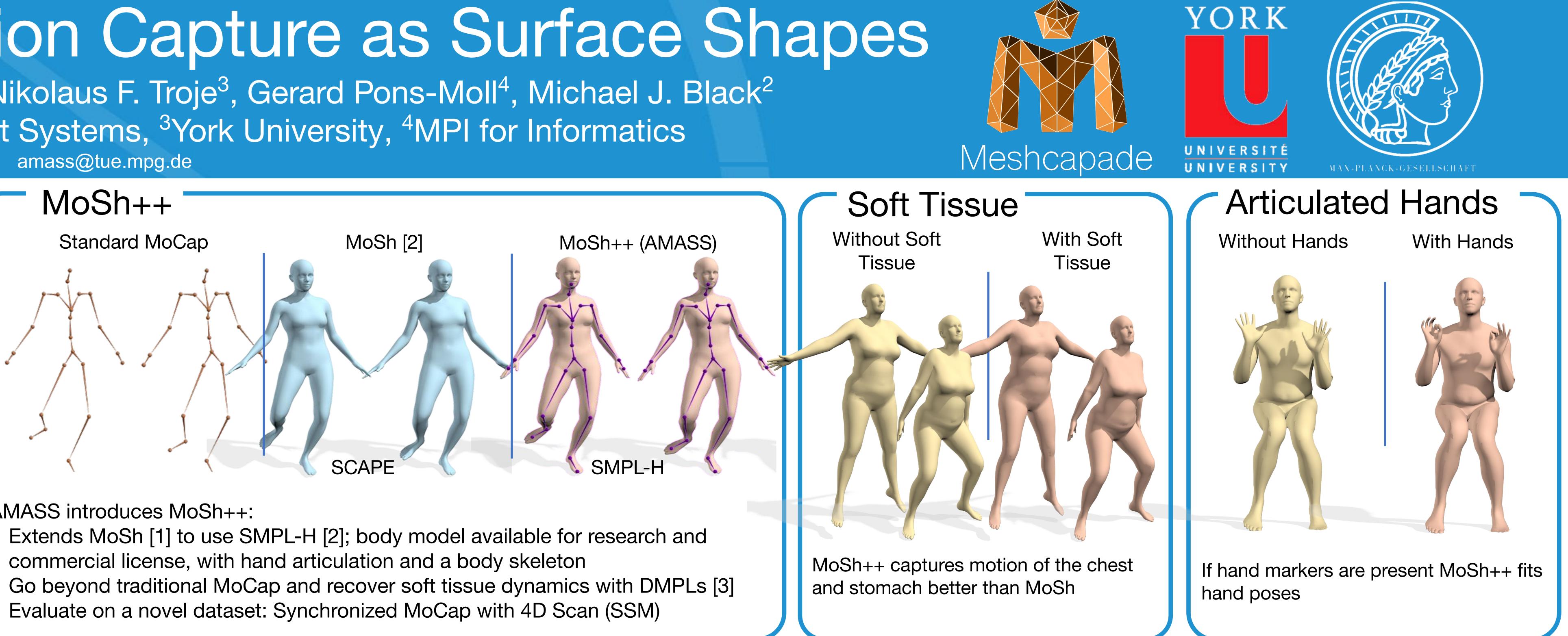
[5] F. Bogo et al., Dynamic FAUST, CVPR 2017



deformation):

Regularizers:

Data: Shape: Hands:



Extends MoSh [1] to use SMPL-H [2]; body model available for research and commercial license, with hand articulation and a body skeleton Evaluate on a novel dataset: Synchronized MoCap with 4D Scan (SSM)

MoSh++ Stage I: Optimize shape parameters and marker locations:

$$\begin{aligned} (\tilde{\mathcal{M}}, \beta, \Theta_B, \Theta_H) &= \lambda_D E_D(\tilde{\mathcal{M}}, \beta, \Theta_B, \Theta_H) \\ &+ \lambda_\beta E_\beta(\beta) + \lambda_{\theta_B} E_{\theta_B}(\theta_B) + \lambda_{\theta_H} E_{\theta_H}(\theta_H) \\ &+ \lambda_R E_R(\tilde{\mathcal{M}}, \beta) + \lambda_I E_I(\tilde{\mathcal{M}}, \beta). \end{aligned}$$

