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(7) ABSTRACT

A visual motion analysis method that uses multiple layered
global motion models to both detect and reliably track an
arbitrary number of moving objects appearing in image
sequences. Each global model includes a background layer
and one or more foreground “polybones”, each foreground
polybone including a parametric shape model, an appear-
ance model, and a motion model describing an associated
moving object. Each polybone includes an exclusive spatial
support region and a probabilistic boundary region, and is
assigned an explicit depth ordering. Multiple global models
having different numbers of layers, depth orderings,
motions, etc., corresponding to detected objects are
generated, refined using, for example, an EM algorithm, and
then ranked/compared. Initial guesses for the model param-
eters are drawn from a proposal distribution over the set of
potential (likely) models. Bayesian model selection is used
to compare/rank the different models, and models having
relatively high posterior probability are retained for subse-
quent analysis.
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VISUAL MOTION ANALYSIS METHOD FOR
DETECTING ARBITRARY NUMBERS OF
MOVING OBJECTS IN IMAGE SEQUENCES

FIELD OF THE INVENTION

The present invention relates generally to processor-based
visual motion analysis techniques, and, more particularly, to
a visual motion analysis method for detecting and tracking
arbitrary numbers of moving objects of unspecified size in
an image sequence.

BACKGROUND OF THE INVENTION

One goal of visual motion analysis is to compute repre-
sentations of image motion that allow one to infer the
presence, structure, and identity of moving objects in an
image sequence. Often, image sequences are depictions of
three-dimensional (3D) “real world” events (scenes) that are
recorded, for example, by a digital camera (other image
sequences might include, for example, infra-red imagery or
X-ray images). Such image sequences are typically stored as
digital image data such that, when transmitted to a liquid
crystal display (LCD) or other suitable playback device, the
image sequence generates a series of two-dimensional (2D)
image frames that depict the recorded 3D event. Visual
motion analysis involves utilizing a computer and associated
software to “break apart” the 2D image frames by identify-
ing and isolating portions of the image data associated with
moving objects appearing in the image sequence. Once
isolated from the remaining image data, the moving objects
can be, for example, tracked throughout the image sequence,
or manipulated such that the moving objects are, for
example, selectively deleted from the image sequence.

In order to obtain a stable description of an arbitrary
number of moving objects in an image sequence, it is
necessary for a visual motion analysis tool to identify the
number and positions of the moving objects at a point in
time (i.e., in a particular frame of the image sequence), and
then to track the moving objects through the succeeding
frames of the image sequence. This process requires detect-
ing regions exhibiting the characteristics of moving objects,
determining how many separate moving objects are in each
region, determining the shape, size, and appearance of each
moving object, and determining how fast and in what
direction each object is moving. The process is complicated
by objects that are, for example, rigid or deformable, smooth
or highly textured, opaque or translucent, Lambertian or
specular, active or passive. Further, the depth ordering of the
objects must be determined from the 2D image data, and
dependencies among the objects, such as the connectedness
of articulated bodies, must be accounted for. This process is
further complicated by appearance distortions of 3D objects
due to rotation, orientation, or size variations resulting from
changes in position of the moving object relative to the
recording instrument. Accordingly, finding a stable descrip-
tion (i.e., a description that accurately accounts for each of
the arbitrary moving objects) from the vast number of
possible descriptions that can be generated by the image data
can present an intractable computational task, particularly
when the visual motion analysis tool is utilized to track
objects in real time.

Many current approaches to motion analysis over rela-
tively long image sequences are formulated as model-based
tracking problems in which a user provides the number of
objects, the appearance of objects, a model for object
motion, and perhaps an initial guess about object position.
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These conventional model-based motion analysis techniques
include people trackers for surveillance or human-computer
interaction (HCI) applications in which detailed kinematic
models of shape and motion are provided, and for which
initialization usually must be done manually (see, for
example, “Tracking People with Twists and Exponential
Maps”, C. Bregler and J. Malik., Proc. Computer Vision and
Pattern Recognition, CVPR-98, pages 8—15, Santa Barbara,
June 1998). Recent success with curve-tracking of human
shapes also relies on a user specified model of the desired
curve (see, for example, “Condensation—Conditional Den-
sity Propagation for Visual Tracking”, M. Isard and A.
Blake, International Journal of Computer Vision, 29(1)
:2-28, 1998). For even more complex objects under differ-
ing illumination conditions it has been common to learn a
model of object appearance from a training set of images
prior to tracking (see, for example, “Efficient Region Track-
ing with Parametric Models of Geometry and Illumination”,
G. D. Hager and P. N. Belhumeur, IEEE Trans. PAMI,
27(10):1025-1039, 1998). Whether a particular method
tracks blobs to detect activities like football plays (see
“Recognizing Planned, Multi-Person Action”, S. S. Intille
and A. F. Bobick, Computer Vision and Image
Understanding, 1(3):1077-3142, 2001), or specific classes
of objects such as blood cells, satellites or hockey pucks, it
is common to constrain the problem with a suitable model of
object appearance and dynamics, along with a relatively
simple form of data association (see, for example, “A
Probabilistic Exclusion Principle for Tracking Multiple
Objects, J. MacCormick and A. Blake, Proceedings of the
IEEE International Conference on Computer Vision, volume
I, pages 572-578, Corfu, Greece, September 1999).

Other conventional visual motion analysis techniques
address portions of the analysis process, but in each case fail
to both identify an arbitrary number of moving objects, and
to track the moving objects in a manner that is both efficient
and accounts for occlusions. Current optical flow techniques
provide reliable estimates of moving object velocity for
smooth textured surfaces (see, for example, “Performance of
Optical Flow Techniques™, J. L. Barron, D. J. Fleet, and S.
S. Beauchemin, International Journal of Computer Vision,
12(1):43-77, 1994), but do not readily identify the moving
objects of interest for generic scenes. Layered image repre-
sentations provide a natural way to describe different image
regions moving with different velocities (see, for example,
“Mixture Models for Optical Flow Computation”, A. Jepson
and M. J. Black, Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pages 760-761,
New York, June 1993), and they have been effective for
separating foreground objects from backgrounds. However,
in most approaches to layered motion analysis, the assign-
ment of pixels to layers is done independently at each pixel,
without an explicit model of spatial coherence (although see
“Smoothness in Layers: Motion Segmentation Using Non-
parametric Mixture Estimation”, Y. Weiss, Proceedings of
IEEE conference on Computer Vision and Pattern
Recognition, pages 520-526, Puerto Rico, June 1997). By
contrast, in most natural scenes of interest the moving
objects occupy compact regions of space.

Another approach taught by H. Tao, H. S. Sawhney, and
R. Kumar in “Dynamic Layer Representation with Appli-
cations to Tracking”, Proc. IEEE Conference on Computer
Vision and Pattern Recognition, Volume 2, pages 134-141,
Hilton Head (June 2000), which is referred to herein as
“Gaussian method”, addresses the analysis of multiple mov-
ing image regions utilizing a relatively simple parametric
model for the spatial occupancy (support) of each layer.
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However, the spatial support of the parametric models used
in the Gaussian method decays exponentially from the
center of the object, and therefore fails to encourage the
spatiotemporal coherence intrinsic to most objects (i.e.,
these parametric models do not represent region boundaries,
and they do not explicitly represent and allow the estimation
of relative depths). Accordingly, the Gaussian method fails
to address occlusions (i.e., objects at different depths along
a single line of sight will occlude one another). Without
taking occlusion into account in an explicit fashion, motion
analysis falls short of the expressiveness needed to separate
changes in object size and shape from uncertainty regarding
the boundary location. Moreover, by not addressing
occlusions, data association can be a significant problem
when tracking multiple objects in close proximity, such as
the parts of an articulated body.

What is needed is an efficient visual image analysis
method for detecting an arbitrary number of moving things
in an image sequence, and for reliably tracking the moving
objects throughout the image sequence even when they
occlude one another. In particular, what is needed is a
compositional layered motion model with a moderate level
of generic expressiveness that allows the analysis method to
move from pixels to objects within an expressive framework
that can resolve salient motion events of interest, and detect
regularities in space-time that can be used to initialize
models, such as a 3D person model. What is also needed is
a class of representations that capture the salient structure of
the time-varying image in an efficient way, and facilitate the
generation and comparison of different explanations of the
image sequence, and a method for detecting best-available
models for image processing functions.

SUMMARY OF THE INVENTION

The present invention is directed to a tractable visual
motion analysis method that both detects and reliably tracks
an arbitrary number of moving objects appearing in an
image sequence by continuously generating, refining, and
ranking compositional layered “global” motion models that
provide plausible global interpretations of the moving
objects. Each layered global model is a simplified represen-
tation of the image sequence that includes a background
layer and one or more foreground components, referred to
herein as “polybones”, with each polybone being assigned
an associated moving object of the image sequence (i.e., to
a region of the image sequence exhibiting characteristics of
a moving object). The background layer includes an optional
motion vector, which is used to account for camera
movement, and appearance data depicting background por-
tions of the image sequence (along with any moving objects
that are not assigned to a polybone, as described below).
Each foreground polybone is assigned an explicit depth
order relative to other polybones (if any) in a particular
global model, and is defined by “internal” parameters asso-
ciated with a corresponding motion and appearance models
(i.e., parameters that do not change the region occupied by
the polybone) and “pose” parameters (i.c., parameters that
define the shape, size, and position of the region occupied by
the polybone). In effect, each layered global model provides
a relatively straightforward 2.5D layered interpretation of
the image sequence, much like a collection of cardboard
cutouts (i.e., the polybones) moving over a flat background
scene, with occlusions between the polybones being deter-
mined by the explicit depth ordering of the polybones.
Accordingly, the layered motion models utilized in the
present invention provide a simplified representation of the
image sequence that facilitates the analysis of multiple
alternative models using minimal computational resources.
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In accordance with an aspect of the present invention, the
“pose” parameters of each polybone define an exclusive
spatial support region surrounded by a probabilistic bound-
ary region, thereby greatly simplifying the image analysis
process while providing a better interpretation of the natural
world depicted in an image sequence. That is, most physical
objects appearing in an image sequence are opaque, and this
opacity extends over the entire space occupied by the object
in the image sequence. In contrast, the exact position of
object’s boundary (edge) is typically more difficult to deter-
mine when the object includes an uneven surface (e.g., when
the object is covered by a fuzzy sweater or moving quickly,
which causes image blur, or when image quality is low) than
when the object has a smooth surface (e.g., a metal coat and
a sharp image). To account for these image characteristics in
modeling a moving object, the exclusive spatial support
region of each polybone is positioned inside the image space
occupied by its assigned moving object, while the probabi-
listic boundary region surrounds the exclusive spatial sup-
port region, and is sized to account for the degree of
uncertainty regarding the actual edge location of the object.
In one embodiment, the exclusive spatial support region has
a closed polygonal shape (e.g., an octagon) whose peripheral
boundary is positioned inside of the perceived edge of the
associated moving object, and this exclusive spatial support
region is treated as fully occupied by the polybone/object
when calculating occlusions (which also takes into account
the assigned depth ordering). An advantage of assuming the
space occupied by a polybone fully occludes all objects
located behind that polybone is that this assumption, more
often than not, best describes the 3D event depicted in the
image sequence. Further, this assumption simplifies the
calculations associated with the visual motion analysis
method because points located inside an object’s exclusive
spatial support region are not used to calculate the motion or
appearance of another object occluded by this region. That
is, unlike purely Gaussian methods in which pixels located
near two objects are always used to calculate the motion/
appearance of both objects, pixels located inside the exclu-
sive spatial support region of a polybone assigned to one
object are not used in the motion/appearance calculations of
nearby objects. In contrast to the exclusive ownership of
pixels located in the spatial support region, pixels located in
the probabilistic boundary region of each polybone can be
“shared” with other objects in a manner similar to that used
in the Gaussian methods. That is, in contrast to the relatively
high certainty that occlusion takes place in central region of
an object’s image, occlusion is harder to determine adjacent
to the object’s edge (i.e., in the probabilistic boundary
region). For example, when the moving object image is
blurred (i.e., the edge image is jagged and uneven), or when
the image sequence provides poor contrast between the
background scene and the moving object, then the actual
edge location is difficult to ascertain (i.e., relatively
uncertain). Conversely, when the moving object is sharply
defined and the background scene provides excellent con-
trast (e.g., a black object in front of a white background),
then the actual edge location can be accurately determined
from the image data. To accurately reflect the uncertainty
associated with the edge location of each object, the bound-
ary location of each polybone is expressed using a prob-
ability function, and spatial occupancy decays at points
located increasingly farther from the interior spatial support
region (e.g., from unity inside the polygon to zero far from
the image edge). Therefore, unlike Gaussian modeling
methods, the polybone-based global model utilized in the
present invention provides a representation of image motion
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that facilitates more accurate inference of the presence,
structure, and identity of moving objects in an image
sequence, and facilitates the analysis of occlusions in a more
practical and efficient manner.

As mentioned above, there is no practical approach for
performing the exhaustive search needed to generate and
analyze all possible models in order to identify an optimal
model describing an image sequence having an arbitrary
number of moving objects. According to another aspect of
the present invention, the visual motion analysis method
addresses this problem by generating plausible layered
motion models from a proposal distribution (i.e., based on
various possible interpretations of the image data), refining
the motion model parameters to “fit” the current image data,
ranking the thus-generated motion models according to
which models best describe the actual image data (i.e., the
motion models that are consistent with or compare well with
the image data), and then eliminating (deleting) inferior
motion models. The number of plausible layered motion
models that are retained in the thus-formed model frame-
work is determined in part on the computational resources
available to perform the visual motion analysis method. It is
generally understood that the larger the number of retained
motion models, the more likely one of the motion models
will provide an optimal (or near-optimal) representation of
the image sequence. On the other hand, retaining a relatively
large number of motion models places a relatively high
burden on the computational resources. Accordingly, when
the motion models in the model framework exceed a pre-
determined number (or another trigger point is reached),
motion models that rank relatively low are deleted to main-
tain the number of models in the model framework at the
predetermined number, thereby reducing the burden on the
computational resources. The highest-ranking model at each
point in time is then utilized to perform the desired visual
motion analysis function.

