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Abstract— In this work we present and apply infinite Gaus-
sian mixture modeling, a non-parametric Bayesian method, to
the problem of spike sorting. As this approach is Bayesian,
it allows us to integrate prior knowledge about the problem
in a principled way. Because it is non-parametric we are
able to avoid model selection, a difficult problem that most
current spike sorting methods do not address. We compare
this approach to using penalized log likelihood to select the
best from multiple finite mixture models trained by expectation
maximization. We show favorable offline sorting results on
real data and discuss ways to extend our model to online
applications.

Index Terms— Spike sorting, mixture modeling, infinite mix-
ture model, non-parametric Bayesian modeling, Chinese restau-
rant process, Bayesian inference, Markov chain Monte Carlo,
expectation maximization, Gibbs sampling.

I. I NTRODUCTION

Spike sorting is a collection of processes whose purpose is
to both distinguish between multiple cells recorded together
and to assign detected spiking activity to the neuron re-
sponsible for generating it [1]–[6]. This definition presumes
that spikes have been detected a priori (disambiguated from
background noise) by some other process. This is a narrow
definition of spike sorting, and one that admittedly may
not accurately describe more sophisticated approaches that
combine the two steps intelligently [2], [7]. We further
restrict our focus to a single channel of data, disregarding
the valuable correlation and spatial information provided
by closely spaced electrodes. We adopt this definition and
viewpoint to highlight the model identification problem.

A central problem in spike sorting is determining how
many neurons are present in a recording. This problem can
be viewed more generally as a problem of statistical model
identification if we adopt a mixture modeling approach, as
in [3], [5], [6]. In mixture modeling the distribution of a
population (all the spikes from a channel) is formulated as the
additive combination of a number of hidden subpopulations,
or classes (the spikes from each individual cell). Learning
a parametric mixture model consists of determining the
parameters of the classes as well as the proportion of each
class in the full population. Traditional approaches such
as expectation maximization (EM) [8] provide no explicit
solution to the problem of how many classes there are
(how many cells). The typical approach for determining that
number is to learn many different models, one or more each
for each choice of dimensionality (number of classes). Then
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a penalty such as the Bayesian information criteria (BIC)
or the Aikaike information criteria is used to select the best
model corresponding to the best penalized log-likelihood of
held-out data.

Many solutions have been proposed to the model selection
problem [9], [10]. Here we apply the infinite mixture model-
ing (IMM) technique of [11] to the spike sorting problem and
demonstrate that it may in some ways outperform standard
maximum likelihood techniques on real data while avoiding
the model identification problem. We present an abbreviated
introduction to IMM; for more details to reader is referred
to [11]–[16] among others.

II. M ETHODS

Suppose we have a single channel neurophysiological
recordingR = [~t1, . . . ,~tN ] consisting ofN spike waveforms,
where each waveform is a vector ofn voltage samples
~ti = [t1i , . . . , t

n
i ]T ∈ Rn (n = 40 throughout). Our goal is to

‘sort’ this channel by figuring out how many units (neurons)
are present and which waveforms came from which units.

To both improve the numerical robustness of our approach
and to aid in human verification of our results, we used
a reduced dimensionality representation of the waveforms,
where each~ti is represented by bases obtained via principal
component analysis (PCA) such that~ti ≈

∑D
d=1 yd

i ~ud.
Here ~ud is the dth PCA basis vector, and theyd

i are the
linear coefficients. Our spike sorting algorithm clusters the
low dimensionality representation of the waveformsY =
[~yi, . . . , ~yN ] rather than the full waveforms, so, for the
remainder of this paper, when we write ‘spike’ or ‘waveform’
it should be read as shorthand for ‘low dimensionality
waveform representation’. For learning and sampling we
usedD = 3 while in Figures 1 and 2 we showD = 2,
accounting for approximately 80% and 73% of the waveform
variance respectively.

