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Abstract

Large datasets are the cornerstone of recent advances
in computer vision using deep learning. In contrast, ex-
isting human motion capture (mocap) datasets are small
and the motions limited, hampering progress on learning
models of human motion. While there are many different
datasets available, they each use a different parameteriza-
tion of the body, making it difficult to integrate them into a
single meta dataset. To address this, we introduce AMASS,
a large and varied database of human motion that unifies
15 different optical marker-based mocap datasets by repre-
senting them within a common framework and parameteri-
zation. We achieve this using a new method, MoSh++, that
converts mocap data into realistic 3D human meshes rep-
resented by a rigged body model. Here we use SMPL [26],
which is widely used and provides a standard skeletal repre-
sentation as well as a fully rigged surface mesh. The method
works for arbitrary markersets, while recovering soft-tissue
dynamics and realistic hand motion. We evaluate MoSh++
and tune its hyperparameters using a new dataset of 4D
body scans that are jointly recorded with marker-based
mocap. The consistent representation of AMASS makes it
readily useful for animation, visualization, and generat-
ing training data for deep learning. Our dataset is sig-
nificantly richer than previous human motion collections,
having more than 40 hours of motion data, spanning over
300 subjects, more than 11000 motions, and is available for
research at https://amass.is.tue.mpg.de/.

1. Introduction
This paper addresses two interrelated goals. First, we de-

velop a method to accurately recover the shape and pose of
a person in motion from standard motion capture (mocap)
marker data. This enables the second goal, which is to cre-
ate the largest publicly available database of human motions
that can enable machine learning for applications in anima-
tion and computer vision. While there have been attempts

Figure 1: We unify a large corpus of archival marker-based
optical human mocap datasets by representing them within
a common framework and parameterization. A sampling of
shapes and poses from a few datasets in AMASS is shown,
from left to right: CMU [9], MPI-HDM05 [30, 31], MPI-
Pose Limits [3], KIT [27], BMLrub [42], TCD [21] and
ACCAD [34] datasets. The input is sparse markers and the
output is SMPL body models.

in both these directions, existing mocap databases are in-
sufficient in terms of size and complexity to exploit the full
power of existing deep learning tools. There are many dif-
ferent mocap datasets available, but pulling them together
into a coherent formulation is challenging due to the use
of widely varying markersets and laboratory-specific proce-
dures [16]. We achieve this by extending MoSh [25] in sev-
eral important ways, enabling us to collect a large and var-
ied dataset of human motions in a consistent format (Fig. 1).

MoSh employs a generative model of the body, learned
from a large number of 3D body scans, to compute the
full 3D body shape and pose from a sparse set of motion
capture markers. The results are realistic, but the method
has several important limitations, which make it inappro-
priate for our task. First, MoSh relies on a formulation of
the SCAPE body model [8], which is not compatible with
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Figure 2: MoSh++ captures body shape, pose, and soft-
tissue dynamics by fitting the surface of the SMPL/DMPL
body model to observed mocap markers (green), while also
providing a rigged skeleton (purple) that can be used in
standard animation programs. Conventional mocap meth-
ods estimate only the skeleton, filtering out surface motion
as noise and losing body shape information.

existing body representations and graphics software, mak-
ing it a poor choice for distributing a dataset. We replace
SCAPE with the SMPL body model [26], which uses a
kinematic tree, has joints, and is based on blend skinning.
SMPL comes with a UV map, which allows researchers
to generate their own textures for rendering images and
video sequences. SMPL is readily available, widely used,
and compatible with most game engines and graphics pack-
ages. Second, while MoSh captures some soft-tissue mo-
tions, these are approximate and represented by changing
the identity of a subject over time; that is, they are not true
soft-tissue deformations. Here we take the dynamic shape
space from DMPL, which models these soft-tissue deforma-
tions for SMPL [26] using a shape space learned from 4D
scans of various subjects in motion. We show that we can
recover the soft-tissue motions realistically from a sparse
set of markers. The resulting body shapes and motions
look natural and we show that they are metrically accurate.
Third, MoSh does not solve for the pose and motion of the
hands. Here we add the recent MANO hand model [37],
which is compatible with SMPL, and solve for body and
hand pose when hand markers are present. This provides
richer and more natural animations. Fourth, to fine-tune and
evaluate our proposed method, we collect a novel dataset,
SSM (Synchronized Scans and Markers), that consists of
dense 3D meshes in motion, captured with a 4D scanner,
together with traditional marker-based mocap. We separate
the sequences into training and testing sets, and train the
hyperparameters of MoSh++ to minimize the distance be-
tween the ground truth 3D scans and the estimated 3D body
meshes. We then evaluate the performance of MoSh++ on
the test set, demonstrating the accuracy of the method and
allowing a quantitative comparison to MoSh.

