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1 Introduction

In this paper we provide an overview of recent research conducted at the Univer-
sity of Maryland's Computer Vision Laboratory on problems related to surveil-
lance of human activities. Our research is motivated by considerations of a
ground-based mobile surveillance system that monitors an extended area for
human activity. During motion, the surveillance system must detect other mov-
ing objects and identify them as humans, animals, vehicles. When one or more
persons are detected, their movements need to be analyzed to recognize the ac-
tivities that they are involved in. Ideally, the surveillance system would be able
to accomplish this even while continuing to move; alternatively, the system could
stop and stare at that part of the scene containing people.

In Section 1 we describe a novel approach to the problem of detecting in-
dependently moving objects from a moving ground camera, and illustrate the
approach on sequences taken in very cluttered environments. Current research
focuses on the problem of classifying those independently moving objects as peo-
ple based on a combination of their appearance and movement. In Section 2 we
describe a system that can track multiple moving people using sequences taken
from a stationary camera. This system of algorithms, which has been imple-
mented on a PC and can process 10-30 frames per second (depending on the
number of people within the �eld of view and the resolution of the imagery)
uses a hierarchy of tracking modules to identify and follow people's heads, tor-
sos, feet, ... Finally, in Section 4 we explain how the recovered motion of these
people can be classi�ed into various activity classes using a principal component
model of the time variation of motion of the body parts.
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2 Detecting independent motion using directional motion

estimation

This section brie
y describes an application of the theory developed in [2] to
the problem of detecting independent motion in long image sequences. The ap-
proach, which is based on two simple geometric observations about directional
components of 
ow �elds, allows general camera motion, a large camera Field Of
View (FOV), and scenes with large depth variation; no point correspondences
are required. Due to the projection method the original problem of detecting
independent motion is reduced to a combination of robust line �tting and one-
dimensional search. More details about the method can be found in [1, 3].

2.1 Properties of directional components of visual displacement

�elds

Given an optical 
ow �eld, we construct a scalar �eld by projecting the optical

ow vectors onto a given projection direction. Our approach to motion estimation
is then based on analyzing cross sections of this projected 
ow �eld; in particular,
cross-sections both parallel and orthogonal to the chosen projection direction.
This analysis leads to recovering the projections of the camera motion, which
we call the directional motion parameters. In the simple case of a narrow-FOV
camera the rotational projected 
ow is constant along the parallel cross-sections,
and varies linearly along the orthogonal cross-sections; we call this the linearity

property. Since the projected translational 
ow is zero at the projection of the
FOE on any parallel cross-section, the second observation leads to what we call
the divergence property: points to the \left" of the projected FOE in a parallel
cross-section have projected 
ow less than the 
ow at the projected FOE, and
points to the \right" have greater projected 
ow. Since we do not know, a priori,
what the projected rotational 
ow is, we estimate at each point along every
parallel cross-section that 
ow value which best satis�es the divergence property.
This is, essentially, equivalent to estimating a 
ow value that minimizes negative
depth [6] along that parallel cross-section. Orthogonal cross-sections of these new
projected 
ow values are then constructed. Finally, using the linearity property,
the projected rotation parameters are estimated by �nding that orthogonal cross-
section on which the projected (new) 
ow values are best �t by a linear model.
Extensions of the algorithm to large FOVs (accomplished by embedding it into
a recursive derotation framework) or very small FOVs (in which the divergence
property of the projected 
ow cannot be used) can be easily achieved. In any
event, once the projected motion parameters are estimated we know by the
epipolar constraint that along any parallel cross-section, all points to the left of
the projected FOE should have projected motion less than the �nal estimate of
rotation at the projected FOE obtained from the linear model, and all points to
the right should have greater projected 
ow.



2.2 The detection algorithm

The ability to verify the epipolar constraint for arbitrary 
ow �elds using only
low-dimensional projections of the original 
ow �eld provides a simple basis for
detecting independently moving objects. For this purpose we need to incorporate
only one or a small collection of directional components of the 
ow �eld. The
image locations where the linearity and the divergence constraints of projections
are violated are considered as regions with independent motion.

            

                        

            

            

            

Fig. 1. Detection of moving people (top and bottom) and a moving vehicle (middle)
from a hand-carried camera. Each row illustrates two (non-consecutive) frames of long
image sequences taken from several seconds apart.

