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APPARATUS AND METHOD FOR
IDENTIFYING AND TRACKING OBJECTS
WITH VIEW-BASED REPRESENTATIONS

CROSS-REFERENCE TO RELATED
APPLICATION

Priority for the instant application is claimed from U.S.
Provisional Application No. 60/035,288 filed Jan. 10, 1997
by the same inventors and assignee.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to computer
vision, and more particularly to a method and apparatus for
tracking an object moving through a sequence of images
while identifying the object and changes of view of the
object.

2. Description of Related Art

Different techniques have been developed for tracking an
object moving through a sequence of images. The motion of
an object through a sequence of images can be both rigid and
articulated. An object with rigid motion moves cohesively
from one position in a frame to another. An object with
articulated motion, on the other hand, tends to deform as it
moves between frames. For example, the motion of a hand
is both articulated and rigid. Besides recognizing the motion
of an object in a sequence of images, techniques have been
developed for recognizing the changing appearance of an
object between image frames. For example, in addition to
tracking the position of a hand between image frames, the
shape of the hand is sought to be identified. Techniques for
tracking objects, therefore, attempt not only to track the
object but also to recognize any change in appearance of the
object between image frames.

Parameterized optical flow estimation is one method for
tracking an object as it moves in a sequence of images. As
disclosed by Adelson et al. in an article entitled “The
Plenoptic Function and The Elements of Early Vision,”
published in Computation Models of Visual Processing pp.
1-20, Boston, Mass., 1991, MIT Press (Landy et al. Editors),
these techniques treat an image region containing an object
as moving “stuff’. Consequently, these techniques are
unable to distinguish between changes in “viewpoint” or
configuration (i.e., appearance) of the object and changes in
“position” relative to a recording device. More specifically,
these optical flow techniques represent image motion in
terms of some low-ordered polynomial (e.g. an affine
transformation). A disadvantage of optical flow techniques is
that tracking may fail when the initial viewpoint of an object
is used for tracking changes between frames.

Another method for tracking an object through a sequence
of images is with template matching techniques. Template
matching techniques give rise to a “thing” being tracked
through an image sequence. These template matching tech-
niques are typically limited to situations in which the motion
of the object through the sequence of images is simple and
the viewpoint of the object is either fixed or changes slowly.
A disadvantage, therefore, of these template matching tech-
niques is that if the view of the object being tracked changes
significantly through the sequence of images, then the
“thing” being tracked may no longer be recognizable and the
tracking may fail.

Yet another method for tracking an object through a
sequence of images is with three dimensional modeling
techniques. Three dimensional modeling techniques tend to
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2

track rigid objects effectively. For example, three dimen-
sional modeling works well when tracking rigid objects such
as cars. However, performance of three dimensional mod-
eling techniques degrades significantly when tracking an
articulated object such as a hand because the modeling
becomes computationally expensive. Another disadvantage
is that, it may be difficult to automatically construct a three
dimensional model of the object to be tracked. An aspect of
three dimensional modeling is that it encodes the structure of
an object but not necessarily its appearance. This aspect of
three dimensional modeling may be disadvantageous when
pertinent features of an object are not its structure but the
object’s texture and markings.

Besides the aforementioned methods for tracking an
object through a sequence of images, a number of techniques
have been used to determine the appearance of an object.
These include techniques that focus on an object’s structure
(i.e., object-centered structural descriptions) and techniques
that focus on an object’s view (i.e., view-based object
representations). One method for making view-based deter-
minations of an object representation is through the use of an
eigenspace. In general, an ecigenspace defines a set of
orthogonal basis vectors. A linear combination of these basis
vectors can then be used to approximate an image. Because
the basis vectors are orthogonal to each other, each basis
vector adds information to the whole as defined by the value
of its coefficient.

Eigenspaces have been used to initially locate an object in
an image, as disclosed by Turk et al. in U.S. Pat. No.
5,164,992 (also published in “Face Recognition Using
Eigenfaces”, Proc. Computer Vision and Pattern
Recognition, CVPR-91, pp. 586—591, Maui, June 1991).
More specifically, Turk et al. discloses a system that uses an
eigenspace to perform global searching by comparing an
input image with the eigenspace at every image location.
Global searching is extended by Moghaddam et al. in
“Probabilistic Visual Learning For Object Detection,” Pro-
ceedings of the International Conference on Computer
Vision, pp. 786793, Boston, Mass., June 1995. Moghad-
dam et al. extends the global search idea to include scale by
matching the input at different scales using a standard
eigenspace approach.