MoSh++ enables our key goal of creating a large
database of human motions. While there are many mo-
tion capture datasets available online for research purposes

[3, 9, 10, 21, 25, 31, 39, 34, 42, 43], even the largest ones
are too limited in size and variety to support serious deep
learning models. Additionally, datasets vary in the format
of the data and the kinematic structure of the body, mak-
ing it hard for researchers to combine them. There have
been several efforts to create data supersets [20, 27, 29], but
the process of unifying the datasets typically means stan-
dardizing to fixed body proportions, which fundamentally
alters the data. A good dataset should capture the articu-
lated structure of the body in a way that is consistent with
standard body models so that it can easily be adapted to new
problems. Additionally, richness of the source marker data
should be retained as much as possible. It should also be
possible to produce high-quality animations that are realis-
tic enough to train computer vision algorithms; that is, the
dataset should include full 3D human meshes.

SMPL provides the unifying representation that is in-
dependent of the markerset, yet maintains the richness of
the original marker data, including the 3D body shape. We
know of no other attempt that provides access to full body
shape and soft-tissue from mocap data, while also provid-
ing accurate body and hand pose. Here we combine 15 ex-
isting motion capture datasets into one large dataset: the
Archive of Mocap as Surface Shapes (AMASS). AMASS
has 40 hours of mocap, 344 subjects, and 11265 motions.
The source datasets all contain varying markersets rang-
ing in size from 37 to 91 markers; AMASS unifies these
into a single format. Each frame in AMASS includes the
SMPL 3D shape parameters (16 dimensions), the DMPL
soft-tissue coefficients (8 dimensions), and the full SMPL
pose parameters (159 dimensions), including hand articu-
lations, and body global translation. Users who only care
about pose can ignore body shape and soft-tissue deforma-
tions if they wish. Similarly, the SMPL shape space makes
it trivial to normalize all bodies to the same shape if users
want joint locations normalized to a single shape. Figure 1
shows a selection of poses and body shapes in the dataset
while Fig. 2 illustrates the difference between MoSh++
and traditional mocap. Traditional datasets contain skele-
tons and/or markers, while the AMASS dataset also pro-
vides fully rigged 3D meshes. With MoSh++ it is easy to
add more data and we will continue to expand the dataset.
We make AMASS available to the research community at
https://amass.is.tue.mpg.de/, and will support
the community in adding new captures as long as they can
be similarly shared.

In summary, we provide the largest unified mocap
dataset (AMASS) to the community, enabling new appli-
cations that require large amounts of training data.

2. Related Work
There is a vast literature on estimating skeletal param-

eters from mocap markers as well as several commercial
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solutions that solve this problem. As shown by Gorton et
al. [16], different solutions use different skeletal models and
pre-specified markersets, which makes it hard to unify the
existing corpora of marker-based human recordings. Fur-
thermore, all the methods that fit skeletons to data effec-
tively lose rich surface information in the process. We re-
view the most related work: fitting surface models to mark-
ers, capturing hands and soft-tissue motion from markers,
and previous motion capture datasets.