In practice, one must take into account the fact that the linear �tting pro-
cess used to estimate the projected rotation parameters must be robust to both
measurement error in 
ow estimation and errors introduced by the presence
of independently moving points; and, in the detection of independently mov-
ing points, one must take into account measurement error in 
ow estimation.
The �rst problem is addressed using robust line �tting, in which the parallel
cross-sections corrupted by independent motion are eliminated from the �t by
a repeated-median-based robust line-estimator [7]. The second problem is ad-
dressed by �rst assuming that the parallel cross sections that are included in
the robust line �t ("inliers") in fact do not include any independently moving
points. This allows us to identify detection thresholds that adapt to changes in
imaging conditions. Intuitively, for each parallel inlier cross-section we �nd the
projected 
ow vector which most violates the assumption that no pixel along an
inlier cross-section is moving independently. We then consider the worst violator
amongst all the inlier cross-sections, and use the magnitude of the di�erence in

ow between that pixel and the 
ow at the projected FOE on that cross-section
as our adaptive threshold. This threshold is then applied to the remaining "out-
lier" cross sections. This simple automatic adaptive thresholding procedure pro-
vides a good trade-o� between sensitive detection and low false alarm rate, and
is a signi�cant improvement of the detection algorithm over those which apply
�xed thresholds.



In order to further improve the reliability and robustness of the algorithm,
frame-by-frame-based instantaneous detections need to be integrated over both
space and time. We employ temporal integration over motion trajectories using
tracking to verify detections and eliminate short-term drop-outs. Finally, a spa-
tial integration provides grouping of independently moving pixels that pass the
temporal analysis based on coherence in location and velocity.

Figure 1 shows three examples of detecting independent motion from a hand-
carried camera. The camera FOV is relative large (55o) while the scenes contain
di�erent degree of depth variation. In all examples the primary input for our
algorithm was the simple normal 
ow as a particular directional component
of the 
ow �eld. In each frame dark pixels indicate local detections veri�ed
by the temporal �lter. The high-lighted bounding boxes represent groupings of
these detections using spatial and velocity coherence. Current research focuses
on characterizing the appearance and motion of independently moving objects
to classify them as people, vehicles, etc.

3 The W 4 System

W
4 is a real time system for tracking people and their body parts in monochro-

matic imagery. It constructs dynamic models of people's movements to answer
questions about what they are doing, and where and when they act. It con-
structs appearance models of the people it tracks so that it can track people
(who?) through occlusion events in the imagery. In this section we describe the
computational models employed by W 4 to detect and track people and their
parts. These models are designed to overcome the inevitable errors and ambigu-
ities that arise in dynamic image analysis. These problems include instability in
segmentation processes over time, splitting of objects due to coincidental align-
ment of objects parts with similarly colored background regions, etc.
W

4 has been designed to work with only monochromatic video sources, either
visible or infrared. While most previous work on detection and tracking of people
has relied heavily on color cues, W 4 is designed for outdoor surveillance tasks,
and particularly for night-time or other low light level situations. In such cases,
color will not be available, and people need to be detected and tracked based
on weaker appearance and motion cues. W 4 is a real time system. It currently
is implemented on a dual processor Pentium PC and can process between 10-
30 frames per second depending on the image resolution (typically lower for
IR sensors than video sensors) and the number of people in its �eld of view.
In the long run, W 4 will be extended with models to recognize the actions of
the people it tracks. Speci�cally, we are interested in interactions between people
and objects - e.g., people exchanging objects, leaving objects in the scene, taking
objects from the scene. The descriptions of people - their global motions and the
motions of their \parts" - developed byW 4 are designed to support such activity
recognition.
W

4 currently operates on video taken from a stationary camera, and many
of its image analysis algorithms would not generalize easily to images taken



from a moving camera. Other ongoing research in our laboratory attempts to
develop both appearance and motion cues from a moving sensor that might alert
a system to the presence of people in its �eld of regard [4].

W
4 consists of �ve computational components: background modeling, fore-

ground object detection, motion estimation of foreground objects, object track-
ing and labeling, and locating and tracking human body parts. The background
scene is statically modeled by the minimum and maximum intensity values and
temporal derivative for each pixel recorded over some period, and is updated pe-
riodically. For each frame in the video sequence, foreground objects are detected
by frame di�erence thresholding, connected component analysis, and morpho-
logical analysis. These foreground objects are tracked and labeled by a forward
matching process from previously detected objects to currently detected objects.
Motion models, which are based on matching silhouette edges of foreground ob-
jects in two successive frames and a recursive least square method, are used
during object tracking to estimate the expected location of objects in future
frames. A cardboard human model of a person in a standard upright pose is
used to model the human body and to locate human body parts (head, torso,
hands, legs and feet). Those parts are tracked using dynamic template matching
methods. Figure 2 illustrates some results of the W 4 system.