In addition, many eigenspace approaches require that the
object is located and cleanly segmented from the back-
ground of the image before the image can be matched with
the eigenspace. This segmentation is performed so that
reconstruction and recognition of the object is more accurate
since it is based on the object and not the image background.
Consequently, most eigenspace approaches require that an
object is located in the image, segmented from its image
background, and transformed into a predetermined form
before the object can be matched with an eigenspace.
Initially, the predetermined form or view of an object
includes its position, orientation and resolution (i.e., scale).

Some eigenspace approaches such as that disclosed by
Murase et al., however, have been used to avoid rotating an
image into a predetermined orientation in preparation for
matching. Specifically, Murase et al. disclose such a tech-
nique in “Visual Learning and Recognition of 3-D Objects
from Appearance,” International Journal of Computer
Vision, 14:5-24, 1995. Briefly, Murase et al. discloses the
construction of an eigenspace from a training set of images
that represent every possible viewpoint of an object. This
multiple viewpoint eigenspace eliminates the need for ori-
enting an object before matching it with the eigenspace. In
addition, this multiple viewpoint eigenspace can be used to
identify changes in view.


http://www.patentlens.net/

http://www.patentlens.net/

enabling INNOVATION

US 6,526,156 B1

3

Many of the aforementioned view-based matching sys-
tems that are used for recognizing objects are limited in
certain respects. Some of these view-based systems are
affected by image transformations such as translation,
scaling, and rotation. Other of these view-based matching
systems perform separate operations to segment an object
from an image and transform the object into a predetermined
form for matching with an eigenspace. Additionally, some of
these methods for matching require a large set of views of
the object for accurate matching. It would, therefore, be
desirable to provide a method and apparatus for tracking an
object in a sequence of images using a view-based repre-
sentation of objects that does not require a large set of views
while recognizing both changes in viewpoint and changes in
position. Furthermore, it would be advantageous for this
method and apparatus to simultaneously perform operations
for transforming an object into its predetermined form for
matching and operations for matching the object with an
eigenspace.

SUMMARY OF THE INVENTION

In accordance with the invention there is provided an
apparatus, and method and article of manufacture therefor,
for identifying and tracking an object recorded in a sequence
of images. A memory of the apparatus is used to store a set
of training images. Each image in the training set of images
records a different view of the object in the sequence of
images. A set of basis images is generated for the set of
training images stored in the memory. The generated set of
basis images is used to characterize variations of the views
of the object in the set of training images. Each image in the
sequence of images is evaluated to identify changes in view
and structure of the object while tracking the object through
the sequence of images. Changes in view and structure of the
object in an image in the sequence of images is identified by
aligning and matching a view of the object in the image with
the views of the object represented in the set of basis images.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other aspects of the invention will become
apparent from the following description which illustrates a
preferred embodiment of the invention read in conjunction
with the accompanying drawings wherein the same refer-
ence numerals have been applied to like parts and in which:

FIG. 1 illustrates a general block diagram of a system
incorporating the present invention;

FIG. 2 is a flow diagram detailing the steps for building
an eigenspace pyramid;

FIGS. 3 and 4 illustrate two training sets that are each
made up of “p” images;

FIG. 5 illustrates a pyramid of training set images where
each of the pyramids is a different level of resolution;

FIG. 6 illustrates a spatial filter and subsampler for
generating the multi-scale training set of images shown in
FIG. 5,

FIG. 7 illustrates a method for generating an eigenspace
from a training set of images;

FIG. 8 illustrates the advantage of matching an input
image using a robust formulation instead of a least squares
formulation;

FIG. 9 illustrates operations performed by the eigentrack-
ing system shown in FIG. 1 when matching an image region
I(x) that is not aligned with an eigenspace;

FIG. 10 illustrates an embodiment of the eigentracking
system which recovers the tracking parameters and the
identification coefficients for an image sequence;
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FIG. 11 illustrates the evaluator shown in FIG. 10 in
greater detail;