Surface Models from Markers. To reconstruct bodies
from markers, most methods first build a statistical model
of body shape [5] or body shape and pose [6, 8, 26]. Allen
et al. [5] reconstruct body shape using 74 landmarks. They
do this only for a fixed body pose, assuming that the corre-
spondences between the model and the markers are known.
The approach cannot deal with arbitrary poses because the
model cannot be posed. Anguelov et al. [8] go further by
learning a model (SCAPE) of shape and non-rigid pose de-
formations. Their method requires a dense 3D scan of each
subject. This restricts its application to archival mocap.

Loper et al. [25] address some of these limitations with
MoSh, and remove the requirement for individual 3D dense
scans. However, MoSh uses a BlendSCAPE body model
formulation [18], which is not compatible with standard
graphics packages making it sub-optimal for distribution.
Furthermore, MoSh does not capture real soft-tissue dy-
namics, and does not capture hands.

Hands. There is a large body of work on fitting hand
models to RGB-D data [40, 41] but here we focus on meth-
ods that capture hand motion from sparse markers. May-
cock et al. [28] combine an optimal assignment method with
model fitting but can capture only hands in isolation from
the body and require a calibration pose. Schroder et al. [38]
propose an optimization method to find a reduced sparse
markerset and, like us, they use a kinematic subspace of
hand poses. Alexanderson et al. [4] capture hand motion
using sparse markers (3-10). They generate multiple hy-
potheses per frame and then connect them using the Viterbi
algorithm [13]. They can track hands that exit and re-enter
the scene and the method runs in real-time. However, a
new model needs to be trained for every markerset. Han et
al. [17] address the problem of automatically labeling hand
markers using a deep network. The above methods, either
do not estimate hands and bodies together or do not provide
a 3D hand shape.

Soft-tissue motion. Most of the work in the mocap com-
munity focuses on minimizing the effect of skin deforma-
tions on the marker motions [7, 23]. In some biomechanical
studies, the markers have even been fixed to the bones via
percutaneous pins [22]. Our work is very different in spirit.
We argue that such soft-tissue and skin deformation makes
captured subjects look alive. In [25] they capture soft-tissue
by fitting the parameters of a space of static body shapes to

a sparse set of markers. This corresponds to modeling soft-
tissue deformation by changing the identity of a person. In-
stead, using the dynamic shape space of DMPL [26] results
in more realistic soft-tissue motions with minimal increase
in model complexity.

Motion Capture Datasets. There are many motion cap-
ture datasets [3, 9, 10, 21, 25, 31, 30, 39, 34, 42, 43, 45],
as well as several attempts to aggregate such datasets into
larger collections [20, 27, 29]. Previous attempts to merge
datasets [20, 27] adopt a common body representation in
which the size variation among subjects is normalized. This
enables methods that focus on modeling pose and motion in
terms of joint locations. On the other hand, such an ap-
proach throws away information about how body shape and
motion are correlated and can introduce artifacts in retar-
geting all data to a common skeleton. For example, Holden
et al. [20] retarget several datasets to a common skeleton to
enable deep learning using joint positions. This retargeting
involves an inverse kinematics optimization that fundamen-
tally changes the original data.

Our philosophy is different. We work directly with the
markers and not the skeleton, recovering the full 3D surface
of the body. There is no loss of generality with this approach
as it is possible to derive any desired skeleton representation
or generate any desired markerset from the 3D body model.
Moreover, having a body model makes it possible to texture
and render virtual bodies in different scenes. This is useful
for many tasks, including generating synthetic training for
computer vision tasks [44].

3. Technical Approach
To create the AMASS dataset, we generalize MoSh in

several important ways: 1) we replace BlendSCAPE by
SMPL to democratize its use (Sec. 3.1); 2) we capture
hands and soft-tissue motions (Sec. 3.2); 3) we fine-tune
the weights of the objective function using cross-validation
on a novel dataset, SSM (Sec. 4).