According to another aspect of the present invention, the
targeted heuristic search utilized by the visual motion analy-
sis method generates the model framework in a manner that
produces multiple layered motion models having different
numbers of foreground components (polybones), depth
orderings, and/or other parameters (e.g., size, location of the
polybones). The model framework initially starts with a first
generation (core) model that includes zero foreground
polybones, and is used to periodically (e.g., each n number
of frames) spawn global models having one or more fore-
ground polybones. The core model compares two or more
image frames, and identifies potential moving objects by
detecting image regions that include relatively high numbers
of outliers (i.e., image data that is inconsistent with the
current background image). In one embodiment, a polybone
is randomly assigned to one of these outlier regions, and a
next-generation motion model is generated (spawned) that
includes a background layer and the newly formed fore-
ground polybone. Each next-generation motion model sub-
sequently spawns further generation global models in a
similar fashion. In particular, the background layer of each
next generation global model (i.e., omitting the already
assigned moving object region) is searched for potential
moving objects, and polybones are assigned to these
detected outlier regions. As mentioned above, to prevent
overwhelming the computational resources with the inevi-
table explosion of global models that this process generates,
the global models are ranked (compared), and low ranking
global models are deleted. In this manner, a model frame-
work is generated that includes multiple layered global
models, each global model being different from the remain-
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6

ing models either in the number of polybones utilized to
describe the image, or, when two or more models have the
same number of polybones, in the depth ordering or other
parameter (e.g., size, location) of the polybones. By gener-
ating the multiple layered global models from a core model
in this manner, the model framework continuously adjusts to
image sequence changes (e.g., objects moving into or out of
the depicted scene), thereby providing a tractable visual
motion analysis tool for identifying and tracking an arbitrary
number of moving objects.

In accordance with yet another aspect of the present
invention, the shape, motion, and appearance parameters of
the background layer and each foreground polybone are
continuously updated (refined) using a gradient-based
search technique to optimize the parameters to the image
data. In one embodiment, each newly-spawned foreground
polybone is provided with initial parameters (e.g., a prede-
termined size and shape) that are subsequently refined using,
for example, an Expectation-Maximization (EM) algorithm
until the exclusive spatial support region of each polybone
closely approximates its associated moving object in the
manner described above. In one embodiment, the initial
parameters of each polybone are continuously adjusted
(optimized) to fit the associated moving object by differen-
tiating a likelihood function with respect to the pose param-
eters (e.g., size) to see how much a change in the parameter
will affect a fitness value associated with that parameter. If
the change improves the fitness value, then the parameter is
increased in the direction producing the best fit. In one
embodiment, an analytic (“hill climbing”) method is used to
determine whether a particular change improves the likeli-
hood value. In particular, given a current set of parameters
associated with a polybone, an image is synthesized that is
compared against the current image frame to see how well
the current parameter set explains the image data. In one
embodiment, a constraint is placed on the refinement pro-
cess that prevents the parameters from changing too rapidly
(e.g., such that the size of the polybone changes smoothly
over the course of several frames). With each successive
frame, the polybone parameters are analyzed to determine
how well they explain or predict the next image frame, and
refined to the extent necessary (i.e., within the established
constraints) until each parameter value is at a local extrema
(i.e., maximally approximates or matches the corresponding
image data).

In accordance with yet another aspect of the present
invention, global model ranking is performed using a Baye-
sian model selection criterion that determines the fit of each
polybone parameter to the image data. In one embodiment,
the ranking process utilizes a likelihood function that penal-
izes model complexity (i.e., a preference for global models
that have a relatively low number of polybones), and penal-
izes global models in which the parameters change relatively
quickly (i.e., is biased to prefer smooth and slow parameter
changes). Typically, the more complex a global model is, the
more likely that global model will “fit” the image data well.
However, relatively complex models tend to model noise
and irrelevant details in the image data, hence the preference
of simpler models, unless fitness significantly improves in
the complex models. Further, due to the ever-changing
number, position, and appearance of moving objects in a
generic image sequence (i.e., an image sequence in which
objects randomly move into and out of a scene), a relatively
complex model that accurately describes a first series of
frames having many objects may poorly describe a subse-
quent series of frames in which many of those objects move
out of the scene (or are otherwise occluded). Biasing the
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ranking process to retain relatively less complex motion
models addresses this problem by providing descriptions
suitable for accurately describing the disappearance of mov-
ing objects.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view depicting a simplified 3D
“real world” event according to a simplified example uti-
lized in the description of the present invention;

FIGS. 2(A) through 2(E) are simplified diagrams illus-
trating five image frames of an image sequence associated
with the 3D event shown in FIG. 1;

FIG. 3 is a flow diagram of the visual motion analysis
method according to a simplified embodiment of the present
invention;

FIG. 4 is a perspective graphical representation of an
exemplary layered global motion model according to an
embodiment of the present invention;

FIG. 5 is a table diagram representation of the exemplary
layered global motion model shown in FIG. 4;

FIG. 6 is a diagram illustrating pose parameters for an
exemplary polybone according to an embodiment of the
present invention;

FIGS. 7(A) and 7(B) are graphs depicting a probability
density and occupancy probabilities, respectively, for the
polybone illustrated in FIG. 6;

FIGS. 8(A) through 8(G) are a series of photographs
depicting a first practical example of the visual motion
analysis method of the present invention;

FIG. 9 is a flow diagram showing the generation of a
model framework formed using a heuristic search method
according to a simplified example of the present invention;

FIG. 10 is a simplified diagram depicting appearance data
for a core model of the simplified example shown in FIG. 9;

FIGS. 11(A) and 11(B) are simplified diagrams depicting
updated appearance data and an outlier chart, respectively,
associated with the core model of the simplified example;

FIGS. 12(A), 12(B) and 12(C) are simplified diagrams
depicting a background layer, a foreground polybone, and a
combined global model, respectively, associated with
another model of the simplified example shown in FIG. 9;

FIGS. 13(A), 13(B) and 13(C) are simplified diagrams
depicting a background layer, a foreground polybone, and a
combined global model, respectively, associated with yet
another model of the simplified example shown in FIG. 9;

FIGS. 14(A), 14(B) and 14(C) are simplified diagrams
depicting a background layer, a foreground polybone, and a
combined global model, respectively, associated with yet
another model of the simplified example shown in FIG. 9;

FIGS. 15(A), 15(B), 15(C) and 15(D) are simplified
diagrams depicting a background layer, a first foreground
polybone, a second foreground polybone, and a combined
global model, respectively, associated with yet another
model of the simplified example shown in FIG. 9;

FIGS. 16(A), 16(B), 16(C) and 16(D) are simplified
diagrams depicting a background layer, a first foreground
polybone, a second foreground polybone, and a combined
global model, respectively, associated with yet another
model of the simplified example shown in FIG. 9;

FIGS. 17(A) through 17(F) are a series of photographs
depicting a second practical example of the visual motion
analysis method of the present invention;

FIGS. 18(A) through 18(0) are a series of photographs
depicting a third practical example of the visual motion
analysis method of the present invention;
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FIGS. 19(A) through 19(D) are a series of photographs
depicting a fourth practical example of the visual motion
analysis method of the present invention; and

FIG. 20 is a composite photograph depicting an object
tracked in accordance with another an embodiment of the
present invention.

DETAILED DESCRIPTION

The present invention is directed to a visual motion
analysis method in which a layered motion model frame-
work is generated and updated by a computer or
workstation, and is defined by parameters that are stored in
one or more memory devices that are readable by the
computer/workstation. The visual motion analysis method is
described below in conjunction with a tracking function to
illustrate how the beneficial features of the present invention
facilitate motion-based tracking or surveillance of an arbi-
trary number of moving objects during “real world” events.
However, although described in the context of a tracking
system for “real world” events, the visual motion analysis
method of the present invention is not limited to this
function, and may be utilized for other purposes. For
example, the visual motion analysis method can also be
utilized to perform image editing (e.g., remove or replace
one or more moving objects from an image sequence), or to
perform object recognition. Further, the visual motion analy-
sis method of the present invention can be used to analyze
infra-red or X-ray image sequences. Therefore, the
appended claims should not be construed as limiting the
visual motion analysis method of the present invention to
“real world” tracking systems unless such limitations are
specifically recited.

FIG. 1 is a perspective view depicting a simplified 3D
“real world” event in which the relative position of several
simple 3D objects (i.e., a sphere 40, a cube 42, and a star 44)
changes over time due to the movement of one or more of
the objects. This 3D event is captured by a digital camera
(recording instrument) 50 as an image sequence 60, which
includes image data stored as a series of image frames FO
(ie., a still image captured at time t0) through Fn (captured
at a time tn). This image data is stored such that, when
transmitted to a liquid crystal display (LCD) or other suit-
able playback device, the image data of each frame FO
through Fn generates a 2D image region representing the 3D
event at an associated point in time. For example, indicated
on a display 51 of camera 50, the 2D image includes a 2D
circle (image region) 52 depicting a visible portion of 3D
sphere 42, a 2D square 54 depicting a visible portion of 3D
cube 44, and a 2D star 56 depicting a visible portion of 3D
star 46. As indicated on frame F0, each image region (e.g.,
circle 52) includes a central region (e.g., region 52C) and an
outer edge region (e.g., region 52E) surrounding the central
region. When displayed sequentially and at an appropriate
rate (e.g., 30 frames per second), the images generated by
the series of frames F0 through Fn collectively depict the 3D
event. Note that, for simplicity in the following description,
the 3D objects (i.e., sphere 42, cube 44, and star 46) are
assumed to maintain a fixed orientation relative to camera
50, and are therefore not subject to distortions usually
associated with the movement of complex 3D moving
objects.

FIGS. 2(A) through 2(E) illustrate five frames, FO through
F4, of an image sequence that are respectively recorded at
sequential moments t0 through t4. Frame FO through F4,
which comprise image data recorded as described above, are
utilized in the following discussion. Note that frames F0
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through F4 show circle 52, square 54, and star in five
separate arrangements that indicate relative movement over
time period t0 through t4. In particular, FIG. 2(A) shows a
depiction of image data associated with FO (time t0) in
which the three objects are separated. In frame F1 (time t1),
which is shown in FIG. 2(B), circle 52 has moved to the right
and upward, and square 54 has moved to the left and slightly
downward. Note that the upper left corner of square 54
occludes a portion of circle 52 in frame F1. Note also that
star 56 remains stationary throughout the entire image
sequence. In frame F2 (time t2, FIG. 2(C)), circle 52 has
moved further upward and to the right, and square 54 has
moved further downward and to the left, causing the upper
portion of square 54 to occlude a larger portion of the circle
52.In frame F3 (time t3, FIG. 2(D)), circle 52 has moved yet
further upward and to the right such that it now occludes a
portion of star 56, and square 54 has moved further down-
ward and to the left such that only its right upper corner
overlaps a portion of circle 52. Finally, in frame F4 (time t4,
FIG. 2(E)), circle 52 has moved yet further upward and to
the right such that it now occludes a significant portion of
star 56, and square 54 has moved further downward and to
the left such that it is now separated from circle 52.

As mentioned above, to obtain a stable description of an
arbitrary number of moving objects in an image sequence, it
is necessary to identify the number and positions of the
moving objects at a point in time (i.e., in a particular frame
of the image sequence), and then to track the moving objects
through the succeeding frames of the image sequence. This
process is performed, for example, by identifying regions of
the image that “move” (change relative to a stable back-
ground image) in a consistent manner, thereby indicating the
presence of an object occupying a compact region of space.
For example, referring again to FIGS. 2(A) and 2(B), points
(ie., pixels) 52A and 52B associated with the central region
of circle 52 appear to move generally in the same direction
and at the same velocity (indicated by arrow V52, thereby
indicating that these points are associated with a single
object. Similarly, points, such as point 54A associated with
square 54 move generally as indicated by arrow V54, and
point associated with star 56 remain in the same location
throughout the image sequence.

An optimal solution of the first problem (i.e., identifying
an arbitrary number of moving objects, each having an
arbitrary size) is essentially intractable due to the very large
number of possible explanations for each frame of an image
sequence. That is, each point (pixel) of each image frame
represents a potential independent moving object, so circle
52 (see FIG. 2(A)) can be described as thousands of tiny
(ie., single pixel) objects, or dozens of larger (i.e., several
pixel) objects, or one large object. Further, an optimal
solution would require analyzing every point (pixel) of each
image frame (e.g., points located outside of circuit 52) to
determine whether those points are included in the repre-
sentation of a particular object. Therefore, as described
above, conventional motion analysis methods typically
require a user to manually identify regions of interest, or to
identify the number and size of the objects to be tracked,
thereby reducing the computational requirements of the
identification process.