FIG. 12 illustrates in greater detail the incremental refine-
ment estimator shown in FIG. 11;

FIG. 13 illustrates in greater detail the object recognition
and motion estimation system shown in FIG. 12;

FIG. 14 is a general flow diagram of the steps performed
by the eigentracking system when track ing an object
through an image sequence;

FIG. 15 illustrates a flow chart detailing step 214 shown
in FIG. 14,

FIG. 16 illustrates a flow chart detailing step 226 shown
in FIG. 15;

FIG. 17 illustrates an example where there exists a
coherence of brightness patterns between an object under-
going affine image motions and changes in view between
image frames of an image sequence; and

FIG. 18 illustrates an example where there exists a
subspace coherence but there does not exist a coherence of
brightness patterns between the frames of an image
sequence.

DETAILED DESCRIPTION

A. System Overview

Referring now to the drawings where the showings are for
the purpose of describing the preferred embodiment of the
invention and not for limiting same, FIG. 1 illustrates a
general block diagram of a system 8 for recognizing and
tracking an object using view-based representations of the
object. These view-based representations focus on an
object’s appearance rather than its shape or structure.
Generally, the system 8 includes an image acquisition sys-
tem 10 which records images in a memory 11. The recorded
images define part of an image training set pyramid 28 or an
image sequence 12. Initially, images defining the image
training set pyramid 28 are processed by an eigenspace
pyramid generator 22 to generate and store in the memory 11
an eigenspace pyramid 14. Subsequently, the first frame of
the image sequence 12 is processed by an object locator and
segmenter 18 for later processing by eigentracking system
20. The eigentracking system 20 tracks and identifies
appearance changes in the object through the sequence of
images 12.

The eigenspace pyramid 14 which is generated from the
image training set pyramid 28 provides a set of basis images
that are used by the eigentracking system 20 to identify and
track an object recorded in the image sequence 12.
Advantageously, the eigentracking system 14 not only tracks
the motion of an object as it moves through the image
sequence 12 but is also identifies changes in viewpoint. That
is, the eigentracking system 14 tracks both rigid and articu-
lated motion of an object as it moves through the image
sequence 12.

More specifically, the eigentracking system 20 generates
tracking parameters 4 and identification coefficients 5§ for
each frame in the recorded image sequence 12. The tracking
parameters 4, which are recorded in a transformation “a”,
are used to track the movement of the object between frames
in the image sequence 12. Identification coefficients 5 (i.e.,
coefficients “c”) are used to recognize changes of view in the
object being tracked through the sequence of images 12. A
change of view can either involve deformation changes or
appearance changes of the object being tracked. Deforma-
tion changes involve changes in physical shape of the object.
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Appearance changes involve changes in orientation or reso-
lution of the object.

B. Constructing an Eigenspace Pyramid

FIG. 2 is a flow diagram detailing the steps performed by
the eigenspace pyramid generator 22 for generating an
eigenspace pyramid 14. Initially at step 200, a training set of
images 16, two examples of which are shown in FIGS. 3 and
4, is recorded using the image acquisition system 10. FIGS.
3 and 4 illustrate two different training sets 16 that are each
made up of “p” images. In accordance with the invention,
the “p” images in each training set represent views from a
limited number of orientations. The system 8 recognizes
other orientations by recovering a parameterized transfor-
mation 4 between an image in the image sequence 12 and an
eigenspace in the eigenpyramid 14, the details of which are
described below.

The training sets 16 shown in FIGS. 3 and 4 illustrate two
different aspects of the invention. The “p” images of training
set 16 shown in FIG. 3 illustrate a number of different hand
gestures. This training set illustrates a training set that can be
used to recognize an object that is deforming through a
sequence of images. The alternate training set 16 shown in
FIG. 4 is composed of “p” images of identical cylindrical
cans. Each can in the training set has either the letter “B” or
the letter “C” inscribed thereon. Each of the “p” images of
the training set represents either the “B” can or the “C” can
at different orientations. The training set 16 illustrates a
training set that can be used to recognize an object with an
identity that changes between image frames (e.g. from “B”
to “C”) but does not change in shape.

