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1 Examples for frame extensions

As stated in the paper, the algorithm presented here is able to reconstruct portions of the background that
become uncovered at some point in the video sequence. Below, we show examples for the reconstructed
foreground and background, together with the unblurred image, for three example sequences. For the
full results, please see the video.

Figure 1: From top to bottom: Bike, Sign, Kennedy sequence. From left to right: deblurred frame,
reconstructed foreground layer, reconstructed background layer. The red frame indicates the extent of
the current image.
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2 Derivatives and algorithm

2.1 Derivatives of regularization terms

2.1.1 Spatial smoothness prior

In the paper, the spatial smoothness prior was defined as (Eq. (9) in the paper)

Esparse(Y, α) =
∑
x,y

ρc (∇xY (x, y))
α

+ ρc (∇yY (x, y))
α
, (1)

approximating the absolute | · | with the Charbonnier function ρc(x) =
√
x2 + ε2 with ε = 10−3, and with

ψc (x) =
∂ρc (x)

∂d
=

x√
x2 + ε2

. (2)

The derivative is then given as

∂Esparse(Y, α)

∂Y

∣∣∣∣∣
x,y

=∇−x
[
αρc (∇xY (x, y))

α−1
ψc (∇xY (x, y))

]
+∇−y

[
αρc (∇yY (x, y))

α−1
ψc (∇yY (x, y))

]
, (3)

Here, the gradient ∇ is approximated by a finite difference filter [0,−1, 1], and the inverted gradient
∇− is approximated by [1,−1, 0].

As described in the paper, we use αA = 0.8 for the layer appearance, consistent with previous work
on natural image statistics. For the segmentation mask, we use αG = 1.0.

2.1.2 Background preference

In the paper, the background preference prior is given as

Ebg(Y ) =
∑
x,y

Y (x, y)2. (4)

The derivative is given as

∂Ebg (Y )

∂Y

∣∣∣∣∣
x,y

= 2Y (x, y). (5)

2.2 Derivatives with respect to A1 and A1

In this section, we return to the vector notation, expressing the input image It, the estimated image Ît,
and the layer data A0, A1, and G1 as column vectors it, ît, a0, a1, and g1, respectively. Additionally, we

define Ψt = ψ
(
it − ît

)
as a row vector, containing the element-wise derivatives of the point-wise error

measure ρ (x) with respect to the individual elements:

ψ (x) = w>
∂ρ (x)

∂x
, (6)

with w being the mask to extend the image (cf. Eq. (6) in the paper).
The derivatives of the objective function ((10) in the paper) with respect to the appearances are

given as:
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∂E

∂a0
=

∂ED
∂a0

+
∂EReg
∂a0

= −
∑
t

[
Ψt �

(
1> −

(
H1
t,t−1T

1
tg

1
)>)]

H0
t,t−1T

0
t,t−1

+ λsparse,A
∂Esparse

(
a0, αA

)
∂a0

(7)

∂E

∂a1
=

∂ED
∂a1

+
∂EReg
∂a1

= −
∑
t

ΨtH
1
t,t−1T

1
t + λsparse,A

∂Esparse
(
a0, αA

)
∂a0

(8)

2.3 Derivative with respect to G1

In order to optimize the discrete-valued segmentation mask g1, we approximate it as g1 ≈ u
(
g̃1
)
, with

the element-wise heavy-side function u(g̃1) = 1
2 + 1

π arctan
(

g̃1−0.5
σu

)
. The optimization is then carried

out with respect to g̃1. Using the same notation as above, the derivative of the objective function with
respect to g̃1 is given as

∂E

∂g̃1
=

(
∂ED
∂g1

+
∂EReg
∂g1

)
∂u

∂g̃1

=

[∑
t

[
Ψt �

((
H0
t,t−1T

0
ta

0
)>)]

H1
t,t−1T

1
t,t−1

+λsparse,G
∂Esparse

(
g1, αG

)
∂g1

+ λbg
∂Ebg

(
g1
)

∂g1

]
∂u

∂g̃1
. (9)

Note that, since u(g̃1) operates element-wise, only the diagonal entries of ∂u
∂g̃1 ∈ Rmn×mn are non-zero,

and contain the element-wise derivatives of u(g̃1).