3.1. The Body Model

AMASS is distributed in the form of SMPL body model
parameters. SMPL uses a learned rigged template T with
N = 6890 vertices. The vertex positions of SMPL are
adapted according to identity-dependent shape parameters,
β, the pose parameters, θ, and translation of the root in the
world coordinate system, γ. The skeletal structure of the
human body is modeled with a kinematic chain consisting
of rigid bone segments linked by joints. Each body joint has
3 rotational Degrees of Freedom (DoF), parametrized with
exponential coordinates. We use a variant of SMPL, called
SMPL-H [37], which adds hand articulation to the model
using a total of n = 52 joints, where 22 joints are for the
body and the remaining 30 joints belong to the hands. For
simplicity of notation, we include the 3D translation vector



Figure 3: MoSh with BlendSCAPE (blue) vs. MoSh++ with SMPL (orange); visually similar, but MoSh++ is more accurate
and SMPL provides a standard rigged mesh with a skeleton.

γ in the pose vector. The pose θ is determined by a pose
vector of 3 × 52 + 3 = 159 parameters. The remaining
attributes of the SMPL-H model are the same as SMPL.

We combine SMPL-H with DMPL to obtain a model that
captures both hand pose and soft-tissue deformations. For
brevity we refer to the combined SMPL-H + DMPL model
as SMPL throughout this paper, although this goes beyond
any previously published model.

SMPL modifies the template in an additive way. It ap-
plies additive shape, pose, and dynamic blendshapes to a
template in a canonical pose and predicts joint locations
from the deformed surfaces. The model is

S(β,θ,φ) = G(T (β,θ,φ), J(β),θ,W) (1)
T (β,θ,φ) = Tµ +Bs(β) +Bp(θ) +Bd(φ) (2)

where G(T,J,θ,W) : R3N × R|θ| × R3K × R4×3N 7→
R3N is a linear blend skinning function that takes vertices
of the model in the rest pose T, K joint locations stacked
in J, a pose θ, and the blend weights W, and returns the
posed vertices. The blendshape functions Bs(β), Bp(θ),
and Bd(φ) output vectors of vertex offsets relative to the
mean template, Tµ (see [26, 36] for a detailed explanation
of the functions). We call these shape, pose, and dynamic
blend shapes respectively. Note that the pose blendshapes
are a function of the pose θ, while β and φ correspond to
linear coefficients that determine the shape and soft-tissue
deformation.

SMPL captures the dimensionality of body space more
compactly than BlendSCAPE. With only 16 shape, and 8
dynamics components, MoSh++ achieves better accuracy
than MoSh using 100 shape components. The number of

shape and dynamics coefficients is chosen using the SSM
dataset such that MoSh++ does not over-fit to mocap mark-
ers (see Supplementary Material).

3.2. Model Fitting

Similar to MoSh [25], MoSh++ uses two stages to fit
a body model to a sparse markerset. We summarize these
stages, review the necessary details, and hightlight the dif-
ferences relative to MoSh. We use a similar notation to the
original MoSh paper.

Stage I: Following MoSh, we use a marker parametriza-
tion m(m̃i,β,θt) that maps a latent, pose invariant repre-
sentation of the markers, m̃i, to estimate their position in a
posed frame, θt. In the first stage, for F = 12 randomly
chosen frames from the subject-specific mocap sequences,
given an initial guess for marker-body correspondences, we
optimize poses Θ = θ1...F , a single shape β, and latent
marker positions M̃ = {m̃i} to fit the observed marker lo-
cationsM = {mi,t ∈Mt}1...F , where i indexes the mark-
ers in a frame; at this stage we exclude soft-tissue deforma-
tions. More specifically, similar to MoSh, we optimize the
following objective function:

E(M̃,β,ΘB ,ΘH) = λDED(M̃,β,ΘB ,ΘH)

+ λβEβ(β) + λθBEθB
(θB) + λθHEθH

(θH)

+ λRER(M̃,β) + λIEI(M̃,β).

(3)

The data term ED measures distance between simulated
markers m(m̃i,β,θt) and the observed ones mi,t; Eβ is a
Mahalanobis distance shape prior on the SMPL shape com-
ponents; EθB

regularizes the body pose parameters; ER en-
courages the latent markers to remain a prescribed distance



d from the body surface (here we use an average value of
d = 9.5mm); and EI penalizes deviations of latent mark-
ers from their initialized locations defined by the markerset
(see [25] for further details).