At step 202 shown in FIG. 2, the pyramid of training set
images 28 is generated using the training set of images 16
recorded using the image acquisition system 10. FIG. 5
illustrates an example of a pyramid of training set images 28
that originates from a training set of “p” images. The
pyramid of training set images 28 has “q” decreasing levels
of resolution. FIG. 6 illustrates a spatial filter 30 and a
subsampler 32 for scaling the images in the training set 16
to each level of the pyramid 28. Each image of the training
set of images 16 is initially smoothed using spatial filter 30
and subsequently subsampled using subsampler 32 until “q”
levels of images are generated. Specifically, FIG. 6 shows an
image “I” that is reduced to from a fine scale or level “q” to
a coarser scale or level “q-17. This process of scaling
images from a fine scale to a coarse scale is repeated for each
level of the pyramid of images 28.

At step 204 shown in FIG. 2, an “eigenspace™ is generated
for each level of the pyramid of training set images 28. An
eigenspace is generated by deriving a principal set of
components from a set of input images such as the training
set of images 16. The resulting principal set of components,
which identify characteristic features of images in the train-
ing set, are derived by computing eigenvectors of the
training set. In general, eigenvectors define a compact
approximate encoding or “view-based representation” of the
training set in terms of a small number of orthogonal basis
images. These orthogonal basis images characterize the
majority of variations in the training set by spanning a
subspace of the training set called the eigenspace. The
images defining the eigenspace have the property of being
orthogonal to each other. Once an eigenspace is defined for
a training set of images, a linear combination of the basis
images defining the eigenspace can be used to approxi-
mately reconstruct any of the images in the training set. At
step 206, a sub-set of “t” basis images is computed for each
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eigenspace of “p” images generated at step 204, where “T”
is an integer much less than “p”. Each sub-set of “t” basis
images computed for each eigenspace accounts for most of
the variance between the images in the training set 16.

FIG. 7 illustrates a method for computing an eigenspace
38 from the training set 16 having “p” images. Each of the
“p” images in the training set 16 is an nxm image, where
p<n*m. Initially, each image in the training set 16 is con-
verted to a one dimensional column vector by scanning each
of the p images in standard lexicographical order to form an
(nmxp) matrix A, which is indicated generally by reference
number 34. For example, nxm image 25 in the training set
16, is converted into a column vector 36 by scanning each
of its m rows from left to right. For instance, row 40 of
image 25 is positioned as indicated by arrow 42 in the
column vector 36 of the matrix A (indicated by reference
number 34).

Assuming the number images is less than the number of
pixels of each image (i.e., p<nm) of the training set 16,
Singular Value Decomposition (SVD) can be used to decom-
pose the matrix A as:

A=USV7,

where the matrix U is an orthogonal matrix of the same size
as the matrix A, which is indicated generally by reference
number 38. A method for performing SVD is set forth in
detail by Press et al. in “Numerical Recipes in C”, Cam-
bridge University Press, 1992 (ISBN 0 521 43108 5), pp.
59-70, the disclosure of which is incorporated herein by
reference. The resulting matrix U (indicated by reference
number 38) is defined by a set of eigenvectors (i.e., U;, U,,
U, ... U)) of the training set of images 16. Each column
of matrix U, therefore, represents the principal component
directions of the p images in the training set of images 16.
The matrix 2 is a diagonal matrix of singular values o,
Oy, - - . , O, which are also known as “eigenvalues”. The
eigenvalues are sorted along the diagonal in decreasing
order of size. Eigenvalues with the greatest size account for
the largest amount of variance between the images in the
training set 16. The matrix V7 is a pxp orthogonal matrix
that encodes the coefficients to be used in expanding each
column of the matrix U in terms of the principal component
directions.

C. Matching an Image with the Eigenspace

Once the cigenspace 38 shown in FIG. 7 is generated, it
can be used to approximate the different views of the images
recorded in the training set 16. These different view are
approximated by adding together a linear combination of the
basis vectors of the eigenspace 38. In addition, the eigens-
pace 38 can be used to approximate images that are not
recorded in the training set by matching an image with the
eigenspace as set forth below.