However, even when the number and size of moving
objects in an image sequence are accurately identified,
tracking these objects is difficult when one object becomes
occluded by another object. In general, the task of tracking
an object (e.g., circle 52, as shown in FIGS. 2(A) and 2(B))
involves measuring the motion of each point “owned by”
(ie., associated with the representation of) that object in
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order to anticipate where the object will be located in a
subsequent frame, and then comparing the anticipated loca-
tion with the actual location in that next frame. For example,
when anticipating the position of circle 52 in FIG. 2(C), the
movement of points 52A and 52B is measured from image
data provided in FIGS. 2(A) and 2(B) (indicated by motion
vector V52), and the measured direction and distance moved
is then used to calculate the anticipated position of circle 52
in FIG. 2(C). This process typically involves, at each frame,
updating both the anticipated motion and an appearance
model associated with the object, which is used to identify
the object’s actual location. When a portion of an object
becomes occluded, the measurement taken from that portion
can skew the anticipated object motion calculation and/or
cause a tracking failure due to the sudden change in the
object’s appearance. For example, as indicated in FIG. 2(C),
when the lower portion of circle 52 including point 52B
becomes occluded, measurements taken from the point
previously associated with point 52B (which are actually
part of square 54) would generate erroneous data with
respect to the motion of circle 52. Further, the appearance
model (i.e., a complete circle) for circle 52, which is
generated from image data occurring up to FIG. 2(A), no
longer accurately describes the partial circle appearing in
FIG. 2(C), thereby potentially causing the tracking operation
to “lose track of” circle 52.

FIG. 3 is a flow diagram showing a simplified visual
motion analysis method according to the present invention
that facilitates both detecting and reliably tracking an arbi-
trary number of moving objects appearing in an image
sequence. Upon receiving image data associated with an
initial frame (block 305), the visual motion analysis method
begins by identifying potential moving objects appearing in
the image sequence (block 310), and generating a model
framework including multiple layered “global” motion mod-
els according to a heuristic search method, each global
motion model being based on a plausible interpretation of
the image data (block 320). Each global motion includes a
background layer and one or more foreground components,
referred to herein as “polybones”, each polybone having
shape, position, motion, and appearance parameters that
model an associated moving object of the image sequence
(or to a region of the image sequence exhibiting character-
istics of a moving object) that is identified in block 310. The
polybones of each global model are assigned an initial
placement and depth ordering that is determined according
to the heuristic search method. Further description of the
global motion models, polybones, and examples of the
heuristic search method are provided in the following dis-
cussion. The global motion models are then subjected to a
refining process (block 330) during which the shape,
position, motion, and appearance parameters associated with
each polybone are updated to “fit” the current image data
(ie., the image data of the most recently analyzed image
frame). Details regarding the refining process are also pro-
vided in the following discussion. After the refining process
is performed, the global models are ranked (compared) to
determine which of the heuristically-generated global mod-
els best describe the image data (block 340). Next, to
maintain a tractable number of global models, low ranking
models are eliminated (deleted) from the model framework
(block 350), and then the process is repeated for additional
frames (block 360). As indicated at the bottom of FIG. 3, a
sequence of best global model (i.e., the global models that
most accurately matches the image data at each point in time
or each frame) is thereby generated (block 370). This
sequence of best global models is then utilized to perform
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tracking operations (or other motion analysis function)
established methods.
Global Motion Models

The main building blocks of the visual motion analysis
method of the present invention are the global motion
models (also referred to herein as “global models”). Each
layered global motion model consists of a background layer
and K depth-ordered foreground polybones. Formally, a
global model M at time t can be written as

M=(K(0), bo0), - - - » bx(0)s @

where b, is the parameter vector for the k” polybone. As
discussed below, the parameters b, of a single polybone
specify its shape, position and orientation, along with its
image motion and appearance. By convention, the depth
ordering is represented by the order of the polybone indices,
so that the background layer corresponds to k=0, and the
foremost foreground polybone to k=K. As discussed in
additional detail below, the foreground polybones are
defined to have local spatial support. Moreover, nearby
polybones can overlap in space and occlude one another, so
depth ordering must be specified. Accordingly, the form of
the spatial support and the parameterized shape model for
individual polybones must be specified. Then, given size,
shape, location and depth ordering, visibility is formulated
(i.e., which polybones are visible at each pixel).

FIGS. 4 and 5 are perspective graphical and table diagram
representations, respectively, of an exemplary layered global
model M, according to an embodiment of the present
invention. As depicted in FIG. 4, global model M, generally
represents the image sequence introduced above at an arbi-
trary frame Fm, and the present example assumes circle 52
and square 54 are moving in the image sequence as
described above (star 56 is stationary). Model M, includes
a background layer by, and two foreground polybones:
polybone b,, which is assigned to circle 52, and polybone b,,
which is assigned to square 54.

Referring to the upper portion of the table shown in FIG.
5, background layer b, includes appearance data
(parameters) a,, associated with relatively stationary por-
tions of the image data (e.g., star 56), and also includes
portions of image data associated moving objects that are
not exclusively assigned to a polybone (described further
below). Background layer b, also includes an optional
motion parameter (vector) m,,, which is used to represent
movement of the background in the image resulting, for
example, from movement of the recording instrument.

As depicted in FIG. 4, background layer b, and polybones
b, and b, have an explicit depth order in model M,. As
indicated in FIG. 4, background layer b, is always assigned
an explicit depth ordering (i.e., layer 410) that is “behind” all
foreground polybones (e.g., polybones b, and b,). In this
example, polybone b, is assigned to an intermediate layer
420, and polybone b, is assigned to a foremost layer 430. As
described below, the spatial support provided by each
polybone, along with the depth ordering graphically repre-
sented in FIG. 4, is utilized to determine visibility and
occlusion during the refinement and ranking of model M.
In effect, layered model M, provides a relatively straight-
forward 2.5D layered interpretation of the image sequence,
much like a collection of cardboard cutouts (i.e., polybones
b, and b,) moving over a flat background scene by, with
occlusions between the polybones being determined by the
explicit depth ordering and the size/shape of the spatial
support regions of the polybones.

Each polybone b, and b, is defined by pose parameters
(i.e., parameters that define the shape, size, and position of
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the region occupied by the polybone) and internal param-
eters (i.e., parameters that do not change polybone
occupancy, such as motion and appearance model
parameters). Referring to FIG. 5, polybone b, includes pose
parameters 510(b;) and internal parameters 520(b,), and
polybone b, includes pose parameters 510(b,) and internal
parameters 520(b,). The pose parameters and their influence
on spatial occupancy are described below with reference to
FIG. 6. The internal parameters are utilized to estimate
object motion and during the refining and ranking
operations, and are described in further detail below.
Polybone Shape

FIG. 6 illustrates pose parameters for an exemplary poly-
bone b, that is shown superimposed over an oval moving
object 600. Polybone b, includes an exclusive spatial sup-
port (occupancy) region 610 defined by a simple closed
polygon P, and a boundary region (“ribbon”) 620 located
outside of exclusive spatial support region 610 and bounded
by a perimeter Pgx. In the present embodiment, the simple
closed polygon P is an octagon that provides an polybone-
centric frame of reference that defines the appearance por-
tion of object 600 exclusively “owned” by polybone b,. In
contrast, boundary region 620 represents a parametric form
of spatial uncertainty representing a probability distribution
over the true location of the region boundary (i.e., a region
in which the actual boundary (edge) of the associated
moving object is believed to exist). Parametric boundary
region 620 facilitates a simple notation of spatial occupancy
that is differentiable, and allows the representation of a wide
variety of shapes with relatively simple models. Although in
the following discussion the closed polygonal shape is
restricted to octagons, any other closed polygonal shape may
be utilized to define the exclusive spatial occupancy region
610 and a probabilistically determined (“soft”) boundary
region 620.

The pose parameters of polybone b, are further described
with reference to FIG. 6. With respect to the local coordinate
frame, the shape and pose of the polybone is parameterized
with its scale in the horizontal and vertical directions s=(s,
sy), its orientation about its center 0, and the position of its
center in the image plane c=(c,,c,). In addition, uncertainty
in the boundary region 620 is specified by o,. This simple
model of shape and pose was selected to simplify the
exposition herein and to facilitate the parameter estimation
problem discussed below. However, it is straightforward to
replace the simple polygonal shape (i.e., octagon) with a
more complex polygonal model, or to use, for example, a
spline-based shape model, or shapes defined by harmonic
bases such as sinusoidal Fourier components, or shapes
defined by level-sets of implicit polynomial functions.

The pose (shape) parameters (s, 0, ¢, 0, ,) and internal
parameters (m; and a,) for polybone b, are collectively
represented by equation (2):

@

According to an aspect of the present invention, the
boundary region 620 defined by each polybone provides a
probabilistic treatment for the object boundary (i.e., the edge
of the image region associated with the object). Given the
simplicity of the basic shapes used to define the polybones,
it is not expected that they accurately fit any particular
object’s shape extremely well (e.g., as indicated in FIG. 6,
the boundary (edge) B of object 600 is located entirely
outside of spatial support region 610). Therefore, it is
important to explicitly account for uncertainty of the loca-
tion of the true region boundary in the neighborhood of the
polygon. Accordingly, let p, be the probability density of the

by=(st» O 4 Os k> Qs my)



US 6,954,544 B2

13

true object boundary, conditioned on the location of the
polygon. More precisely, this density is expressed as a
function of the distance, d(x; b), from a given location x to
the polygon boundary specified by the polybone parameters
b, FIG. 7(A) illustrates the form of p, (d(x; b,)), which
indicates the probability the location of the true object
boundaries B1 and B2, which represent opposite sides of
object 600 (see FIG. 6). Note that the probability density p,
(d(x; b,)) defines boundary region 620.

A quantity of interest that is related to the boundary
probability is the occupancy probability, denoted w(x; by)
for the k”* polybone. The occupancy probability is the
probability that point x lies inside the true boundary B, and
it serves as a notion of probabilistic support from which the
notions of visibility and occlusion are formulated. Given p,
d(x; b,), which represents the density over object boundary
location, the probability that any given point X lies inside of
the boundary is equal to the integral of p/(d) over all
distances larger than d(x; b,). More precisely, w(x; by) is
simply the cumulative probability p (d<d(x; by)). As illus-
trated in FIG. 7(B), probability density p, is modeled such
that the occupancy probability, w(x; b,) has a simple form.
That is, w(x; b,) is unity in the exclusive spatial support
region 610 of polybone b,, and it decays outside the polygon
(ie., in boundary region 620) with the shape of a half-
Gaussian as a function of distance from the polygon. In one
embodiment, the standard deviation of the half-Gaussian,
O, 1s taken to be a constant.

Visibility

With this definition of spatial occupancy, the visibility of
the i polybone at a pixel x is the product of the probabilities
that all closer layers do not occupy that pixel. That is, the
probability of visibility is

K 3
v = | | d-wosby

=)

= (1= w(x; by (%) -

Here all pixels in layer K, the foremost layer, are taken to be
visible, so v(x)=1. Of course, the visibility of the back-
ground layer is given by

K @)
voe) = | | (1 =wix; ).

J=1

Note that transparency could also be modeled by replac-
ing the term (1-w(x; b)) in equation (3) by (1-¢w(x; b))
where #,€[0,1] denotes the opacity of the j* polybone. The
present embodiment represents a special case in which p=0.
Another interesting variation is to let the opacity vary with
the scale (and possibly position) of the information being
passed through from the farther layers. This could model the
view through a foggy window, or in a mirror, with the high
frequency components of the scene blurred or annihilated
but the low-pass components transmitted. However, only
opaque polybones (i.e., #=1) are discussed in detail herein.
Likelihood Function

The likelihood of an image measurement at time t
depends on both the information from the previous frame,
convected (i.e., warped from one time to the next) according
to the motion model, and on the appearance model for a
given polybone.

For a motion model, a probabilistic mixture of parametric
motion models (inliers) and an outlier process can be
utilized (see “Mixture Models for Optical Flow
Computation”, A. Jepson and M. J. Black, Proceedings of
IEEE Conference on Computer Vision and Pattern
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Recognition, pages 760-761, New York, June 1993).
However, in the following discussion, a single inlier motion
model is used, with parameters (stored in m,) that specify
the 2D translation, scaling, and rotation of the velocity field.
More elaborate flow models, and more than one inlier
process could be substituted in place of this simple choice.

Constraints on the image motion are obtained from image
data in terms of phase differences (see, for example “Com-
putation of Component Image Velocity from Local Phase
Information”, D. J. Fleet and A. D. Jepson, International
Journal of Computer Vision, 5:77-104, 1990). From each
image the coefficients of a steerable pyramid are computed
based on the G2, H2 quadrature-pair filters described in
“The Design and Use of Steerable Filters”, W. Freeman and
E. H. Adelson, IEEE Pattern Analysis and Machine
Intelligence, 13:891-906, 1991. From the complex-valued
coefficients of the filter responses the phase observations are
obtained, denoted @, at time t. Constraints could also come
from any other optical flow method (e.g., those described in
“Performance of Optical Flow Techniques™, J. L. Barron, D.
J. Fleet, and S. S. Beauchemin, International Journal of
Computer Vision, 12(1):43-77, 1994).

Within the exclusive spatial occupancy region (e.g.,
region 610, FIG. 6) and the “soft” (probabilistic) boundary
region (region 620, FIG. 6), the likelihood of a velocity
constraint at a point X is defined using a mixture of a
Gaussian inlier density plus a uniform outlier process. The
mixture model for a phase observation @, ; at time t+1, at a
particular filter scale and orientation, is then

P(Beet | 60 me@) = (L= m0)plBeen | $or me ) +mupy. &)

Here p;=1/(2m) is a uniform density over the range of
possible phases, and m, is the mixing probability for the
outliers. The inlier distribution p,(@,,]¢, m(t)) is taken to
be a Gaussian distribution with mean given by ¢,=6,(W(x;
mg(t)), the phase response from the corresponding location
in the previous frame. The corresponding location in the
previous frame is specified by the inverse image warp, W(x;
mg(t)), from time t+1 to time t. Amaximum likelihood fit for
the motion model parameters, m,(t), can be obtained using
the EM-algorithm. This includes the standard deviation of
the Gaussian, the outlier mixing proportion m,, and the flow
field parameters. Further details of this process are described
in “Mixture Models for Optical Flow Computation”, A.
Jepson and M. J. Black, Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pages 760-761,
New York, June 1993.