Like others we assume that the distribution of PCA coeffi-
cients of spike waveforms is well modeled by a multivariate
Gaussian [5]. Under this assumption it makes sense to
model a channel as a Gaussian mixture model, with one
Gaussian density accounting for each hidden neuron. The
corresponding generative model is

ci|~π ∼ Multinomial(·|~π) (1)

~yi|ci = k,Θ ∼ N (·|θk)

whereC = {ci}N
i=1 indicate which class each spike belongs

to, Θ = {θk}K
k=1, θk = {~µk,Σk} are the class distribution

parameters, and~π = {πk}K
k=1, πk = P (ci = k) are the



mixture weights. To generate a spike in this model, first
choose a neuron according to the multinomial~π, then sample
a spike from the normal distribution for that neuron.

If we know the number of neurons,K, and the neuron
responsible for each spike, we can compute the complete
data likelihood

P (Y, C|~π,Θ) =
N∏

i=1

K∑
k=1

πkP (~yi|ci = k,Θ). (2)

Unfortunately we know neither. To address this problem we
may treat the class indicators as hidden random variables
and use Expectation Maximization (EM) to find a maximum
likelihood (ML) estimate of the model parameters

~̂π, Θ̂ = arg max
~π,Θ

log(P (Y, C|~π,Θ)). (3)

EM is a powerful algorithm and guaranteed to converge
to a local maximum of the likelihood. However, it has
several problems. If the likelihood has multiple maxima (as
is usually the case), the global maximum will not necessarily
be found, and the choice of parameters for initialization
can have a marked effect on the results. Also, since the
likelihood of the data can be increased by adding more
mixture components, a method for choosing the correct
K must be adopted. One way is to penalize the likeli-
hood by an information theoretic measure of model com-
plexity such as the Bayesian information criterion BIC=
−2log(P (Y, C|~π,Θ))+νK log(N), whereνK is the number
of free parameters in a model withK hidden densities.
Another way is to assume, as in [9] and [10], thatK is
finite but unknown.

As we will show, adopting a fully Bayesian approach
allows us to avoid these problems. Bayes’ rule tells us that
the posterior probability of a modelh given the observed
dataY is proportional to the prior probability ofh times the
likelihood:

P (h|Y) ∝ P (h)P (Y|h) (4)

EM assumes that the prior probability of all hypotheses is
equal, and seeks the single model with highest posterior
probability (the maximuma posteriori (MAP) solution).
Here, we use sensible priors to encode our knowledge about
the problem, and seek to learn the full posterior distribution.
This ultimately will allow us to avoid the model selection
problem by marginalizing out the unknown model parameters
(including the number of classes) when making inferences
about the data.

Assume for the moment that we know the value ofK. We
choose conjugate priors for the model parameters:1 Dirichlet
for ~π and Normal times Inverse Wishart forθ [17], [18].

~π|α ∼ Dirichlet(·| α
K

, . . . ,
α

K
) (5)

Θ ∼ G0

whereΘ ∼ G0 is shorthand for

Σk ∼ Inverse-Wishartυ0(Λ
−1
0 )

~µk ∼ N (~µ0,Σk/κ0).

1A prior is conjugate if it yields a posterior that is in the same family as
the prior (a mathematical convenience).

The Dirichlet hyperparameters, here symmetricα
K , can en-

code our beliefs about how uniform or skewed the class
mixture weights will be. The parameters to the Normal times
Inverse-Wishart prior,Λ−1

0 , υ0, ~µ0, κ0, can encode our prior
experience regarding the shape and position of the mixture
densities. For instance~µ0 specifies where we believe the
mean of the mixture densities should be, whereκ0 is the
number of pseudo-observations we are willing to ascribe
to our belief [17]. The hyper-parametersΛ−1

0 , υ0 behave
similarly for the mixture density covariance.

Under this model, the posterior distribution is

P (C,Θ, ~π, α|Y) (6)

∝ P (Y|C,Θ)P (Θ|G0)
N∏

i=1

P (ci|~π)P (~π |α)P (α).

This distribution cannot be computed analytically, but one
can obtain samples from it using Markov chain Monte
Carlo (MCMC) methods [12]. These methods simulate a
Markov chain whose equilibrium distribution is the posterior
distribution in Eqn. 6. We describe our particular sampler
below.