In addition to the original terms of MoSh in Eq. 3, we
add EθH

, which regularizes the hand pose parameters. We
project the full hand pose (i.e. 90 hand parameters) into the
24-D MANO pose space for both hands and compute the
Mahalanobis distance in this space

EθH
(θH) = θ̂

T

HΣ−1θH
θ̂H , (4)

where θ̂ represents the projection of the pose and ΣθH
is

the diagonal covariance matrix of the 24-dimensional low-
D PCA space [37].

In contrast to MoSh, the λ hyper-parameters are deter-
mined by line search on the training set of SSM (Sec. 4.2).
The data term, ED, in Eq. 3 uses a sum of squared dis-
tances, which is affected by the number of observed markers
in the mocap data. This is noteworthy since a standard 46-
markerset was used to determine the λ weights during the
hyper-parameter search. To deal marker variation due to oc-
clusion or using different markersets, we automatically ad-
just the weight of this term, scaling it by a factor, b = 46/n,
where n is the number of observed markers in a frame.

To help avoid local optima while minimizing Eq. 3, we
use the Threshold Acceptance method [11] as a fast anneal-
ing strategy. Over 4 annealing stages of graduated optimiza-
tion, we increase λD by multiplying it by a constant factor
s = 2 while dividing the regularizer weights by the same
factor. The weights at the final iteration are as follows:

λD = 600× b, λβ = 1.25, λθB = 0.375,

λθH = 0.125, λI = 37.5, λR = 1e4. (5)

The surface distance regularization weight, λR, remains
constant throughout the optimization. The 24 hand pose
components are added into the optimization only during the
final two iterations.

Stage II: In this stage, the latent marker locations and
body shape parameters β of the model are assumed constant
over time and the objective at this stage optimizes pose for
each frame of mocap in the sequence.

Like MoSh, we add a temporal smoothness term for pose
changes, Eu, to help reduce the effect of jitter in the mocap
marker data. Yet in contrast to MoSh, we optimize for the
soft-tissue deformation coefficients, φ. We add a prior and
a temporal smoothness terms, Eφ(φ) and Ev(φ) respec-
tively, to regularize the soft-tissue deformations. Then the
final objective function for this stage becomes

E(θB ,θH ,φ) = λDED(θB ,θH ,φ)

+ λθBEθB
(θB) + λθHEθH

(θH)

+ λuEu(θB ,θH)

+ λφEφ(φ) + λvEv(φ).

(6)

The data, body, and hands pose prior terms, ED, EθB
, and

EθH
, are the same as described in the first stage. To reg-

ularize the soft-tissue coefficients, we add a Mahalonobis
distance prior on the 8 DMPL coefficients.

Eφ(φ) = φTt Σ−1φ φt, (7)

where the covariance Σφ is the diagonal covariance matrix
computed from the DYNA dataset [36].

When hand markers are present, MoSh++ optimizes the
hand pose parameters in the same way as all the other pose
parameters except that we use 24 dimensions of MANO’s
[37] low-dimensional representation of the pose for both
hands. In cases where there are no markers present on the
hands of the recorded subjects, the hand poses are set to the
average pose of the MANO model.

The initialization and fitting for the first frame of a se-
quence, undergoes a couple of extra steps compared to the
rest of the motion. For the first frame, we initialize the
model by performing a rigid transformation between the es-
timated and observed markers to repose the model from its
rest pose T to roughly fit the observed pose. Then we use
a graduated optimization for Eq. 6 with only the data and
body pose prior terms, while λθB is varied from [10, 5, 1]
times the final weight. Later, for each of the subsequent
frames, we initialize with the solution of the previous frame
to estimate the pose and soft-tissue parameters.