In addition to the 2-frame motion constraints used in
equation (5), there arises the option of including an appear-
ance model for the polybone at time t. Such an appearance
model could be used to refine the prediction of the data at the
future frame, thereby enhancing the accuracy of the motion
estimates and tracking behavior. For example, the WSL
appearance model described in co-owned and co-pending
U.S. patent application No. 10/016,659, entitled “Robust,
On-line, View-based Appearance Models for Visual Motion
Analysis and Visual Tracking”, which is incorporated herein
by reference, provides a robust measure of the observation
history at various filter channels across the polybone.

In practice there are phase observations from each of
several filters tuned to different scales and orientations at any
given position x. However, because the filter outputs are
subsampled at % of the wavelength to which the filter is
tuned at each scale, phase observations are not obtained
from every filter at every pixel. Letting D(x) denote the set
of phase values from filters that produce samples at x, and
assuming that the different filter channels produce indepen-
dent observations, then the likelihood p(D(x)[b,) is simply a
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product of the likelihoods given above (i.e., equation (5)) for
each phase observation.

Finally, give the visibility of bone k at pixel X, namely v,
(x), and the spatial occupancy w(x; b,), the likelihood for the
data D(x) at position x can be written as

K (6)
(D M) = > vomix; bop(DE) | be).

k=0

which is the mixture probability for the k” bone at location
x. In words, equation (6) expresses the influence of the k*
polybone at pixel x, as weighted by the visibility of this layer
at that pixel (i.e., whether or not it is occluded), and the
spatial occupancy of that layer (i.e., whether the pixel falls
in the particular region being modeled).

Parameter Estimation

Suppose M, is an initial guess for the model parameters,
in the form given in equation (1). In this section an objective
function is described that reflects the overall quality of the
global model, and an EM procedure is used for hill-climbing
on it to find locally optimal values of model parameters. The
objective function is based on the data likelihood introduced
in equation (6), along with a second term involving the prior
probability of the model. How initial model guesses are
generated (i.e., block 320; FIG. 3) and how the best models
are selected (i.c., block 340; FIG. 3) are discussed in
subsequent sections.

Bayes theorem ensures that the posterior probability dis-
tribution over the model parameters M, given data over the
entire image, D={D(x)}, is
p(D | M)p(M) %!

M| D)=
p(M | D) D)

The denominator here is a normalizing constant, indepen-
dent of M, and so the numerator is referred to as the
unnormalized posterior probability of M. If it is assumed
that the observations D(x) are conditionally independent
given model parameters M, then the likelihood becomes

p0 M) = | plD) | M). ®

X

The remaining factor in equation (7), namely p(M), is the
prior distribution over the model parameters. Prior distribu-
tion (or simply “prior”) p(M) is discussed in additional detail
below.

The objective function O (M) utilized herein is the log of
this unnormalized posterior probability

O (v)-tog p(DIMyHog p(31) ©

Maximizing objective function o (M) is then equivalent to
maximizing the posterior probability density of the model
(given the assumption that the data observations are
independent). However, it is important to remember that the
normalization constant p(D) is discarded. This is justified
since different models are considered for a single data set D.
But it is important not to attribute the same meaning to the
unnormalized posterior probabilities for models of different
data sets; in particular, the unnormalized posterior probabili-
ties for models of different data sets should not be directly
compared.

A form of the EM-algorithm (see “Maximum Likelihood
from Incomplete Data Via the EM Algorithm”, A. P.
Dempster, N. M. Laird, and D. B. Rubin, Journal of the
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Royal Statistical Society Series B, 39:1-38, 1977) is used to
refine the parameter estimates provided by any initial guess,
such as M=M,,. To describe this process it is convenient to
first decompose the data likelihood term p(D(x)|M) into
three components, each of which depends only on a subset
of the parameters. One component depends only on the
parameters for the k” polybone. The other two components,
respectively, depend only on the parameters for polybones in
front of, or behind, the k** polybone.

From equations (3) and (6) it follows that the contribution
to p(D(x)|M) from only those polybones that are closer to the
camera than the k” bone is

K (10)
mx) =y vmi bjp(DE) | by)

J=k+1

= Ve O B 1)P(DOO | By ) + i1 ()

The term n,(x) is referred to herein as the “near term” for the
k“ polybone. Notice that equation (10), along with equation
(3), provide recurrence relations (decreasing in k) for com-
puting the near terms and visibilities v,(x), starting with
0,(x)=0 and v (x)=1.

Similarly, the polybones that are further from the camera
than the k”* polybone are collected into the “far term” £,(x),
which is defined as

k-1

S = ZW(X: b

=0

P (11

l_[ (1 - wix; b,))

=j+1

(D)1 b))

= w(x; b)) p(D@) | biey) + (1= wx b)) for ()

Here the convention is used that
qu:Oand l_[qul
j=n Jj=n

whenever n>m. Notice that equation (11) gives a recurrence
relation for f,, increasing in k, and starting with f_(x)=0.

The near and far terms, n(x) and f,(x), have intuitive
interpretations. The near term is the mixture of all the
polybones closer to the camera than the k™ term, weighted
by the mixture probabilities v{x)w(x; b,). In particular ny(x)
depends only on the polybone parameters b, for polybones
that are nearer to the camera than the k” term. The far term
is a similar mixture of the data likelihoods, but these are not
weighted by v(x)w(x; b)). Instead, they are treated as if there
are no nearer polybones, that is, without the effects on
visibility caused by the k or any of the closer polybones.
As a result, f,(x) only depends on the polybone parameters
b; for polybones that are further from the camera than the k*
polybone.

Given these definitions, it follows that, for each
k€{0, . . ., K}, the data likelihood satisfies
(DO | M) = () + v (ot b)p(D) | b ) + 12

Ve (0)(1 = Wi b)) fi(x).
Moreover, it also follows that n,(x), v,(x), and f(x) do not

depend on the parameters for the k” polybone, b,. The
dependence on b, has therefore been isolated in the two
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terms w(x; b,) and p(D(x)|b,) in equation (12). This simpli-
fies the EM formulation given below.
E-Step

In order to maximize the objective function O (M), it is

necessary to obtain the gradient of 0 (M) with respect to the
model parameters. The gradient of the log p(M) term is
straight-forward (see discussion below), so attention is
applied to differentiating the log-likelihood term, log
p(D|M). By equation (8) this will be the sum, over each
observation at each pixel x, of the derivatives of log p(D(x)
[M). The derivatives of this with respect to the k”* polybone
parameters b, can then be obtained by differentiating equa-
tion (12). The form of the gradient is first derived with
respect to the internal polybone parameters (i.e., those that
do not change the polybone occupancy). These are the
motion parameters and the appearance model parameters, if
an appearance model were used beyond the two-frame
motion constraints used here. The gradient with respect to
the pose parameters (i.e., the shape, size and position
parameters of the polybone) is then considered.

Let a denote any internal parameter in b, that is, one that
does not affect the polybone occupancy. Then, the derivative
of log p(D(x)[M) with respect to « is given by

9, e , a3
35108 P(D) | M) = 7, M) 5—log (D) | bi).

where T,(x) is the ownership probability of the k* polybone
for the data D(x),
veowx; b)p(DE) | by ) 4

s M) =
A PO | M)

In the EM-algorithm, the interpretation of equation (14) is
that T (x;M) is just the expected value of the assignment of
that data to the k” polybone, conditioned on the model
parameters M. Accordingly, in equation (13), this ownership
probability provides the weight assigned to the gradient of
the log likelihood at any single data point D(x). The evalu-
ation of the gradient in this manner is called the expectation
step, or E-step, of the EM-algorithm.

Alternatively, let f§ represent any pose parameter in by,
that is one which affects only the placement of the polybone,
and hence the occupancy w(x; by), but not the data likeli-
hood p(D(x)[b,). Then, the derivative of log p(D(x)|M) with
respect to f§ is given by

Iw 15)
s g5 BOP(DX) | b)) - £ (%]
—1 D M) =
ap o p[DW) | M) p(D) | M)

This equation can also be rewritten in terms of the ownership
probability T,(x;M) for the k? polybone and the lumped
ownership for the far terms, namely

)
p(D) | M)

16
Tra(x M) = e
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In particular,

a1 D M) = M 9 1 ) an
p8n (x) | M) =7 (x; )5 plo8 i b+

2}
Tra(x; M)@log(l - wi(x; bk)).

This again has a natural interpretation of each term being
weighted by the expected ownership of a data item, for
either the k” bone or the more distant bones, with the
expectation conditioned on the current guess for the model
parameters M.

Notice that, with some mathematical manipulation, one
can show that the derivative of equation (17) is zero when-
ever

wix b)) mn M)
L-wix b))~ Tl M)

This is the case when the odds given by the occupancy that
the data item is associated with the k™ polybone versus any
of the further bones (i.c., the left side of the above equation)
is equal to the odds given by the ownership probabilities (i.c.
the right side). If the odds according to the occupancies are
larger or smaller than the odds according to the data
ownerships, then the gradient with respect to the pose
parameters is in the appropriate direction to correct this. The
cumulative effect of these gradient terms over the entire data
set generates the “force” on the pose parameters of the k*
polybone, causing it to move towards data that the k™
polybone explains relatively well (in comparison to any
other visible polybones) and away from data that it does not.

Equations (13) and (15) (or, equivalently, equation (17))
are referred to collectively as the E-step. The intuitive model
for the E-step is that the ownership probabilities T, (x;M)
provide a soft assignment of the data at each pixel x to the
k? polybone. These assignments are computed assuming
that the data was generated by the model specified with the
given parameters M. Given these soft assignments, the
gradient of the overall log-likelihood, log p(D|M), is then an
ownership weighted combination of either the gradients of
the data log-likelihood terms p(D(x)|b,) for an individual
polybones (which contribute to the gradients ) with respect
to the internal polybone parameters @), or the gradients of
the occupancy terms log w(x;b,) and log (1-w(x;b,)) (which
contribute to the gradients with respect to the pose
parameters). While equation (17) makes the intuition clear,
it is noted in passing that equation (15) is more convenient
computationally, since the cases in which w(x; b,) is 0 or 1
can be handled more easily.
M-step

Given the gradient of log p(D;M) provided by the E-step
and evaluated at the initial guess M,, the gradient of the

objective function @ (M) at M,, can be obtained by adding
the gradient of the log prior (see equation (9)). The maxi-
mization step (or M-step) consists of modifying M, in the
direction of this gradient, thereby increasing the objective
function (assuming the step is sufficiently small). This
provides a new estimate for the model parameters, say M.
The process of taking an E-step followed by an M-step is
iterated, and this iteration is referred to as an EM-algorithm.

In practice it is found that several variations on the
M-step, beyond pure gradient ascent, are both effective and
computationally convenient. In particular, a front-to-back
iteration is used through the recurrence relations of equa-
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tions (3) and (10) to compute the visibilities v (x) and the
near polybone likelihoods n,(x) (from the nearest polybone
at k=K to the furthest at k=0), without changing any of the
polybone parameters b,. Then the EM-algorithm outlined
above is performed on just the background polybone param-

eters bg. This improves the overall objective function o by
updating by, but does not affect v{x) nor n{x) for any j>0.
The far term f,(x) is then computed using the recurrence
relation of equation (11), and the EM-algorithm is run on
just the polybone at k=1. This process is continued, updating
b, alone, from the furthest polybone back to the nearest. This
process of successively updating the polybone parameters b,
is referred to as a back-to-front sweep. At the end of the
sweep, the far terms f,(x) for all polybones are computed.

Due to the fact that polybone parameters b; for any closer
polybone than the k” does not affect the far term f,(x), when
the nearest polybone at k=K is reached, the correct far terms
f(x) have been accumulated for the updated model param-
eters M. Now the polybone parameters could be re-estimated
in a front-to-back sweep (i.e., using the EM-algorithm to
update b, with k decreasing from K to 0). In this case the
recurrence relations of equations (3) and (10) provide the
updated v,(x) and n,(x). These front-to-back and back-to-
front sweeps can be done a fixed number of times, or iterated
until convergence. In the practical examples described
below, just one back-to-front sweep per frame was per-
formed.

An alternative procedure is to start this process by first
computing all the far terms f(x) iterating from k=0 to K
using equation (11), without updating the polybone param-
eters b,. This replaces just the first front-to-back iteration in
the previous approach (i.e., where the polybone parameters
are not updated). Then the individual polybone parameters
b, can be updated starting with a front-to-back sweep. The
former start-up procedure has been found to be preferable in
that the background layer parameters b, are updated first,
allowing it to account for as much of the data with as high
a likelihood as possible, before any of the foreground
polybones are updated.

The overall rationale for using these front-to-back or
back-to-front sweeps is a concern about the relative sizes of
the gradient terms for different sized polybones. It is well
known that gradient ascent is slow in cases where the
curvature of the objective function is not well scaled. The
sizes of the gradient terms are expected to depend on the
amount of data in each polybone, and on the border of each
polybone, and thus these may have rather different scales. To
avoid this problem, just one polybone is considered at a
time. Moreover, before doing the gradient computation with
respect to the pose parameters of a polybone, care is taken
to rescale the pose parameters to have roughly an equal
magnitude effect on the displacement of the polybone.