2.4 Derivatives with respect to Θ

With respect to Θ, we observe that Ît is only a function of θt and θt−1. Usually, θt ∈ RC , with C = 2
for the translational case. For clarity, we here give the derivatives with respect to a single components
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θt,(c) of θt =
[
θt,(1) · · · θt,(C)

]
.

∂E

∂θ0t,(c)
= δ (t > 0)

{
−Ψt

[(
1−H1

t,t−1T
1
tg

1
)
�

(
∂H0

t,t−1

∂θ0t,(c)
T0
ta

0 + H0
t,t−1

∂T0
t

∂θ0t,(c)
a0

)]}

+ δ (t < T )

{
−Ψt+1

[(
1−H1

t+1,tT
1
t+1g

1
)
�

(
∂H0

t+1,t

∂θ0t,(c)
T0
t+1a

0

)]}
(10)

∂E

∂θ1t,(c)
= δ (t > 0)

{
−Ψt

[
H0
t,t−1T

0
ta

0 �

(
∂H1

t,t−1

∂θ1t,(c)
T1
tg

1 + H1
t,t−1

∂T1
t

∂θ1t,(c)
g1

)

+
∂H1

t,t−1

∂θ1t,(c)
T1
ta

1 + H1
t,t−1

∂T1
t

∂θ1t,(c)
a1

]}

+ δ (t < T )

{
−Ψt+1

(
H0
t+1,tT

0
t+1a

0 �
∂H1

t+1,t

∂θ1t,(c)
T1
t+1g

1 +
∂H1

t+1,t

∂θ1t,(c)
T1
t+1a

1

)}
(11)

with δ(x) = 1 if the argument x is true, and δ(x) = 0 otherwise.
Note that it is possible to explicitly construct the H and T matrices, since they are usually sparse.

However, we found that in practice a finite difference approach achieves comparable performance, and
has clear speed benefits. Therefore, we use finite differences in the optimization of θ, and separately
optimize over the rotational and translational parameters of the affine transformation.
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3 Optimization algorithm

This section describes the alternating, gradient-descent based optimization algorithm in pseudocode.
In the following, truncatedOptimize[V ](P) denotes a truncated, ie. prematurely terminated opti-

mization of variable V , given the parameters P. Here, we use a basic gradient descent optimization with
line search, and terminate after 3 steps. Energy denotes the objective function.

As in the paper, unbracketed superscripts indicate the layer. Additionally, bracketed superscripts
indicate the iteration number, bracketed subscripts the pyramid level. A, G, Θ indicate the set of
appearances, segmentation maps, and parameters, over all layers, respectively, and Θl denotes the set of
parameters of layer l over time. G̃ denotes the set of relaxed, continuous layer segmentation masks, with
G = u(G̃), as described in the paper.

Algorithm 1 Optimization

Require: I,A(init), G̃(init),Θ(init)

A(0)
(0) ← ScaleToPyramidLevel

(
A(init), 0

)
G(0)(0) ← ScaleToPyramidLevel

(
G(init), 0

)
G̃(0)(0) ← G

(0)
(0)

Θ
(0)
(0) ← ScaleToPyramidLevel

(
Θ(init), 0

)
p← 0
while p < P do
I(p) ← ScaleToPyramidLevel (I, p)
E

(0)
(p) ← Energy

(
A

0,(0)
(p) , A

1,(0)
(p) , G

1,(0)
(p) ,Θ

0,(0)
(p) ,Θ

1,(0)
(p)

)
i← 0
repeat

A
0,(i+1)
(p) ← truncatedOptimize

[
A0
p

] (
A

0,(i)
(p) , A

1,(i)
(p) , G

1,(i)
(p) ,Θ

0,(i)
(p) ,Θ

1,(i)
(p)

)
Θ

0,(i+1)
(p) ← truncatedOptimize

[
Θ0
p

] (
A

0,(i+1)
(p) , A

1,(i)
(p) , G

1,(i)
(p) ,Θ

0,(i)
(p) ,Θ

1,(i)
(p)

)
G̃

1,(i+1)
(p) ← truncatedOptimize

[
G̃1
p

] (
A

0,(i+1)
(p) , A

1,(i)
(p) , G̃

1,(i)
(p) ,Θ

0,(i+1)
(p) ,Θ

1,(i)
(p)

)
G

1,(i+1)
(p) ← u

(
G̃

1,(i+1)
(p)