The per-frame estimates of dynamics and pose after the
first frame are carried out in two steps. During the first step,
we remove the dynamics and dynamics smoothness terms,
and optimize only the pose. This prevents the dynam-
ics components from explaining translation or large pose
changes between consecutive frames. Then, we add the dy-
namics, φ, and the dynamics smoothness terms into the op-
timization for the final optimization of pose and dynamics.

We explain details of tuning the weights λ in Sec. 4.2.
The velocity constancy weights λu and λv depend on the
mocap system calibration and optical tracking quality, data
frame rate, and the types of motions. Therefore, these val-
ues could not be optimized using just one source of data,
so we empirically determined them through experiments on
different datasets of varying frame rates and motions. The
final weights determined for this stage are:

λD = 400× b, λθB = 1.6× q, λθH = 1.0× q,
λu = 2.5, λφ = 1.0, λv = 6.0. (8)

Similar to b, which adjusts the weight of the data term to
varying markersets, q is a weight-balancing factor for the
pose prior λθ. During a mocap session, markers may get
occluded by the body due to pose. If multiple markers of
a particular body part are occluded simultaneously, the op-
timization may result in unreliable and implausible poses,
such as the estimated pose shown in Fig. 4 (left). To ad-
dress this, we introduce a coefficient q = 1 +

(
x
|M| ∗ 2.5

)
,



Figure 4: Pose estimation with heavy marker occlusion.
Pose optimization with constant pose prior weight λθ (left),
variable pose prior weight λθ (right). λθ is allowed to vary
as a factor of fraction of visible markers resulting in more
plausible poses even when toe markers (right foot) and all
foot markers (left foot) are missing. Estimated and observed
markers are shown in red and green, respectively.

where x is the number of missing markers in a given frame,
|M| are the total number of markers. This updates the pose
prior weight as a factor of the number of missing markers.
The more markers that are missing, the higher this weights
the pose prior. This term can increase the prior weight by
up to a factor of q = 3.5, in the worse case scenario where
x = |M|, and goes down to having no effect, q = 1.0 when
all session markers are visible x = 0. An example of the
effect of this factor is shown in Fig. 4 (right).

3.3. Optimization and Runtime

Similar to MoSh we use Powells gradient based dogleg
minimization [33] implemented in the Chumpy [24] auto-
differentiation package. Details on the runtime are pre-
sented in the Supplementary Material.

4. Evaluation

In order to set the hyperparameters and evaluate the time-
varying surface reconstruction results of MoSh++, we need
reference ground truth 3D data with variations in shape,
pose and soft-tissue deformation. To that end, we introduce
the SSM dataset (Sec. 4.1) and optimize the weights of the
objective functions (Eqs. 3 and 6) using cross-validation on
SSM (Sec. 4.2). After optimizing the hyper-parameters, we
evaluate the accuracy of MoSh++, e.g. shape reconstruc-
tion accuracy (Sec. 4.3), pose, and soft-tissue motion re-
construction (Sec. 4.4) on the test set.

4.1. Synchronized Scans and Markers (SSM)

We use an OptiTrack mocap system [32] to capture sub-
jects with 67 markers; i.e. using the optimized marker-set
proposed by MoSh. The system was synchronized to record
the mocap data together with a 4D scanning system [1].

Figure 5: SSM dataset. 3D scans with mocap markers
(gray) and fitted bodies (orange). The average scan to model
distance between them is 7.4mm.

(See Fig. 5; details are provided in the Supplementary Ma-
terial). The dataset consists of three subjects with varying
body shapes, performing a total of 30 different motions.
Two of the three subjects were professional models who
signed modeling contracts; this allows us to release their
4D scan data, along with the synchronized mocap data for
the research community.

We evaluate the accuracy of MoSh++ using the 67 mark-
ers, as well as a more standard 46 marker subset of the 67
markers. For both testing and evaluation, we use scan-to-
model distances between the 3D scans (our ground truth
mesh) of the SSM dataset and the corresponding estimated
meshes for each trial of the hyper-parameter search and
evaluation. For each reconstructed mocap frame, we take
a uniform sampling of 10,000 points of the corresponding
synchronized 3D scan and compute the distance from each
of these to the closest surface point on our reconstructed
mesh. We measure the average of these distances (in mm).