Sampling from this posterior distribution circumvents the
problems with initialization and local optima that exist with
ML estimation. We can avoid the problem of model selection
by assuming that there are an infinite number of causal
classes, but that only a finite number are ever observed in a
finite amount of data. This is possible because the posterior
(Eqn. 6) is well behaved asK → ∞. This approach, first
developed by [11], is an application of Dirichlet process
mixture modeling [13], [14], [19].

The only terms in Eqn. 6 that involveK areP (ci|~π) and
P (~π|α). Further, because we chose conjugate priors, we can
marginalize out~π [15].

P (C|α) =
∫ N∏

i=1

P (ci|~π)P (~π |α)d~π

=
∏K

k=1 Γ(mk + α
K )

Γ( α
K )K

Γ(α)
Γ(N + α)

. (7)

Taking the limit asK →∞ (for details see [15]), we have

P (C|α) = αK+

K+∏
k=1

(mk − 1)!

 Γ(α)
Γ(N + α)

(8)

whereK+ is the number of classes containing at least one
item, mk =

∑N
i=1 I(ci = k) is the number of items in class

k, andΓ(α) = (α− 1)Γ(α− 1) is the Gamma function.
Ultimately, we wish to draw samples from the posterior

distribution over models in Eqn. 6 whenK → ∞. We
do so using an MCMC method known as Gibbs sampling
[13], in which new values for each model parameter are
repeatedly sampled conditioned on the current values of
all other variables. Upon convergence, these samples will
approximate the posterior distribution.

The state of our sampler consists of{C,Θ}. We sample
new values forΘ according to

P (θk|C,Y,Θ−k, ~π, α) ∝
∏

i s.t. ci=k

P (~yi|ci, θk)PG0(θk). (9)



whereΘ−k = {θk, . . . , θk−1, θk+1, . . . , θN} andPG0(θk) is
the probability ofθk underG0. C is sampled according to

P (ci = k|C−i,Y,Θ, ~π, α) ∝ P (~yi|ci,Θ)P (ci|C−i) (10)

where C−i = {c1, . . . , ci−1, ci+1, . . . , cN} can be derived
from Eqn. 10 and is given by

P (ci = k|C−i) =
{ mk

i−1+α k ≤ K+
α

i−1+α k > K+
(11)

The generative process in Eqn. 11 is known as the Chinese
restaurant process [15].

We sampled the remaining free parameter,α, using a
Metropolis update, although it too can be updated using a
Gibbs step [16].

III. E XPERIMENTS

Four multi-unit hand sorted channels were selected from
a multi-channel extra-cellular recording of an awake and
behaving monkey performing a task. For a detailed descrip-
tion of the recording technique and data format see [6].
A regular subsample of the waveforms recorded on each
channel was taken, corresponding to retaining every sixteenth
spike (leaving 814, 299, 1360, and 838 on channels 1-4 as
viewed left to right in Fig. 1). By starting at a different offset
a separate held-out dataset was constructed similarly.

Fig. 1 shows modeling results for each channel using ML
and infinite mixture modeling (IMM) techniques. For ML we
used EM to train a model for each value ofK between 1 and
15. Each model was trained 10 times per channel starting
from different random seeds, and the model with overall
maximum BIC score was selected. For IMM we used the
sampler described above, again run 10 times per channel with
different random seeds. Each run generated 5000 samples
and the first 500 were discarded as burn-in. The sample with
the highest posterior probability (an estimate of the MAP
solution) is shown in Fig. 1. To generate these results, we
used a Gamma(1, 1) prior for α to encode our belief that
each channel has relatively few neurons. We specifiedΛ0

to be isotropic with variance equal to 0.1, encoding our
belief that the clusters should be roughly spherical and tightly
clustered. We setµ0 = 0. The other hyperparameters were
assigned to give low weight to our prior. We believe that the
clusters found by IMM more closely resemble the human-
sorted ‘ground truth’ than do the EM clusters. In Fig. 1 one
outlier was removed from channels 2 and 4. The channel 4
outlier is retained in Fig. 2.