In addition, the M-step update of each b, is split into
several sub-steps. First, the “internal” parameters of the k”
polybone are updated. For the motion parameters, the E-step
produces a linear problem for the update, which is solved
directly (without using gradient ascent). A similar linear
problem arises when the WSL-appearance model (cited
above) is used. Once these internal parameters have been
updated, the pose parameters are updated using gradient
ascent in the rescaled pose variables. Finally, given the new
pose, the internal parameters are re-estimated, completing
the M-step for b,.

One final refinement involves the gradient ascent in the
pose parameters, where a line-search is used along the fixed
gradient direction. Since the initial guesses for the pose
parameters are often far from the global optimum (see
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discussion below), the inventors found it useful to constrain
the initial ascent to help avoid some local maxima. In
particular, unconstrained hill-climbing from a small initial
guess was found to often result in a long skinny polybone
wedged in a local maximum. To avoid this behavior the
scaling parameters s, and s, are initially constrained to be
equal, and just the mean position (c,,c,), angle 0, and the
overall scale are updated. Once a local maximum in these
reduced parameters is detected, the relative scales s, and s,
are allowed to evolve to different values.

FIGS. 8(A) through 8(G) are a series of photographs
showing a practical example of the overall process in which
a can 810 is identified using a single foreground polybone b,
(note that the spatial support region of polybone b, is
indicated by the highlighted area). The image sequence is
formed by moving the camera horizontally to the right, so
can 810 moves horizontally to the left, faster than the
background within the image frames. For this experiment a
single background appearance model was used, which is
then fit to the motion of the back wall. The outliers in this
fit were sampled to provide an initial guess for the placement
of foreground polybone b,. The initial size of foreground
polybone b, was set to 16 pixels on both axes, and the
motion parameters were set to zero. A more complete
discussion of the start-up procedure is provided below. No
appearance model is used beyond the 2-frame flow con-
straints in equation (5).

In FIG. 8(A), the configuration is shown after one back-
to-front sweep of the algorithm (using motion data obtained
using frames). Notice that foreground polybone b, at time t0
has grown significantly from its original size, but the relative
scaling along the two sides of polybone b, is the same. This
uniform scaling is due to the clamping of the two scale
parameters, since the line-search in pose has not yet detected
a local maximum. Thus, FIG. 8(A) illustrates that polybone
pose parameters can be effectively updated despite a rela-
tively small initial guess, relatively sparse image gradients
on can 810, and outliers caused by highlights.

In FIG. 8(B), the line-search has identified a local
maximum, releasing the constraint that the relative scales s,
and s, must be equal in subsequent frames. Notice that the
local maximum identified in this image frame over-estimates
the width of can 810. This effect reflects the expansion
pressure due to the coherent data above and below polybone
b,, which is balanced by the compressive pressure due to
background on the two sides of polybone b;.

In the subsequent frames shown in FIGS. 8(C) through
8(G), the shape and motion parameters of polybone b, are
adjusted to approximate the location of can 810. The sides
of can 810 are now well fit. At the top of can 810 the image
consists of primarily horizontal structure, which is consis-
tent with both the foreground and background motion mod-
els. In this case there is no clear force on the boundary of the
top of polybone b,, one way or the other. Given a slight prior
bias towards smaller polybones (see discussion below), the
top of can 810 has therefore been underestimated by poly-
bone b,. Conversely, the bottom of can 810 has been
overestimated due to the consistency of the motion data on
can 810 with the motion of the end of the table on which can
810 sits. In particular, the end of the table is moving more
like foreground polybone b, than the background layer, and
therefore foreground polybone b, has been extended to
account for this data as well.

The sort of configuration obtained in the later image
frames (e.g., FIGS. 8(D) through 8(G)) could have been
obtained with just the first two frames (e.g., FIGS. 8(A) and
8(B)) if the hill-climbing procedure was iterated and run to



US 6,954,544 B2

21

convergence. However, this approach is not used in the
practical embodiment because the inventors found it more
convenient to interleave the various processing steps across
several frames, allowing smaller updates of the polybone
parameters to affect the other polybones in later frames.
Model Search

Given that the hill-climbing process is capable of refining
a rough initial guess, such as is demonstrated in FIGS. 8(A)
through 8(G), two more components are required for a
complete system.

First, a method for generating appropriate initial guesses
is required. That is, initial values are required for the
parameters that are sufficiently close to the most plausible
model(s) so that the hill-climbing process will converge to
these models, as depicted in FIGS. 8(A) through 8(G).
Because the landscape defined by the objective function
(equation (9)) is expected to be non-trivial, with multiple
local maxima, it is difficult to obtain guarantees on initial
guesses. Instead, a probabilistic local (heuristic) search is
used for proposing various plausible initial states for the
hill-climbing process. With a reasonably high probability
that such probabilistic local searches generate appropriate
initial guesses, it is anticipated that nearly optimal models
will be found within a few dozen trials. Whether or not this
turns out to be the case depends on both the proposal
processes implemented and on the complexity of the objec-
tive function landscape.

Second, an appropriate computational measure is needed
to determine exactly what is meant by a “more plausible” or
“best” model. That is, given any two alternative models for
the same image sequence data, a comparison measure is
needed to determine which model one is more plausible.
Naturally, the objective function (equation (9)) is used for
this measure, and here the prior distribution p(M) used plays
a critical role. Details of prior distribution p(M) are dis-
cussed below.

According to another aspect of the present invention,
simple baseline approaches are used for both model com-
parison and model proposals, rather than optimized algo-
rithms. The central issue addressed below is whether or not
simple strategies can cope with the image data presented in
typical image sequences.

Heuristic Search (Model Generation)

According to another aspect of the present invention, the
targeted heuristic search utilized by the visual motion analy-
sis method generates a model framework (i.e., set of possible
models) in a manner that produces multiple layered motion
models having different numbers of foreground components
(polybones), depth orderings, and/or other parameter (e.g.,
size, location of the polybones). The set of possible models
is partitioned according to the number of polybones each
model contains. Currently, all models have a background
layer (sometimes referred to herein as a background
polybone) covering the entire image, so the minimum num-
ber of polybones in any model is one. The example shown
in FIGS. 8(A) through 8(G) consists of two polybones (the
background polybone, which is not highlighted, and fore-
ground polybone b,). Other examples described below have
up to five polybones (background plus four foreground
polybones).

The model framework initially starts with a first genera-
tion (core) model, which is used to periodically (e.g., each
image frame or other predefined time period) spawn one or
more additional motion models having one or more fore-
ground polybones. The initial “core” proposal model
includes the entire image, and only requires an initial guess
for the motion parameters. Simple backgrounds are
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considered, and the initial guess of zero motion is sufficient
in most instances. A parameterized flow model is then fit
using the EM-algorithm described above.

At any subsequent stage of processing the model frame-
work includes a partitioned set of models,

Mio=Myn, My, . ... Me(0), (18

where M(t) is a list of models in the model framework at
frame t, each with exactly K foreground polybones. Model

framework AM(t) is sorted in decreasing order of the objec-

tive function O (M) (i.¢., with the highest ranked models at
the front of the list). Also, the term K in equation (18) is a
user-supplied constant limiting the maximum number of
polybones to use in any single model. The number of models

in each list M(t) is limited by limiting each one to contain
only the best models found after hill-climbing (from
amongst those with exactly K foreground polybones). In one
embodiment, this pruning keeps only the best model within

Mz(1), but it is often advantageous to keep more than one

in many cases. At the beginning of the sequence, M(t) is
initialized to the fitted background layer, and the remaining
Mg (t) are initialized to be empty for K=1.

The use of a partitioned set of models was motivated by
the model search used in “Qualitative Probabilities for
Image Interpretation”, A. D. Jepson and R. Mann, Proceed-
ings of the IEEE International Conference on Computer
Vision, volume II, pages 1123-1130, Corfu, Greece, Sep-
tember (1999), and the cascade search developed in “Explor-
ing Qualitative Probabilities for Image Understanding”, J.
Listgarten. Master’s thesis, Department of Computer
Science, University of Toronto, October (2000), where simi-
lar partitionings were found to be useful for exploring a

different model space. The sequence of models in M, (1)
through M,(t) can be thought of as a garden path (or garden

web) to the most plausible model in MA(t). In the current
search the models in this entire garden path are continually
revised through a process where each existing model is used
to make a proposal for an initial guess of a revised model.
Then hill-climbing is used to refine these initial guesses, and
finally the fitted models are inserted back into the partitioned
set. The intuition behind this garden path approach is that by
revising early steps in the path, distant parts of the search
space can be subsequently explored.

Clearly, search strategies other than those described above
can be used. For example, another choice would be to keep
only keep the best few models, instead of the whole garden
path, and just consider revisions of these selected models. A
difficulty here arises when the retained models are all
similar, and trapped in local extrema of the objective func-
tion. In that situation some more global search mechanism,
such as a complete random restart of the search, is needed
to explore the space more fully.

According to an embodiment of the present invention,
two kinds of proposals are considered in further detail for
generating initial guesses for the hill-climbing process,
namely temporal prediction proposals and revision propos-
als. These two types of proposals are discussed in the
following paragraphs.

Given a model S(t-1)EM,(t-1), the temporal prediction
proposal provides an initial guess G(t), for the parameters of
the corresponding model in the subsequent frame. Here
S(t-1) is referred to as the seed model used to generate the
guess G(t). The initial guess G(t) is generated from the seed
S(t-1) by convecting each polybone (other than the back-
ground model) in S(t-1) according to the flow for that
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polybone. The initial guess for the flow in each polybone is
obtained from a constant velocity or constant acceleration
prediction. A constant model is used for the temporal pre-
diction of the appearance model, although the details depend
on the form of appearance model used.

Given the initial guess G(t), the hill-climbing procedure is
run and the resulting fitted model M(Y) is inserted into the

model list M,A(t), preserving the decreasing order of the
objective function (equation (9)) within this list. Notice that
temporal prediction proposals do not change the number of
polybones in the model, nor their relative depths, but rather
they simply attempt to predict where each polybone will be
found in the subsequent frame.

In order to change the number of polybones, or their
depths, revision proposals are considered. A revision pro-
posal selects a seed to be a previously fit model, say
SAOEM (V). This seed model is used to compute an outlier
map, which provides the probability that the data at each
image location X is considered to be an outlier according to
all the visible polybones within S,(t) at that location. This
map is then blurred and downsampled to reduce the influ-
ence of isolated outliers. The center location for a new
polybone is selected by randomly sampling from this down-
sampled outlier map, with the probability of selecting any
individual center location being proportional to the value of
the outlier map at that location. Given the selected location,
the initial size of the new polybone is taken to be fixed
(16x16 was used in the practical examples disclosed herein),
the initial angle is randomly selected from a uniform
distribution, and the relative depth of the new polybone is
randomly selected from the range 1 to K (i.e., it is inserted
in front of the background bone, but otherwise at a random
position in the depth ordering).

As a result this revision proposal produces an initial guess
Gq(t) from the seed Sy(t) which has exactly one new
polybone in addition to all of the original polybones in the
seed. The initial guess G,,,(t) is then used by the hill-
climbing procedure, and the resulting fitted model M, (1) is

inserted into the list Mg, (t) according to the value of

O Mys (1),

In summary, one time step of the algorithm involves
taking all the models in the partitioned set A(t-1) and
propagating them forward in time using the temporal pre-
diction proposals followed by hill-climbing, thereby form-
ing a partitioned set of models for framework AM(t) at time

t. Then, for each model in M(t), a model revision proposal
is performed, followed by hill-climbing. The revised models

are inserted back into M(t). The updated sorted lists in

Mz(t) for K=0, . . ., K are then pruned to be within the
maximum allowable length. Finally, the best model is
selected from the different sized models within M(t), say
M(D). It maybe found useful to also delete from AM(t) any
model with more than K foreground polybones. This last
step helps to avoid spending computational effort propagat-
ing non-optimal models that include many weakly supported
polybones. This completes the processing for the current
frame t.

FIGS. 9 through 16(D) are directed to a simplified
example showing the generation of a model framework
M(t) using a heuristic search approach according to an
embodiment of the present invention. This example refers to
the simplified image sequence introduced above and
described with reference to FIGS. 2(A) through 2(E). FIG.
9 is a diagram illustrating the “garden web” generation of
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global models in model framework A(t) (see equation (18))
according to the simplified example. FIGS. 10 through
16(D) depict various polybones and global models included
in the model framework. The example assumes no back-
ground motion. In addition, the example assumes that new
foreground polybones are inserted between existing fore-
ground polybones and the background layer.

Referring to the upper right portion of FIG. 9 and to FIG.
10, model framework M(t0) includes only a core model M,
which serves as the initial seed model in this example, and
is initiated at time t0 using image data provided in frame FO
(shown in FIG. 2(A)). FIG. 10 indicates that the appearance
data of core model M(t0) includes all three objects (circle,
square, and star) at the initial time t0. Note again that core
model M, does not include a foreground polybone at any
point during the heuristic search process.

Referring again to FIG. 9, at time t1 core model M, is
propagated (updated) using the image data provided in
frame F1, and is utilized to generate a first generation, single
foreground polybone global model M, ,(t1) (as indicated by
the arrows extending downward from core model M(t0) in

FIG. 9). Accordingly, at time t1, model framework AA(t1)
includes two models: core model My(t1) and first generation
global model M, ,(t1), which are refined as described above.