C.1 Matching an Image in the Training Set with
the Eigenspace

An image in a training set of images can be reconstructed
using a sub-set of “t” principal component or basis images
from the matrix U set forth above. The sub-set of “t”
principal component images can be represented as U, U,,
U,, ... U, where “t” is an integer much less than “p” (i.e.,
the number of basis image in the eigenspace). This recon-
struction of an image in the training set 16 is a projection of
the image onto the sub-set of “t” basis vectors. In general,
since the columns of the matrix U are orthogonal, an
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arbitrary column A, of the matrix A can be represented as a
linear combination of columns of the matrix U. Furthermore,
if the eigenvalues oy, for k=t for some t are small, then some
column e of the matrix A can be approximated as e*=Uc as
follows:

where U = [Uy, U, ... U], e=[er, ¢, ... ;1.

The resulting approximated image (i.e., ¢*) is an input image
written as an (nmx1) vector, and the coefficients c; are scalar
values that are computed by taking the dot product of e (i.e.,
some column of matrix A) and the column eigenvector U;
(i.., c;=U]-¢). This operation essentially performs a
“matching” between an eigenspace and an image.

C.2 Matching an Image Outside the Training Set
with the Eigenspace Using a Robust Formulation

Besides reconstructing an image in the training set of an
eigenspace, a linear combination of the principal component
images can be used to reconstruct images which are not in
the training set. It is known in the art that an image ¢ (where
¢ is an nmx1 vector) that is, not an image in the training set
of the eigenspace can be approximated by the image e*,
which is determined by computing the least squares estimate
of the coefficients c; (i.e., c,=U, ¢). Least squares estimation
is described in detail by Strang, in “Linear Algebra and its
Applications”, Academic Press, New York, 1976. In least
squares estimation, the coefficients c, that are used to con-
struct the approximate image e* of the input image ¢ are
selected so that the squared error E(c) between ¢* and ¢ is
minimized. The squared error E(c) is given by the following
equation:

nxm (9]
E@) =) (ej—¢))’ = Z

=

The least squared method for approximating an image e
not in the eigenspace works well when the input image has
objects that are clearly segmented so that they look similar
to those used in building the eigenspace. However, it is
known that the least squares approach is sensitive to gross
errors or “outliers”. In particular, an image that contains
structured noise (e.g. from the background of the image) and
can be represented by an eigenspace, may generate multiple
matches between the input image and the eigenspace. Input
images with multiple matches generate images with different
views (i.e., change in structure). When there is structured
noise in the original image e, the least squares solution
approximates the image e* by selecting a combination of
views that may produce a blurry or noisy reconstruction of
the original image e.

In accordance with the present invention, an original input
image e that does not form part of an image in the training
set of images is approximated by the image e* using a robust
formulation that recovers dominant features of the image e
while not being sensitive to gross errors or “outliers”. In
order to better match the input image with the eigenspace,
the quadratic error norm in equation (1) is replaced with
robust error norm p. To robustly estimate the coefficients C;
(ie., c;=UT-¢e), the following objective function is mini-
mized:

@

where o is a scale parameter. In one embodiment, the error
norm, 0, and the derivative of the error norm, 1), are defined
as:

10
2
P(xao')=m> and
0 o, ) =i, ) = — tivel
—p(x, o) =¥(x, 0) = ————, respectively.
axF (02 +x2)? pectively
15

The error norm defined for p and the derivative of the
error norm defined for ¢ have been used extensively in
optical flow estimation as disclosed for example by Black et
al., in “The Robust Estimation Of Multiple Motions: Affine
And Piecewise-Smooth Flow Fields,” Technical Report
P93-00104, Xerox PARC, December 1993, and by Black et
al. in “A Framework For The Robust Estimation Of Optical
Flow,” Proc. Int. Conf. on Computer Vision, [CCV-93, pages
231-236, Berlin, Germany, May 1993. As shown in these
references, the shape of the function of the error norm
defined above tends to reject or down weight large residual
errors. As described by Hampel et al. in “Robust Statistics:
The Approach Based on Influence Functions,” John Wiley
and Sons, New York, N.Y., 1986, the derivative of the error
norm p (ie., otherwise known as influence function )
defined above characterizes the influence of large residual
errors. The influence function operates so that as the mag-
nitude of residual errors (i.e., [¢;-¢;*|) grows beyond a point
their influence on the solution to estimating the coefficients,
¢;, decreases and the value of the error norm p(-) approaches
a constant.