4.2. Hyper-parameter Search using SSM

The goal is to set the λ weights in Eq. 3 and Eq. 6 to
minimize the reconstruction error for the validation data.
Grid search complexity grows exponentially with the num-
ber of parameters (i.e. 5 parameters in the case of shape
estimation, 4 in the case of pose estimation). Therefore, we
perform line search on each parameter keeping the others
fixed.

For the shape estimation stage, the optimization uses 12
randomly chosen mocap frames from each training subject
to estimate shape and marker location for that subject. In-
stead of choosing a single, unseen pose to evaluate shape
accuracy as in [25], we report the average error over the 12
randomly selected frames from the first stage of Mosh (see
Sec. 3.2). Here the duration of the mocap sessions does not
matter, but variation of body shape among the testing and
training subjects is important. Therefore, we use only mo-
cap data from two out of the three SSM subjects as training
set while keeping the data from the third subject for test-
ing and evaluation. We repeat the process 4 times for the



training subjects, using a different random set of 12 frames
for each trial. Validation is performed by running the op-
timization a fifth time, and initializing with a new random-
ization seed. We use a line search strategy to determine ob-
jective λ weights of Eq. 3 by finding a combination of these
weights that provide the lowest reconstruction error for the
estimated body mesh in the 12 frames picked during each
trial. The final weights are described in Sec. 3.2.

For pose estimation, we separated 20% of the total cap-
tured mocap files from the three subjects as a held-out set
for testing and evaluation. The first 200 frames of the rest of
the motion files are used for training, leaving the remaining
frames (roughly 60% of the training set) for validation. We
perform a line search on the objective weights [λD, λθ, λφ]
of Eq. 6 and the missing-marker coefficient q, obtaining the
final weights described in Sec. 3.2.

4.3. Shape Estimation Evaluation

Compared to MoSh, we obtain more accurate results
on SSM . Fig. 6 (left) shows that the shape estimation
accuracy on SSM is 12.1mm and 7.4mm for MoSh and
MoSh++ respectively, when using a standard 46-markerset.
Note that we use SSM to determine the optimal number
of shape and dynamic coefficients (16 and 8 respectively).
Adding more decreases marker error but this over-fits to the
markers, causing higher error compared with the ground
truth shape. Details are in the Supplementary Material.

4.4. Pose and Soft-tissue Estimation Evaluation

We also evaluate the per frame accuracy of pose and
soft-tissue motion estimation of MoSh++. Fig. 6 (mid-
dle) shows that the pose estimation accuracy on SSM with-
out soft-tissue motion estimation is 10.5mm and 8.1mm
for MoSh and MoSh++ respectively, when using a stan-
dard 46-markerset. Similarly, with dynamics terms turned-
on, MoSh++ achieves more accurate results than MoSh
(7.3mm vs 10.24mm), Fig. 6 (right). The importance of
soft-tissue estimation can be observed in Fig. 7. This result
is expected since MoSh [25] models soft-tissue motion in
the form of changes in the identity shape space of the Blend-
SCAPE model, whereas MoSh++ fits the DMPL space of
soft-tissue motions learned from data [26].

4.5. Hand Articulation

We do not have ground-truth data for evaluating accu-
racy of hand articulation. Qualitative results of our joint
body and hand captures can be seen in Fig. 8. Notice how
MoSh++ with hand capture leads to more realistic hand
poses. This illustrates that MoSh++ is not limited to the
main body but can be extended to capture other parts if a
model is available.