As indicated in FIGS. 11(A) and 11(B), at time t1, core
model M, is updated using the image data provided in frame
F1, and the image data from frames F0 and F1 are compared
to identify regions containing outliers indicating the pres-
ence of a moving object. For example, FIG. 11(B) indicates
superimposed positions of circle 52 and square 54 from
frames FO and F1. The outlier regions associated with these
position changes provide two plausible moving object loca-
tions (i.e., one centered in the region associated with circle
52, and one centered in the region associated with square
54). As described above, the heuristic approach utilized by
the present invention randomly selects one of these two
possible regions, and first generation, single foreground
polybone global model M, ,(t1) is generated by assigning a
foreground polybone to the selected outlier region. In the
present example, it is assumed that the outlier region asso-
ciated with circle 52 is arbitrarily selected.

FIGS. 12(A), 12(B) and 12(C) depict background poly-
bone (layer) by, foreground polybone b,, and combined
global model M, ,(t1), respectively. As indicated in FIG.
12(A), an appearance model a,, for background polybone b,
at time t1 includes all appearance data for square 54 and star
56, but only part of circle 52. Referring to FIG. 12(B), the
initial exclusive spatial support region 610(M,,) of fore-
ground polybone b, is still relatively small (due to growth
rate constraints), and the uncertainty boundary region 620
(M) is still relatively large such that it reliably includes the
actual boundary of circle 52. As discussed above, spatial
support region 610(M,,) is exclusively “owned” by fore-
ground polybone b,, which is indicated by the cross-
hatching shown in FIG. 12(B) and the corresponding blank
region shown in background polybone b, (FIG. 12(A)). In
contrast, boundary region 620(M,,) is only partially
“owned” by foreground polybone b,, which is indicated by
the dashed lines and shading in FIG. 12(B). Note the
corresponding dashed/shaded region shown in FIG. 12(A),
which indicates partial ownership of this region by back-
ground polybone b,. Similar to the sequence shown in FIGS.
8(A) through 8(G), global model M, (FIG. 12(C)) is
indicated by foreground polybone superimposed over the
image data.

After the model refining process is completed, the two
existing global models are ranked (compared) to determine
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which global model in model framework A(tl) best
describes the image data at time tl. This model ranking
process is described in additional detail below. However,
because global model M, , includes polybone b, that accu-
rately represents at least a portion of one of the moving
objects (i.e., circle 52), the ranking process will typically
rank global model M, , higher than core model M,, because,
in most cases, a global model with one polybone (e.g., global
model M, ,) better represents the image sequence having
multiple moving objects than the core model, which by
definition has zero foreground polybones. Note that, because
the number of models is each global model group is one (i.e.,
My(t1) and M, (t1) each include only a single global
model), no models are eliminated at the end of the ranking
process at time t1.

Referring again to FIG. 9, at time t2 core model M, is
again propagated in a manner similar to that described
above, and is utilized to generate a second generation, single
foreground polybone global model M, 4(t2) (as indicated by
the arrows extending downward from core model My(t1) in
FIG. 9). In addition, first generation global model M, is
propagated, and is utilized to generate a second generation,
double foreground polybone global model M,,,(t2) (as indi-
cated by the arrows extending downward from global model
M, (t1) in FIG. 9). Accordingly, at time t2, the model

framework AA(t2) initially includes four models: core model
M, (t2), first generation global model M, ,(12), second gen-
eration global model M, 4(12), and second generation global
model M, ,(t2), which are then refined as described above.

Core model M, is updated using the image data provided
in frame F2 (see FIG. 2(C) in a manner similar to that shown
above in FIG. 11(A), and the image data from frames F1 and
F2 are compared to identify regions containing outliers
indicating the presence of moving objects in a manner
similar to that shown in FIG. 11(B). As in the discussion
above, this process yields two outlier regions associated
with the moving circle 52 and square 54, one of which is
then randomly selected for the generation of second
generation, single foreground polybone global model M,
(t2). In the present example, it is assumed that the outlier
region associated with square 54 is selected.

FIGS. 13(A), 13(B) and 13(C) depict background poly-
bone (layer) b, foreground polybone b, and global model
M, ; at time t2, respectively. As indicated in FIG. 13(A), an
appearance model a,, for background polybone b, includes
all appearance data for circle 52 and star 56, but only part of
square 54. Referring to FIG. 13(B), the initial exclusive
spatial support region 610(M, 5) of foreground polybone b,
is still relatively small, and the uncertainty boundary region
620(M, ) is still relatively large. Global model M, ; (FIG.
13(0)) is indicated by foreground polybone superimposed
over the image data associated with square 54.

FIGS. 14(A), 14(B) and 14(C) depict background poly-
bone (layer) by, foreground polybone b;, and global model
M, , at time t2, respectively, which is updated using image
data from frames F1 and F2. Similar to FIG. 12(A), FIG.
14(A) shows an appearance model a,, for background
polybone by, that includes all appearance data for square 54
and star 56, but only part of circle 52. Referring to FIG.
14(B), spatial support region 610(M,,) of foreground poly-
bone b, has grown from its initial smaller size, and the
uncertainty boundary region 620(M,,) is smaller. However,
the presence of square 54 over the lower portion of circle 52
prevents spatial support region 610(M,,) from expanding
into this region. Global model M, 4 (FIG. 14(C)) is indicated
by foreground polybone superimposed over the image data
associated with square 54.
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In addition to updating global model M, , as shown in
FIGS. 14(A) through 14(C), the image data from frames F1
and F2 is also utilized to generate second generation, double
polybone global model M,,. This generation process is
similar to that utilized with respect to core model M, in that
the appearance data associated with updated background
polybone (layer) b, is compared with the appearance data of
the previous frame in order to identify additional outlier
regions. In the ideal image sequence of the simplified
example, the only other outlier region would be that asso-
ciated with square 54, although in practical examples many
smaller outlier regions may be identified as possible moving
objects. Note that filtering may be used to de-emphasize
these smaller outlier regions.

FIGS. 15(A), 15(B), 15(C) and 15(D) depict background
polybone (layer) by, first foreground polybone b,, second
foreground polybone b,, and global model M, at time t2,
respectively. FIG. 15(A) shows an appearance model a,, for
background polybone b, that includes partial appearance
data for square 54 and circle 52, and for the unoccluded
portion of star 56. FIG. 15(B) shows first foreground poly-
bone b, is similar to foreground polybone b, of global model
M, (see FIG. 13(B)). Similarly, FIG. 15(C) shows that
second foreground polybone b, is similar to that of global
model M, , (see FIG. 14(B)). Finally, FIG. 15(D) shows the
composite global model M, ,, which shows first foreground
polybone b, and second foreground polybone b, superim-
posed over the image data associated with frame F2 (shown
in FIG. 2(C). Note that, based on the prescribed depth
ordering, newly generated polybone b, is located between
second foreground polybone b, and background polybone
b,. Note also that this depth ordering is incorrect with
respect to the example, which clearly indicates that square
54 is located in front of circle 52 (due to the occlusion of
circle 52 by square 54).

After the model refining process is completed, the models
are ranked to determine which model best represents the

image data in model framework A(t2), and one of the single
polybone global models (i.e., either M, or M, ;) is deleted

from group M, (t2) to comply with the one-model-per-group
constraint placed on the heuristic model generation process.
As indicated by the “X” through global model M, , in FIG.
9, the ranking process (described in additional detail below)
is assumed to conclude that global model M, 5 better rep-
resents the image data because, for example, the occlusion
of square 54 over circle 52 is better explained by model M, 5
than model M, ,. The “X” in FIG. 9 indicates that global
model M,, is deleted from the model framework. The
remaining models (i.e., core model My, global model M,
and global model M,,) are then compared to determine
which of the remaining models best describes the image
data. Note that the two foreground polybones of global
model M,, may better describe the image data if, for
example, more of the image data is explained by two
foreground polybones than one foreground polybone, even
though the depth ordering of model M,, is incorrect.
Conversely, based on the bias toward a few number of
polybones, the ranking process may determine that global
model M, ; ranks higher than global model M,,.
Referring again to FIG. 9, at time t3 core model M, is
again propagated in a manner similar to that described
above, and is utilized to generate a third generation, single
foreground polybone global model M;(t3). In addition,
global model M, ; is propagated, and is utilized to generate
a third generation, double foreground polybone global
model M, . (t3), and global model M,,, is propagated, and is
utilized to generate a third generation, three-foreground
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polybone global model M4, (t3). Accordingly, model frame-
work M(t3) initially includes six global models: core model
My(t3), group M; models M, ;(t3) and M, (13), group M,
models M, ,(t3) and M,z (t3), and group M; model M,
(t3). These models are then refined as described above.

Core model M, is updated as described above, and new
global model M, is generated in the manner described
above. For brevity, as indicated in FIG. 9, global model M, .
is assumed to not rank higher than global model M, 5, and is
therefore assumed to be eliminated during the ranking
process (indicated by superimposed “X”).

Global model M, is updated using image data from
frame F3 (see FIG. 2(D)) in a manner similar to that
described above with reference to global model M, ,. Global
model M, also spawns a second double-foreground poly-
bone model M,5, in a manner similar to that described
above with reference to global model M.

FIGS. 16(A), 16(B), 16(C) and 16(D) depict background
polybone (layer) by, first foreground polybone b, second
foreground polybone b,, and global model M,z, at time 2,
respectively. FIG. 16(A) shows an appearance model a,, for
background polybone b, that includes partial appearance
data for square 54 and circle 52, and for the unoccluded
portion of star 56. FIG. 16(B) shows first foreground poly-
bone b, is similar to foreground polybone b, is similar to
foreground polybone b, of global model M,, (see FIG.
14(B)). Similarly, FIG. 16(C) shows that second foreground
polybone b, is similar to foreground polybone b, of global
model M, (see FIG. 13(B)). FIG. 16(D) shows the com-
posite global model M,;, which shows first foreground
polybone b, and second foreground polybone b, superim-
posed over the image data associated with frame F3 (shown
in FIG. 2(D). Note that, based on the prescribed depth
ordering, newly generated polybone b, is located between
second foreground polybone b, and background polybone
b,. Note also that this depth ordering is correct with respect
to the example (i.e., second foreground polybone b, is
correctly assigned to square 54, which is located in front of
circle 52.

Referring again to FIG. 9, in addition to the update of
global model M, ; and the generation of global model M4,
global model M,, is also updated, and spawns a three-
foreground polybone global model M,,. The update of
global model M,, and the generation of polybone global
model M;, are performed in a manner similar to that
described above, and are not illustrated for brevity. Note
that, because there are no more significant moving objects in
the image sequence, the generation of three-foreground
polybone global model M,, typically requires the assign-
ment of a new polybone to spurious outliers occurring
between frames 2 and 3, and such polybones typically fail to
grow during the refining process due to the lack of continuity
in subsequent frames.

After the model refining process is completed, the models
are ranked to determine which model best represents the
image data. As mentioned above, it is assumed that single
foreground polybone global model M, ranks higher than
newly spawned global model M, ., so global model M, - is

deleted. Further, when group MM, models M,,(t3) and
M, ;,(t3) are ranked, global model M,z,(t3) ranks higher
because the depth ordering of its polybones more accurately
describes the depth ordering of circle 52 and square 54. That
is, global model M,z,(t3) is able to better account for and
anticipate the movement of circle 52 and square 54 in the
image sequence. Accordingly, global model M., is deleted
(indicated in FIG. 9 by the superimposed “X”). Finally,
because the third polybone of three-polybone global model
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M., does not model an actual moving object having sig-
nificant size, the example assumes that two-polybone global
model M,, ranks higher than global model M,,, thereby
resulting in the deletion of model M,, from model frame-
work M(t3).

Subsequently, as indicated in FIG. 9, model framework
M(14) updates the remaining models and generates a next
generation of global models in the manner described above,
with global model M,z retaining the “best model” ranking.
Note that model M, 5, would fail if, for example, the image
sequence proceeded to a point where circle 52 or square 54
stopped moving, or moved out of the image. If one object
remains moving and one object stops moving or exits the
image sequence, a newly generated single-polybone model
spawned from core model M, may provide the best repre-
sentation of the image sequence at that time, and this new
single-polybone model would replace global model M, g, as
the “best model” at that time. Similarly, if both circle 52 and
square 54 stopped moving or moved out of the image, core
model M, may become the “best model”. Accordingly, the
heuristic approach allows a great deal of flexibility in
adjusting to changes in the image sequence, while facilitat-
ing the identification and tracking of an arbitrary number of
moving objects.

A practical example depicting the heuristic search process
is shown in the series of photographs of FIGS. 17(A)
through 17(F) showing a walking person 1710 (outlined in
dashed lines for easier identification). Initially, as shown in
FIG. 17(A) a single foreground bone b,(t0) is proposed from
the outliers in the background layer in the manner described
above. Foreground bone b,(t0) is fit using hill-climbing,
with the relative sizes s, and s, of foreground polybone
b,(t0) initially clamped to be equal. In FIG. 17(B), fore-
ground polybone b,(t1) has been convected by the temporal
prediction proposal and the relative sizes of polybone b,(t1)
have been allowed to vary independently in the subsequent
hill-climbing. Moreover, the heuristic search process has
initialized a new foreground polybone b,(t1) in the leg
region. This process continues in the manner described
above, generating a third foreground polybone b,(t2) (FIG.
17(C)), and a fourth foreground polybone b,(t3). Note that
FIGS. 17(A) through 17(F) only show the best model from

model framework A(t). For this practical example the
maximum number of foreground polybones is set to four
(i.e., K=4), plus the background polybone (not specifically
identified in the figures). A larger limit generates similar
results, except small transient foreground polybones appear
in many frames. FIGS. 17(D) through 17(F) indicate that a
plausible model for the motion has been found, including (at
times) the depth relation between the forearm (polybone b,,)
and the torso (polybone b,), as indicated in FIGS. 17(E) and
17(F).