The value of the scale parameter a affects the point at
which the influence of outliers begins to decrease. By
examining the influence function , the outlier rejection can
be seen to begin where the second derivative of the error
norm p is zero. Thus, for the error norm p defined above,
residual errors have reduced influence on the solution to
estimating the coefficients, ¢, and can be viewed as outliers
where:

25

30

35

45
|(e;—e;")|>07V3.

Computation of the coefficients, c;, is performed by mini-
mizing the non-linear function of equation (2). This mini-
mization is performed using a simple gradient descent
scheme with a continuation method that begins with a high
value for o and lowers the value of o during the minimi-
zation process. The effect of minimizing the non-linear
function with this method is not to initially reject data as
outliers but instead reduce the influence of outliers gradu-
ally.

C.3 Comparative Matching Example between

o Robust Formulation and Least Squares

FIG. 8 illustrates the advantage of matching an input
image 54 (i.e., ¢) with an eigenspace 52 of a training set 46
of images using the robust formulation set forth in equation
(2) (indicated generally by e*) instead of the least squares
method set forth in equation (1) (indicated generally by e).
As shown in FIG. 8, the input image 54 is not in the training
set of images 46 and does not appear to be similar to either

65
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image in the training set. The training set 46 includes images
48 and 50. The resulting output image of the least squares
reconstruction of the input image 54 is indicated by refer-
ence number 62. Reconstructed image 62 illustrates that the
least squares method of reconstruction attempts to account
for all the data in the original input image 54. Specifically,
the original horizontal bar 60 is partially recovered while
recovering an additional left portion of horizontal bar 56. In
other words, the reconstructed image 62 shows that the least
squares method is unable to fully account for vertical bar 64
using a linear combination of the basis images 52 without
recovering unwanted portions of the horizontal bar 56.

In contrast, the resulting output image of the robust
reconstruction of the input image 54 is indicated by refer-
ence number 58. Using the robust formulation of equation
(2), the reconstructed image 58 recovers the dominant
features between the input image 54 and the training set 46
as indicated by the presence of only vertical bar 64. The
portion of the horizontal bar 68 not in the approximated
image 58 is treated as an outlier as shown in image 66. In
effect, the least squares reconstruction of the input image 54
recovers a single view that contains elements of both pos-
sible training set views. The robust reconstruction, on the
other hand, recovers a more accurate reconstruction by
recovering the dominant view of the training set 46.
Furthermore, because the robust reconstruction method
treats the points in the input image 54 that did not match the
robust reconstructed image 58 very well as outliers 68, these
outliers 68 can be used to recover another view (i.e.,
multiple matches) from the training set that best matches
them, as described below.

C.4 Multiple Matches between an Image and an
Eigenspace when the Image is not Well
Represented by the Training Set of the Eigenspace

The input image 54 shown in FIG. 8 is an example of an
image that is not well represented by any single image in the
training set 46. In other words, the training set 46 does not
contain a brightness pattern that can accurately represent the
input image 54. Given that the robust match 58 recovers the
“dominant” structure in the input image 54, points 68 that
were treated as outliers can be detected. An outlier vector, or
mask m,, is defined herein to be:

0 I *)|<( ”]
e, —e)=|—|
mj:{ S V3

1 otherwise

In the event a robust match results in a significant number of
outliers, then the additional matches can be found by mini-
mizing the following equation:

nxm

Sef-tged4

1

Ec) =

For example, the image 66 shown in FIG. 8 that indicates
outliers of input image 54 would provide another matching
image from the eigenspace 52 (such as input image 48). In
an alternate embodiment, a mixture-model formulation
could be adopted to recover multiple sets of coefficients c;
simultaneously. Examples of mixture-model formulation are
disclosed by: Jepson et al. entitled “Mixture Models For
Optical Flow Computation”, in “Partitioning Data Sets:
With Applications to Psychology, Vision and Target
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Tracking”, pages 271-286, DIMACS Workshop, April
1993, AMS Pub., Providence, R.I.; McLachlan et al., in
“Mixture Models: Interference and Applications to
Clustering”, Marcel Dekker Inc., N.Y., 1988; and Saund in
“A Multiple Cause Mixture Model For Unsupervised
Learning,” Neural Computation, Vol. 7, pp. 51-71, 1995.