A quantitative evaluation is shown in Table I, where we
compare the log likelihood of held out data under the MAP
estimates obtained from IMM and EM2. Note that computing
the true log likelihood of held out data under the IMM
requires integrating over all possible assignments of held-
out spikes to neurons. Instead, we computed a lower bound
on this quantity by constructing a (finite) Gaussian mixture
model approximation to the infinite model, estimating~π from
the classification induced by the sample withK = K+.

2Using only the MAP estimate from IMM is somewhat unfair to the
Bayesian approach, since it discards the rest of the information contained
in the posterior distribution. However, it makes evaluation simpler.
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Fig. 2. Weights and 95% confidence intervals for the IMM MAP estimate
(left) and the ML estimate with best BIC score (right) for channel 4.

1 2 3 4
IMM -5.91 ± -0.03 -2.55± 0.05 -9.37± 0.04 -5.83± 0.02 ×103

EM -5.81± 0.02 -2.15± 0.17 -9.39± 0.07 -5.84± 0.59 ×103

TABLE I

PER-CHANNEL AVERAGE LOG LIKEHOOD OF HELD-OUT DATA

Given this approximation, we expected EM to outperform
IMM, but their performance is virtually indistinguishable.
We believe this is because the finite mixture model, lacking
the influence of priors, is overfitting and doesn’t generalize
well. We observed that EM achieved higher log likelihood
on the training data than IMM, which supports this assertion.

A benefit of using IMM is its implicit prior on class
weights. This prior prefers clusterings with few prominent
clusters. ML, on the other hand, implicitly assumes a uniform
prior over class weights. This prior is uninformative with
respect to cluster weights. Figure 2 illustrates the effects of
these assumptions on clustering.

IV. D ISCUSSION ANDFUTURE WORK

In this work we have applied non-parametric Bayesian
mixture modeling techniques to the problem of spike sorting
and compared this method to maximum likelihood finite
Gaussian mixture modeling. It should be noted that non-
parametric Bayesian techniques in the form we have dis-
cussed suffer from a problem similar to the EM halting
problem; i.e. it is difficult to determine when the Markov
chain simulated by the Gibbs sampler has converged to its
equilibrium distribution. In practice, convergence may not be
necessary to find a good solution for a particular data set.
Additionally, more sophisticated methods for initializing EM
have been tried [6]. These are uncommon in general practice
and, in limited experimentation, did not affect our reported
results.

The primary contribution of this work is in presenting a
way to avoid the problem of model selection in spike sorting.
By changing the modeling assumption from ‘There areK
neurons on this channel.’ to ‘There are an infinite number
of neurons that could be on this channel, how many are
actually recorded?’ it is possible to select MAP IMM model
parameterizations that are competitive with traditional ML
density estimators such as EM. This approach also allows us
to address a wider range of questions than those allowed by
traditional ML models. Due to space limitations, we provide
only a single example: if we are interested in whether or not
two spikes originate from the same neuron, the IMM yields
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Fig. 1. Results from sorting four channels of real neural data using both maximum likelihood (ML) finite Gaussian mixture modeling (GMM) and infinite
Gaussian mixture modeling (IMM). Channels 1-4 are shown left to right in columns. The first three rows show the sorted waveforms for human, ML, and
IMM sorting. The last three rows show the sorted PCA waveform coefficients in the same order. The ML results are the model with highest Bayesian
information criterion score. The IMM results are a single sample estimate of the MAP model drawn from the sampled posterior.

an answer that implicitly averages over an infinite number of
models, avoiding the model selection problem. We believe
that this is an important feature given the large amount of
noise and ambiguity currently intrinsic to neural signals.

As developed in this work, the non-parametric Bayesian
spike sorting approach is practical for offline analysis, yet it
is also possible to extend it to online spike sorting. By esti-
mating the posterior sequentially, an online spike sorter could
be built that dynamically accomodates non-stationarity in
the signal, adding neurons when sufficient evidence for their
existence is recorded. This not only will solve the problem of
determining when the Markov chain reaches equilibrium, but
it also could be valuable for online analyses, long term neural
decoding, and future clinical neuroprosthetic applications.
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