Those of ordinary skill in the art will recognize that other
heuristic search processes can be used in place of the process
described above. For example, a deletion process may be
used in which a polybone that, for example, accounts for
only a small amount of data or is associated with an object
that stops moving in some seed model S (t) would be deleted
to form an initial guess G,_,(t) with one fewer polybone.
Also, a depth-reversal process may be used in which two
overlapping polybones in some seed model S (t) had their
depth orders reversed to form the proposal G(t). Notice that
only the depth orderings of polybones whose occupancy
maps overlap need be considered, since the relative depth of
spatially disparate polybones does not affect the objective

function @ (M). Indeed the depth ordering should be con-
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sidered as a partial order relating only pairs of polybones
which contain at least one common pixel with a nonzero
occupancy weight.

Besides considering other types of heuristic search
methods, another avenue for improvement of the visual
motion analysis method of the present invention is to include

an estimate for the value of the objective function O (G)
associated with any initial guess B. A useful estimate for

o (G) may be obtainable from low-resolution versions of
the likelihood maps for the corresponding seed model S.
Such an estimate could be used to select only the most
promising proposals for subsequent hill-climbing. Such a
selection mechanism is expected to be more important as the
number of different types of proposals is increased.

Finally, a process for factoring the models into indepen-
dent models for disparate spatial regions (i.c., where the
polybones in the two regions do not overlap) is essential to
avoid a combinatorial explosion in the model space for more
complex sequences.

FIGS. 18(A) through 18(0) provide a series of images
representing a second practical example illustrating the
heuristic search process. In this sequence the subject 1810 is
walking towards the camera, resulting in a relatively slow
image motion. This makes the motion segmentation more
difficult than in the practical example shown in FIGS. 8(A)
through 8(G). To alleviate this every second frame was
processed. FIGS. 18(A) through 18(E) shows the initial
proposal and development of a global model including two
foreground polybones bl and b2. This two component
model persisted until subject 1810 began raising his right
arm 1815, as indicated in FIG. 18(F), when a third fore-
ground polybone b3 is generated. As indicated in FIGS.
18(G) through 18(M), a fourth polybone b4 is generated
that, along with third foreground polybone b3, models the
articulated two-part movement of the subject’s arm. Finally,
as indicated in FIGS. 18(N) and 18(0), at the end of the
sequence the subject is almost stationary, and the model
framework eliminates all but the “core” model (i.e., the
“best” global model includes zero foreground polybones
because there is not detected movement).

Despite the limitations of the simple basic process used in
the practical examples described above, the results of these
practical examples indicate that: 1) the search for such
simple models of image flow can be tractable; and 2) the best
models produced and selected by such a heuristic search
process can be of practical interest. In particular, for this
second point, many of the image decompositions exhibited
in the practical examples appear to be suitable starting points
for the initialization of a simple human figure model.
Model Comparison

The prior p(M) in the objective function (equation (9))
serves two purposes. First, it may encode a bias in the
continuous parameters of model M being fit, such as the
overall size s, s, parameters of a polybone, the deviation of
a polybone shape from that in a previous frame, the overall
magnitude of the motion, or the deviation of the motion
parameters from the previous frame. Such a bias is particu-
larly important in cases where the data is either sparse or
ambiguous. Given sufficient unambiguous data, the likeli-
hood term in equation (9) can be expected to dominate the
prior.

The second purpose of p(M) is to complete the definition
of what is meant by a “best” (i.e., more plausible) model,
which is used during the search for models as described
above. Without a prior in equation (9) it is expected that
more complex models, such as models with more polybones,
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could achieve higher likelihood values, since they have extra
degrees of freedom to fit to the data. Thus, the maximum of
the objective function for a particular number of polybones
is monotonically increasing (non-decreasing) in the number
of polybones. Beyond a certain point, the increase is
marginal, with the extra polybones primarily fitting noise in
the data set. However, without the prior p(M) the model
selection process would consistently select these over-fitted
models as the best models. In order to counteract this
tendency there must be some incremental cost for succes-
sively more complex models. Here, this cost is determined
by the selected prior p(M). Specifically, -log p(M) is the cost
due to model complexity used in the objective function
(equation (9)).

The prior distribution referred to above is a product of
simple terms, which will now be described. First, all the
polybones are considered to be independent, so if M has K
foreground polybones, with parameters by, then

K 19
pn)=| | pbo).

k=0

where p(b,) is the prior distribution for the k” polybone.
Also, as described next, the prior p(b,) is itself taken to be
a product of simple terms.

First, in order to control the overall size of each fore-
ground polybone, a prior on the size parameters of the form
P1(s)ps(s,) is used, where

A7) for 5 = s, (20)
pi(s) =
0, for s < sq.
Here, s,=1 (in pixels) is the minimum for s,, s, and A=1.

This prior provides a bias towards smaller polybones, and is
useful during hill-climbing to avoid having the foreground
polybones grow into uniform image regions.

In addition to the size prior, a smoothness prior is used on
the pose of the foreground polybones. More precisely, for
any given polybone, let q,_,=(s._;, 6, 1,¢._;) denote its
optimal pose parameters found at time t-1. Similarly, let g,=(
S, 0,,¢,) denote the same pose parameters convected forward
to time t, using the flow computed between frames t-1 and
t. Then the conditional prior over q,, given g,, is taken to be
Gaussian with mean q,. That is,

i (qt | qt) =N(St;§t>25)N(et 10, OBZ)N(C):;E: ;24:)

where N(x; #, Z) is a Normal density function with mean x
and covariance . In the current experiments X =% _=p-o~,I
(where 1 is the 2x2 identity matrix) was used, with o,=4
denoting the polybone width and p=%:. The standard devia-
tion o, was chosen to be scaled by the radius of the
convected polybone, say r(s,). In this instance, oy=po|r(s,)
was used.

The term p,(q,q,) (see equation 21) in the prior coerces
the shapes of the foreground polybones to vary smoothly
over time. When a polybone is first initialized, a shape is
selected, but this shape is not expected to be close to the
fitted shape. To allow for a rapid initial pose change, p.(q,]
q,) is applied only for t>t, where t, is the first frame at which
the hill-climbing converged to a pose with s, and s,
unclamped.

The prior p,(s,)p,(s,) P-(q]q,) contains the only continu-
ously varying terms. A slow and smooth prior on the motion
parameters within the polybones could be applied in a

eay;
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similar manner. These continuously varying terms bias the
hill-climbing stage towards smaller foreground polybones,
which vary smoothly in time.

As mentioned above, the second purpose for the prior
p(M) is to control the model selection process. In particular,
the increase in the data log likelihood obtained by adding a
new foreground polybone should be larger than the decrease
in the log prior due to the new model. There are many ways
to formulate a penalty on model complexity. One popular
approach is Bayesian model selection (see “Bayesian
Interpolation”, D. J. C. MacKay, Neural Computation,
4:415-447, 1991). A simpler approach is described below,
which represents one possible embodiment. The general
idea for estimating a prior p(b,) on each polybone according
to this embodiment is to assume that each of the parameters
have been resolved to some accuracy, and that neither the
data likelihood nor the prior vary significantly over the
resolved parameter set. If this assumption holds, then the
unnormalized posterior probability of selecting a model
from within this resolved set can be approximated by the
product of the data likelihood, the value of continuous prior
density, and the volume of the resolved set of polybone
parameters. This is equivalent to using a prior p(M) in
equation (9) that includes these volume terms from the
resolved parameter set. This simple approach is followed
below.

Given this general motivation, the following constant
terms are included in the product forming the prior p(b) for
an individual foreground polybone. First, both the center
location and the sizes are assumed to be resolved to o, over
a possible range given by the entire image. The correspond-
ing volume term is

20 20
Pes = s

ne oy

22

where n, xn, is the size of the images in the sequence.
Second, 0 is assumed to be resolved by an amount that
depends on the radius r of the polybone. In particular, 1 was
resolved to within +0,. Since the shape we use is symmetric
under rotations of 90 degrees, the volume term for 0 is
20

o, 23)

pg=m/2— r

Similar volume terms are required for the motion param-
eters. These include an inlier mixing proportion assumed to
be resolved to +0.5 out of a possible range of [0,1]. This
gives a volume term of

1
Pm—m-

In addition, the inlier flow model includes an estimated
standard deviation, o,, for the inlier motion constraints. We
assume that o, is resolved to within a factor of 2 (i.e., =
v20,), and that the prior for log(o,) is uniform. The mini-
mum and maximum values for o, were taken to be 0.1 and
2.0 pixels/frame. This then provides a volume term of

Zlog(v2)

_ _ log®)
Pry = 10e2.0) —Tog0.1) ~ log(20)’
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Finally, the translational velocity was assumed to be
resolved to +0,, over a possible range of [-5,5]. The volume
term for this is

_ 20,
Pv = 10

This completes the constant terms in the polybone prior p(b).
In summary, the prior for a foreground polybone, p(b), is
product

PO)=p1(5.0P1 ()Pl Dp e PPl o P (249

Clearly, equations (19) and (24) provide only a rough
approximation of a suitable prior p(M). More detailed tech-
niques could be used for approximating how well the
various parameters are estimated (see, for example, “Esti-
mating the Number of Layers in a Distribution using Baye-
sian Evidence and MDL>, T. F. El-Maraghi, unpublished
manuscript (www.cs.toronto.edu/tem/mup.ps), 1998), or for
estimating the unnormalized posterior probability mass in
the peak near the current model M (see “Bayesian
Interpolation”, D. J. C. MacKay, Neural Computation,
4:415-447, 1991).

The present inventors believe that the rough approxima-
tion set forth above is sufficient for many basic applications
of the present invention. One reason for this is that the data
likelihood term itself only provides a rough approximation,
since the data terms D(xX) representing the motion constraints
are correlated. In particular, the data items D(x) are obtained
by subsampling the G2-H2 filter responses at Y4 of the
wavelength for the peak tuning frequency of the filters, and
steering the filters to 4 equally spaced orientations.
Therefore, significant correlations in the filter responses in
3x3 patches is expected, and also in neighboring orienta-
tions. To account for this correlation, a multiplicative factor
of n=% can be included on the data likelihood term in
equation (9).

According to one further aspect of the present invention,
despite the simplicity of the prior p(M), the system is
capable of selecting an appropriate number of polybones.
This is clearly demonstrated in the practical example shown
in FIGS. 18(A) through 18(0). At the beginning of the
sequence the motion is well explained by just two fore-
ground polybones. In the middle, the system uses two
additional foreground polybones in order to model the
motion of arm 18185. Finally, at the end of the sequence the
figure is essentially stationary, and indeed the system deter-
mines that the optimal configuration according to equation
(9) is to use the background polybone alone (e.g., the “core”
model M, from the example discussed above with reference
to FIG. 9).

Note that no appearance model is used in the above
examples, so any moving figure is lost as soon as it stops, or
otherwise moves with the background. Similarly, despite the
use of a smooth deformation prior on shape and pose of the
polybones, the inventors have found that the polybones
often tend to shrink out of occluded regions. One alternative
embodiment addresses this issue by incorporating the WSL
appearance model described in co-owned and co-pending
U.S. patent application Ser. No. 10/016,659 (cited above),
which was not used in any of the practical examples dis-
closed herein.

FIGS. 19(A) through 19(D) and 20 show a tracking
sequence utilizing the visual motion analysis method of the
present invention. The same configuration is used as for the
previous examples except, due to the slow motion of the
moving objects, processing is performed every few frames.
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FIGS. 19(A) through 19(D) show a group of polybones b
modeling the motion of a car 1910. The motion field for car
1910 involves some 3D rotation, which is enhanced by the
fact that every fourth frame is processed. While the flow
field for car 1910 might be approximated by an a fine model,
a simple translational model does not simultaneously fit both
ends of the car very well. Because the flow models in each
polybone of the sequence are currently taken to be limited to
translation and rotation (in the image plane), the system used
several polybones to model the motion of car 1910. For
example, shortly after car 1910 appears in the field of view
(FIG. 19(A)), polybone group b includes four polybones to
cover car 1910 (three of which can be easily seen in FIG.
19(A), the fourth is a tiny polybone on the roof of car 1910).
By the time shown in FIG. 19(B), the system has found a
presumably better model to cover car 1910 in which group
b includes just two polybones. As indicated in FIG. 19(C),
a global model including this two-polybone group b is
considered the “best model” until car 1910 is almost out of
view, at which time a global model in which polybone group
b includes a single polybone is deemed optimal, as shown in
FIG. 19(D).

The description of this flow on car 1910 in terms of
multiple polybones indicates that a generalization of the
flow models to include affine motion would be useful. It
would be natural to include affine flow as an option to be
selected during the optimization of equation (9). As
described above, it would be necessary to charge a cost for
the added complexity of using an affine flow model, in place
of just translation and rotation. In addition, the convection of
a polybone by an affine flow model would lead to a more
complex shape model (i.c., additional pose parameters),
which would also need to be charged. It would be a natural
extension of the disclosed embodiments to impose these
costs by elaborating the prior p(M) to include the prior for
the affine motion or affine pose coefficients whenever they
are selected.

The use of more general shape models is also motivated
by the results in FIGS. 19(A) through 19(D). In particular,
the outline of car 1910 could be modeled significantly better
by allowing a free form placement of the eight vertices of the
current polybones, or by allowing shapes with more vertices.
The additional complexity of such models would again need
to be controlled by incorporating additional terms in the
prior p(M). However, note that at the current spatial
resolution, it is not clear what the utility of such a higher
fidelity spatial representation would be. The current model
with just two foreground polybones appears to be sufficient
for identifying the image region containing the motion.