Markers Subjects Motions Minutes
ACCAD [34] 82 20 252 26.74
BMLrub [42] 41 111 3061 522.69
CMU [9] 41 96 1983 543.49
EKUT [27] 46 4 349 30.74
Eyes Japan [12] 37 12 750 363.64
HumanEva [39] 39 3 28 8.48
KIT [27] 50 55 4232 661.84
MPI HDM05 [31] 41 4 215 144.54
MPI Limits [3] 53 3 35 20.82
MPI MoSh [25] 87 19 77 16.53
SFU [15] 53 7 44 15.23
SSM (us) 86 3 30 1.87
TCD Hands [21] 91 1 62 8.05
TotalCapture [43] 53 5 37 41.1
Transitions (us) 53 1 110 15.1
Total 344 11265 2420.86

Table 1: Datasets contained in AMASS. We use MoSh++
to map more than 40 hours of marker data into SMPL pa-
rameters, giving a unified format.

5. AMASS Dataset
We amassed in total 15 mocap datasets, summarized in

Table 1. Each dataset was recorded using a different num-
ber of markers placed at different locations on the body;
even within a dataset, the number of markers varies. The
publicly available datasets were downloaded from the inter-
net. We obtained several other datasets privately or recorded
them ourselves (Dancers, Transitions, BMLrub and SSM).
We used MoSh++ to map this large amount of marker data
into our common SMPL pose, shape, and soft-tissue pa-
rameters. Problems inherent with mocap, such as swapped
or mislabeled markers, were fixed by manually inspecting
the results and either correcting or holding out problems.
Fig. 1 shows a few representative examples from different
datasets. The result is AMASS, the largest public dataset of
human shape and pose, including 344 subjects, 11265 mo-
tions and 40 hours of recordings and is available to the re-
search community at https://amass.is.tue.mpg.
de/. See the website for video clips that illustrate the di-
versity and quality of the dataset.

6. Future Work and Conclusions
Future work will extend the SSM dataset to include cap-

tures with articulated hands. We also intend to extend
MoSh++ to work with facial mocap markers. This should be
possible using the recently published SMPL-X model [35],
which represents the face, body, and hands together. Cur-
rent runtime for MoSh++ is not real-time (see Supplemen-
tary Material). However, in principle it should be possible
to improve the runtime of MoSh++ significantly by using a
parallel implementation of SMPL using frameworks such as
TensorFlow [2]. Finally, we see an opportunity to push our

https://amass.is.tue.mpg.de/
https://amass.is.tue.mpg.de/


Figure 6: MoSh vs MoSh++ shape and pose reconstruction: Mean absolute distance of body shapes reconstructed, using
MoSh with the BlendSCAPE model (blue bars) and MoSh++ with SMPL and optimized hyper-parameters (orange bars), to
ground-truth 3D scans. Error in 1) Shape estimation, 2) Pose estimation, 3) Pose estimation with DMPL. Error bars indicate
standard deviations. We compare a standard 46 markerset with the 67 markerset of MoSh [25]. MoSh++ with only 46
markers is nearly as good as MoSh with 67 markers. Average scan-to-mesh surface distance between 3D scan alignments
and the original scans are shown in green as a baseline for comparison, e.g. an average value of 0.5mm.

Figure 7: Soft-tissue Dynamics. MoSh [25] (blue),
MoSh++ with dynamics from DMPL (orange), and ground
truth scans synced with Mocap (gray). MoSh++ captures
motion of the chest and stomach more accurately. Esti-
mated markers (red) and observed markers (green) are also
displayed for both MoSh and MoSh++.

Figure 8: Articulated hands: If hand markers are present
MoSh++ fits hand poses using SMPL-H [37]. Model fitting
without hands (yellow) vs. MoSh++(orange).

approach further to address the problems of missing mark-
ers and to exploit the body for fully automatic marker label-
ing. AMASS itself can be leveraged for this task and used
to train models that denoise mocap data [14] (cf. [19]).

In conclusion, we have introduced MoSh++, which ex-

tends MoSh and enables us to unify marker-based motion
capture recordings, while being more accurate than simple
skeletons or the previous BlendSCAPE version. This al-
lowed us to collect the AMASS dataset containing more
than 40 hours of mocap data in a unified format consist-
ing of SMPL pose (with articulated hands), shape and soft-
tissue motion. We will incorporate more mocap data into
AMASS as it becomes available.
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