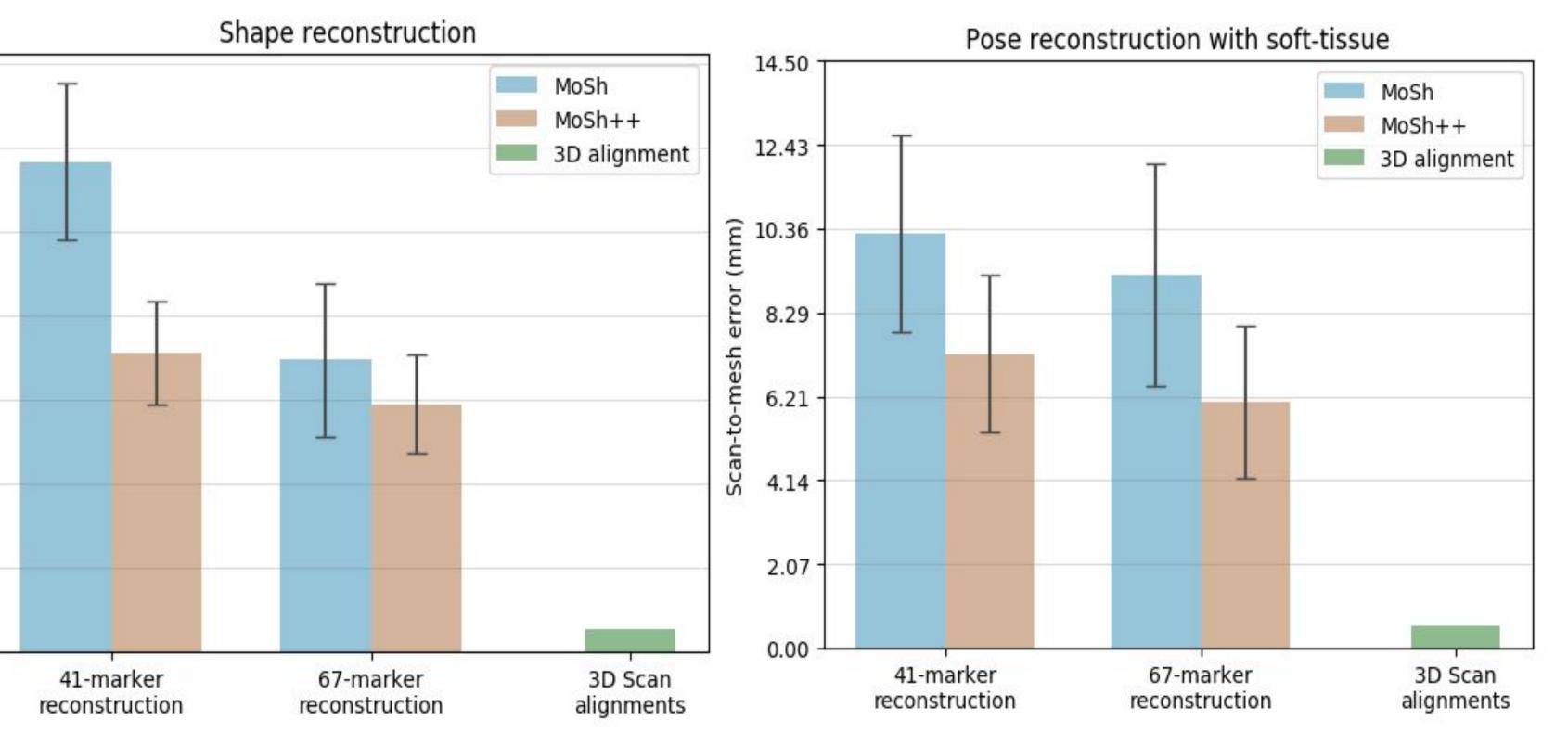
MoSh++ Stage II: Optimize pose parameters (body, hands, soft-tissue

$$E(\theta_B, \theta_H, \phi) = \lambda_D E_D(\theta_B, \theta_H, \phi) + \lambda_{\theta_B} E_{\theta_B}(\theta_B) + \lambda_{\theta_H} E_{\theta_H}(\theta_H) + \lambda_u E_u(\theta_B, \theta_H) + \lambda_\phi E_\phi(\phi) + \lambda_\nu E_\nu(\phi).$$

 $E_D(.) = \sum_{i,t} ||\hat{m}(\tilde{m}_i, \beta, \theta_t) - m_{i,t}||^2$ $E_{\beta}(\beta) = \beta^T \Sigma_{\beta}^{-1} \beta$ $E_{\theta_H}(\theta_H) = \theta_H^T \Sigma_{\theta_H}^{-1} \theta_H$ Soft-tissue: $E_{\phi}(\phi) = \phi_t^T \Sigma_{\phi}^{-1} \phi_t$

12.43 10.36 -8.29 -6.21 -4.14 -2.07 -0.00 -SSM:

Evaluation



- Novel synchronized MoCap + 4D scans, 30 motions across 3 subjects - Splits for hyper-parameter optimization & evaluation

Synthetic DFAUST:

- Virtual MoCap from DFAUST meshes [5], 129 motions, 10 subjects Used only for evaluation

https://amass.is.tue.mpg.de/