Note that polybones are also assigned to pedestrian 1920
in FIGS. 19(C) and 19(D), which indicate that these pedes-
trians are also detected by the system. These additional
polybones indicate the flexibility of the visual motion analy-
sis method disclosed herein to track various sized objects,
from relatively large polybones, such as those shown in
FIGS. 8(A) through 8(G), to the small polybones used to
identify pedestrian 1920 in FIGS. 19(C) and 19(D).

FIG. 20 is a composite image formed from complete
sequence are shown in FIGS. 19(A) through 19(D). All of
the extracted foreground polybones for the most plausible
model have been displayed in FIG. 20. This composite
image shows that the car is consistently extracted in the most
plausible model.

The difficulty in segmenting slow image motion from a
stationary background with a two-frame technique was the
motivation for using every few frames in the practical
examples provided above. It is expected that a multi-frame
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integration process in an appearance model, such as in the
WSL-model (discussed above), will alleviate this problem.
An alternative is to consider multi-frame motion techniques
to resolve these slow motions.

Another difficulty arises when the magnitude of the
motion or acceleration is too large. In particular, the poly-
bone flow models included motions of up to 30 pixels per
frame. For example, car 1910 enters the frame in FIG. 19(A)
with a speed of roughly 30 pixels per processing frame
(every 4 frames of the original sequence), and the initial
proposal for a new polybone’s motion is always zero.
Similarly, the speed and acceleration of the lifting arm 1815
in FIGS. 18(F) through 18(M) is significant. In general, large
magnitude motions and accelerations put a strain on the
coarse to fine search used to fit the image motion parameters,
especially within small sized polybones for which there may
be limited coarse scale image information.

In order to cope with large motions and accelerations, and
also objects that are occasionally completely occluded, a
‘long range’ displacement process can be included. Such a
process would involve an appearance model within each
polybone and a long range proposal process for determining
the appropriate correspondences over time.

While the invention has been described in conjunction
with one or more specific embodiments, this description is
not intended to limit the invention in any way. Accordingly,
the invention as described herein is intended to embrace all
modifications and variations that are apparent to those
skilled in the art and that fall within the scope of the
appended claims.

What is claimed is:

1. A visual motion analysis method for analyzing an
image sequence depicting a three-dimensional event includ-
ing a plurality of objects moving relative to a background
scene, the image sequence being recorded in a series of
frames, each frame including image data forming a two-
dimensional representation including a plurality of image
regions depicting the moving objects and the background
scene at an associated point in time, the method comprising:

identifying a first moving object of the plurality of mov-

ing objects by comparing a plurality of frames of the
image sequence and identifying a first image region of
the image sequence including the first moving object,
wherein the first image region includes a central portion
surrounded by an outer edge; and

generating a layered global model including a background

layer and a foreground component, wherein the fore-
ground component includes exclusive spatial support
region including image data located in the central
portion of the first image region, and a probabilistic
boundary region surrounding the exclusive spatial sup-
port region and including image data associated with
the outer edge of the first image region.

2. The visual motion analysis method according to claim
1, wherein generating the layered global model comprises
defining the exclusive spatial support region using image
data associated with a closed-polygon shaped region of the
central portion of the first image region.

3. The visual motion analysis method according to claim
2, wherein the closed polygonal shape is an octagon.

4. The visual motion analysis method according to claim
2, wherein the exclusive spatial support region is defined by
size, orientation, and position parameters defining the
closed-polygon shaped region.

5. The visual motion analysis method according to claim
1, wherein generating the layered global model comprises
defining a width of the probabilistic boundary region accord-
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ing to image characteristics associated with the outer edge,
wherein the width of the probabilistic boundary region is
relatively wide when the outer edge is relatively blurred, and
wherein the width of the probabilistic boundary region is
relatively narrow when the edge region is relatively sharp.

6. The visual motion analysis method according to claim
1, wherein generating the layered global model comprises
generating a plurality of foreground components, wherein
each foreground component is assigned an explicit depth
ordering relative to the other foreground components.

7. The visual motion analysis method according to claim
1, further comprising determining the visibility of each
foreground component at each pixel of an image frame,
wherein the visibility is determined by the depth orderings
assigned to the plurality of foreground components.

8. The visual motion analysis method according to claim
7, wherein the visibility of a first foreground component at
a first pixel is considered fully occluded when the exclusive
spatial support region of a second foreground component
having higher depth ordering includes the first pixel.

9. The visual motion analysis method according to claim
7,

wherein each foreground component is assigned an opac-

ity value, and

wherein the visibility of a first foreground component at

a first pixel is considered partially occluded when the
exclusive spatial support region of a second foreground
component having higher depth ordering includes the
first pixel, and when the opacity value of the second
foreground component indicates that the object
assigned to the second foreground component is partial
transparency.

10. The visual motion analysis method according to claim
1, wherein generating the foreground component further
comprises forming an appearance model including image
data from the first image region, and forming a motion
model by calculating movement of the first image region
over two or more frames of the image sequence.

11. The visual motion analysis method according to claim
10, wherein the appearance model is a WSL appearance
model.

12. The visual motion analysis method according to claim
1, wherein the background layer includes a background
appearance model including image data associated with
regions of the image sequence depicting the background
scene.

13. The visual motion analysis method according to claim
12, wherein the background layer includes parameters asso-
ciated with motion of the background appearance model in
the image sequence.

14. The visual motion analysis method according to claim
1, wherein generating the layered global model comprises
defining the exclusive spatial support region using image
data associated with one of: a spline shaped portion of the
first image region, a portion of the first image region having
a shape defined by harmonic bases, and a portion of the first
image region defined by level-sets of implicit polynomic
functions.

15. A visual motion analysis method for analyzing an
image sequence depicting a three-dimensional event includ-
ing a plurality of objects moving relative to a background
scene, the image sequence being recorded in a series of
frames, each frame including image data forming a two-
dimensional representation including a plurality of moving
image regions, each moving image region depicting one of
the moving objects at an associated point in time, each frame
also including image data associated with the background
scene at the associated point in time, the method comprising:
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generating a plurality of layered global models utilizing
image data from the image sequence, each layered
global model including a background layer and at least
one foreground component, wherein each foreground
component includes exclusive spatial support region
including image data from a central portion of an
associated moving image region, and a probabilistic
boundary region surrounding the exclusive spatial sup-
port region and including image data including an outer
edge of the associated moving image region;

refining each foreground component of each layered
global model such the exclusive spatial support region
of each foreground component is optimized to the
image data of the moving image region associated with
said each foreground component; and

ranking the plurality of layered global models and iden-
tifying a layered global model that most accurately
models the image data of the image sequence.

16. The visual motion analysis method according to claim
15, further comprising identifying the plurality of moving
objects by comparing image data from a plurality of frames
of the image sequence and identifying outliers.

17. The visual motion analysis method according to claim
15, wherein generating the plurality of layered global mod-
els comprises selecting a moving object from the plurality of
identified moving objects, and generating a layered global
model having a foreground component assigned to the
selected moving object.

18. The visual motion analysis method according to claim
15, wherein generating the plurality of layered global mod-
els comprises generating a seed model having a seed back-
ground layer, and spawning a next-generation layered global
model by identifying a selected moving image region in the
seed background layer, assigning a new foreground compo-
nent to the selected moving image region, and forming the
next-generation layered global model by combining the seed
model and the new foreground component.

19. The visual motion analysis method according to claim
18, wherein a size of the new foreground component is
initially limited to a predefined initial amount of image data.

20. The visual motion analysis method according to claim
19, wherein subsequent refining of the new foreground
component to fit the image data associated with the selected
moving object region is restricted such that an increase from
the initial amount is limited to a predetermined rate for a
given time period.

21. The visual motion analysis method according to claim
15, wherein generating the plurality of layered global mod-
els comprises generating, for a selected global model, a
plurality of foreground components, wherein each fore-
ground component is assigned an explicit depth ordering
relative to the other foreground components.

22. The visual motion analysis method according to claim
15, wherein refining each foreground component of each
layered global model comprises using a “hill climbing”
method to optimize parameters of each foreground compo-
nent to the image data of the associated moving image
region.

23. The visual motion analysis method according to claim
22, wherein refining each foreground component comprises
differentiating a likelihood function with respect to pose
parameters of said each foreground component to determine
how much a change in the pose parameter will affect a
fitness value associated with the pose parameter, wherein the
pose parameters include size, position, and orientation of the
exclusive spatial support region.
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24. The visual motion analysis method according to claim
22, wherein refining each foreground component further
comprises utilizing a gradient-based search technique to
determine whether a particular parameter change improves
the fitness value.

25. The visual motion analysis method according to claim
22, wherein refining each foreground component is con-
strained such that changes to the parameter are limited to a
predetermined amount per frame.

26. The visual motion analysis method according to claim
15, wherein ranking comprises utilizing a Bayesian model
selection criterion that determines the fit of each foreground
component parameter to the image data of the associated
moving object region.

27. The visual motion analysis method according to claim
15, wherein ranking comprises utilizing a likelihood func-
tion that is biased to penalize complexity such that a first
layered global model having a relatively low number of
foreground components is ranked higher than a second
layered global models having a relatively high number of
foreground components when the fitness of the first and
second layered global models is otherwise equal.

28. The visual motion analysis method according to claim
15, further comprising eliminating low ranking global mod-
els from the plurality of layered global models after ranking
is performed.

29. The visual motion analysis method according to claim
28, wherein eliminating low ranking global models com-
prises eliminating all but one layered global models for each
group of layered global models having an equal number of
foreground components.

30. The visual motion analysis method according to claim
28, further comprising repeating the generating, refining,
and ranking procedures for each sequential selected frame of
the image sequence.

31. A visual motion analysis method for analyzing an
image sequence depicting a three-dimensional event includ-
ing a plurality of objects moving relative to a background
scene, the image sequence being recorded in a series of
frames, each frame including image data forming a two-
dimensional representation including a plurality of moving
image regions, each moving image region depicting one of
the moving objects at an associated point in time, each frame
also including image data associated with the background
scene at the associated point in time, the method comprising:

generating a plurality of layered global models utilizing

image data from the image sequence, each layered
global model including a background layer and at least
one foreground component, wherein each foreground
component includes exclusive spatial support region
including image data from a central portion of an
associated moving image region, and a probabilistic
boundary region surrounding the exclusive spatial sup-
port region and including image data including an outer
edge of the associated moving image region;

ranking the plurality of layered global models such that

layered global models that relatively accurately model
the image data of the image sequence are ranked
relatively high, and layered global models that rela-
tively inaccurately model the image data of the image
sequence are ranked relatively low; and

eliminating low ranking global models from the plurality

of layered global models.

32. The visual motion analysis method according to claim
31, further comprising identifying the plurality of moving
objects by comparing image data from a plurality of frames
of the image sequence and identifying outliers.
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33. The visual motion analysis method according to claim
31, wherein generating the plurality of layered global mod-
els comprises selecting a moving object from the plurality of
identified moving objects, and generating a layered global
model having a foreground component assigned to the
selected moving object.

34. The visual motion analysis method according to claim
31, wherein generating the plurality of layered global mod-
els comprises generating a seed model having a seed back-
ground layer, and spawning a next-generation layered global
model by identifying a selected moving image region in the
seed background layer, assigning a new foreground compo-
nent to the selected moving image region, and forming the
next-generation layered global model by combining the seed
model and the new foreground component.

35. The visual motion analysis method according to claim
34, wherein a size of the new foreground component is
initially limited to a predefined initial amount of image data.

36. The visual motion analysis method according to claim
35, wherein subsequent refining of the new foreground
component to fit the image data associated with the selected
moving object region is restricted such that an increase from
the initial amount is limited to a predetermined rate for a
given time period.

37. The visual motion analysis method according to claim
31, wherein generating the plurality of layered global mod-
els comprises generating, for a selected global model, a
plurality of foreground components, wherein each fore-
ground component is assigned an explicit depth ordering
relative to the other foreground components.

38. The visual motion analysis method according to claim
31, further comprising refining each foreground component
of each layered global model such the exclusive spatial
support region of each foreground component is optimized
to the image data of the moving image region associated
with said each foreground component.

39. The visual motion analysis method according to claim
38, wherein refining each foreground component of each
layered global model comprises using a “hill climbing”
method to optimize parameters of each foreground compo-
nent to the image data of the associated moving image
region.

40. The visual motion analysis method according to claim
39, wherein refining each foreground component comprises
differentiating a likelihood function with respect to pose
parameters of said each foreground component to determine
how much a change in the pose parameter will affect a
fitness value associated with the pose parameter, wherein the
pose parameters include size, position, and orientation of the
exclusive spatial support region.

41. The visual motion analysis method according to claim
39, wherein refining each foreground component further
comprises utilizing a gradient-based search technique to
determine whether a particular parameter change improves
the fitness value.

42. The visual motion analysis method according to claim
39, wherein refining each foreground component is con-
strained such that changes to the parameter are limited to a
predetermined amount per frame.

43. The visual motion analysis method according to claim
31, wherein ranking comprises utilizing a Bayesian model
selection criterion that determines the fit of each foreground
component parameter to the image data of the associated
moving object region.

44. The visual motion analysis method according to claim
31, wherein ranking comprises utilizing a likelihood func-
tion that is biased to penalize complexity such that a first
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layered global model having a relatively low number of group of layered global models having an equal number of
foreground components is ranked higher than a second foreground components.
layered global models having a relatively high number of 46. The visual motion analysis method according to claim
foreground components when the fitness of the first and 31, further comprising repeating the generating, ranking,
second layered global models is otherwise equal. 5 and eliminating procedures for each sequential selected
45. The visual motion analysis method according to claim frame of the image sequence.

31, wherein eliminating low ranking global models com-
prises eliminating all but one layered global models for each * ok k& ok