Fig. 2. Examples of using the cardboard model to locate body parts in di�erent
situations: four people meet and talk (�rst line), a person sits on a bench (second
line), two people meet (third line).



4 Activity Modeling and Recognition

Activity representation and recognition are central to the interpretation of hu-
man movement. There are several issues that a�ect the development of models
of activities and matching of observations to these models,

{ Repeated performances of the same activity by the same human vary even
when all other factors are kept unchanged.

{ Similar activities are performed by di�erent individuals in slightly di�erent
ways.

{ Delineation of onset and ending of an activity can sometimes be challenging.
{ Similar activities can be of di�erent temporal durations.
{ Di�erent activities may have signi�cantly di�erent temporal durations.

There are also imaging issues that a�ect the modeling and recognition of
activities

{ Occlusions and self occlusions of body parts during activity performance.
{ The projection of movement trajectories of body parts depend on the obser-
vation viewpoint.

{ The distance between the camera and the human a�ect image-based mea-
surements due to the projection of the activity.
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Fig. 3. Image sequence of \walking" and the �ve-part tracking

An observed activity can be viewed as a vector of measurements over the
temporal axis. Consider as an example Figure 3, which shows both selected
frames from an image sequence of a person walking in front of a camera and the
model-based tracking of �ve body parts (i.e., arm, torso, thigh, calf and foot).
We developed (see [8] for details) a method for modeling and recognition of
these temporal measurements while accounting for some of the above variations
in activity execution. This method is based on the hypothesis that a reduced



dimensionality model of activities such as \walking" can be constructed using
principal component analysis (PCA, or an eigenspace representation) of example
signals (\exemplars"). Recognition of such activities is then posed as matching
between principal component representation of the observed activity (\obser-
vation") to these learned models that are subjected to \activity-preserving"
transformations (e.g., change of execution duration, small change in viewpoint,
change of performer, etc.).

4.1 Experimental Results

We employ a recently proposed approach for tracking human motion using pa-
rameterized optical 
ow [5]. This approach assumes that an initial segmentation
of the body into parts is given and tracks the motion of each part using a chain-
like model that exploits the attachments between parts to achieve tracking of
body parts in the presence of non-rigid deformations of clothing that cover the
parts.

A set of 44 sequences of people walking in di�erent directions were used
for testing. The model of multi-view walking was constructed from the walking
pattern of one individual while the testing involved eight subjects. The �rst six
activity bases were used. The confusion matrix for the recognition of 44 instances
of walking-directions are shown in Table 1. Each column shows the best matches
for each sequence. The walkers had di�erent paces and stylistic variations, some
of which where recovered well by the a�ne transformation. Also, time shifts
were common since only coarse temporal registration was employed prior to
recognition.

Walking Direction Parallel Diag. Away Forward

Parallel 11 2

Diagonal 3 14 1

Perp. Away 6

Perp. Forw. 1 1 1 4

Total 15 17 7 5

Table 1. Confusion matrix for recognition of walking direction

Next, we illustrate the modeling and recognition of a set of activities that
we consider challenging for recognition. We chose four activities that are overall
quite close in performance: walking, marching, line-walking2, and kicking while

walking. Each cycle of these four activities lasts approximately 1.5 seconds.
We acquired tens of sequences of subjects performing these four activities

as observed from a single view-point. Temporal and stylistic variabilities in the
performance of these activities are common. Clothing and lighting variations

2 A form of walking in which the two feet step on a straight line and spatially touch
when both are on the ground.



also a�ected the accuracy of the recovery of motion measurements from these
image sequences.

Table 2 shows the confusion matrix for recognition of a set of 66 test activities.
These activities were performed by some of the same people who were used for
model construction as well as new performers. Variations in performance were
accounted for by the a�ne transformation. Up to 30% speed-up or slow-down
as well as up to 15 frames of temporal shift were accounted for by the a�ne
transformation used in the matching.

Activity Walk Line-Walk Walk. to Kick March

Walk 11 3 3

Line-Walk 3 24 1

Walk to Kick 12

March 1 1 7

Total 15 28 12 11

Table 2. Confusion matrix for recognition results
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