)
A

1,(i+1)
(p) ← truncatedOptimize

[
A1
p

] (
A

0,(i+1)
(p) , A

1,(i)
(p) , G

1,(i+1)
(p) ,Θ

0,(i+1)
(p) ,Θ

1,(i)
(p)

)
Θ

1,(i+1)
(p) ← truncatedOptimize

[
Θ1
p

] (
A

0,(i+1)
(p) , A

1,(i+1)
(p) , G

1,(i+1)
(p) ,Θ

0,(i+1)
(p) ,Θ

1,(i)
(p)

)
E

(i+1)
(p) ← Energy

(
A

0,(i+1)
(p) , A

1,(i+1)
(p) , G

1,(i+1)
(p) ,Θ

0,(i+1)
(p) ,Θ

1,(i+1)
(p)

)
i← i+ 1

until i = maxiter or
E

(i+1)

(p)
−E(i)

(p)

E
(i)

(p)

< δ

A(0)
(p+1) ← ScaleToPyramidLevel

(
A(i)

(p), p+ 1
)

G̃(0)(p+1) ← ScaleToPyramidLevel
(
G̃(i)(p), p+ 1

)
G(0)(p+1) ← u

(
G̃(0)(p+1)

)
Θ

(0)
(p+1) ← ScaleToPyramidLevel

(
Θ

(i)
(p), p+ 1

)
p← p+ 1

end while
A(opt) ← A(0)

(P )

G(opt) ← G(0)(P )

Θ(opt) ← Θ
(0)
(P )

return A(opt),G(opt),Θ(opt)
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4 Parameter sensitivity analysis

For all sequences, we set the default parameter values to λbg = 0.05, λsparse,G = 0.05, and λsparse,A =
0.001. To analyze the sensitivity to variations of a parameter, we run our algorithm with different values
within a range around the default parameter values. All other parameters are kept constant.

Here we show a synthetic and a real sequence, illustrating the robustness of the results to changes of
the individual weights. For λbg and λsparse,G we show the segmented motion field, since changing these
parameters primarily affects the segmentation. For λsparse,A we show the deblurred images.

In the following, the parameter always varies within a row, while the sequence varies within a col-
umn. Here we show results for λbg ∈ {0.01, 0.05, 0.1}, λsparse,G ∈ {0.01, 0.05, 0.1}, and λsparse,A ∈
{0, 0.001, 0.1}.

As shown, the results are robust to changes of the parameters within reasonable ranges. Small
differences can be seen in the very fine details, such as the front wheel of the bicycle. However, they
have very little effect on the results overall.

4.1 Background preference weight λbg

Figure 2: Left column: λbg = 0.01. Middle column: λbg = 0.05. Right column: λbg = 0.1. We find the
results to be robust to small changes of λbg. Differences are visible in small details, primarily around the
bicycle (bottom row). For all sequences, we chose λbg = 0.05.
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4.2 Segmentation sparseness prior weight λsparse,G

Figure 3: Left column: λsparse,G = 0.01. Middle column: λsparse,G = 0.05. Right column: λsparse,G =
0.1. The results are stable with respect to the choice of λsparse,G, as long as it does not become too large
(right column, bottom). For all sequences, we chose λsparse,G = 0.05.
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4.3 Appearance sparseness prior weight λsparse,A

Figure 4: Left column: λsparse,A = 0. Middle column: λsparse,A = 0.001. Right column: λsparse,A = 0.1.
Again, we observe a high robustness with respect to the choice of λsparse,A. The differences are only
visible in small details, like the front wheel of the bicycle. For all sequences, we chose λsparse,A = 0.001.
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5 Effects of perspective transformations

To test the effects perspective transformations, we used a simple affine sequence with a rotating back-
ground and a zooming foreground, and added an out-of-plane rotation of gradually increasing magnitude,
from 0 to 30 degrees over a sequence length of 8 frames. The focal length is kept short in order to create
perspective foreshortening.

The effect are as expected: With increasing out-of-plane rotation, the flow error generally increases,
while the PSNR decreases. However, note that the overall impact is fairly low. When going from 0 to
30 degrees out-of-plane rotation, the average endpoint error increases from 1.43 pixel to 1.84 pixel; the
PSNR decreases from 23.7 to 22.6.
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Figure 5: Effects of increasing out-of-plane rotation. While the quality is impacted, the overall degrada-
tion is farily low.
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