D. Tracking an Object Undergoing Changes in
Position and/or Structure through a Sequence of
Images

Since it is impracticable to represent all possible views of
an object at all possible scales and orientations in the
training set 16, images in the sequence of images 12 must be
aligned with the eigenspace 38 in order to formulate a match
between an image in the sequence of images and the
eigenspace. An image that is aligned with the eigenspace 38
has a similar orientation and scale as the images forming the
training set 16 of the eigenspace 38. For example, images of
cans that are used to define the training set 16 shown in FIG.
4 are oriented so that each can is upright at a similar scale.
In accordance with the present invention, alignment between
an input image and an eigenspace is performed by simulta-
neously computing a transformation to align the input image
with the eigenspace while matching the input image with the
eigenspace as discussed above. Advantageously, the present
invention uses a small set of predetermined views and hence
a small eigenspace (i.e., a small number of basis vectors). By
providing a parameterized transformation between an input
image and an eigenspace, the small set of views can be used
when matching the input image with the eigenspace.

D.1 Recovering a Parameterized Transformation u
(x,2) between the Image Region I(x) and the
Eigenspace

Simultaneous matching and alignment is performed by
extending the non-linear parameter estimation techniques
described above for computing matching coefficients c; to
include transformation parameters u(x,a). To extend eigens-
pace methods to allow matching under some parametric
transformation a notion of “brightness constancy” between
an eigenspace and an input image must be formalized. This
formalization is a generalization of the notion of a brightness
constancy assumption used in optical flow. The brightness
constancy assumption states that the brightness of a pixel
remains constant between frames but that its location may
change. For eigenspaces the notion of brightness constancy
is extended herein to a “subspace constancy assumption”
that states that there is a view of an object in a reconstructed
image, as represented by some linear combination of basis
vectors of an eigenspace, such that the pixels in the recon-
structed image are the same brightness as the pixels in an
input image given an appropriate transformation. In alter-
nate embodiments this notion of brightness constancy
between an input image and an eigenspace can be expanded
to include filtered images. For example, filtered images can
include images that were filtered to reduce noise or to
enhance edges.

In accordance with the invention, let I be an nxm input
image and let

Uc =Z C;U;,

t
i=1


http://www.patentlens.net/

http://www.patentlens.net/

enabling INNOVATION

US 6,526,156 B1

11

-continued

where U = [Uy, Uy, ... U], e=lcr, ey 0 61Ty

and Uc is the approximated image for a particular set of
coefficients c;. Even though Uc is an (nmx1) vector, Uc can
be indexed as though it were an nxm image. Accordingly,
[Uc](x) is defined herein to be the value of Uc at the position
associated with a pixel location x=(x,y). Robust matching
objective function (2) can then be expressed as follows:

E©) = ) px) - [Uel(x), o).

Similar to the brightness constancy assumption of param-
eterized optical flow estimation, the subspace constancy
assumption is defined herein by parameterizing the input
image I as follows:

Iw+uly, )={Uel), Vx @

where x=[x,y] and u(x,a)=(u(x,a), v(X,a)), and where u(x,a)
represents an image transformation (or motion) where u and
v represent the horizontal and vertical displacements at a
pixel of the input image I and the parameters a are estimated.
For example, the image transformation u(x,a) may be
defined as the affine transformation where:

u(x,a)=ag+a,x+a,y, and v(x a)=a+a,x+asy.

Briefly, I, and I, are partial derivatives of the image 1(x).
Individually, the parameters a, and a, represent horizontal
and vertical translation, respectively. In addition, the com-
bination of parameters a,+as are used to represent diver-
gence (isotropic expansion); parameters a,—as are used to
represent deformation (squashing or stretching); and param-
eters a,—a, are used to represent image-curl (rotation about
the viewing direction).

More specifically, the equation (3) defining the subspace
constancy assumption states that there should exist a trans-
formation u(x,a), that, when applied to an image region I(x),
makes the image region I(x) look like some image recon-
structed using an eigenspace. That is, the transformation
u(x,a) “warps” the input image into the coordinate frame of
the eigenspace (i.e., training data).

In accordance with the subspace constancy assumption,
for some transformation a and some set of coefficients c the
brightness values of the input image, I(x+u(x,2)), are the
same as those of the image e*=Uc reconstructed using
eigenspace 38. To simultaneously recognize an object’s
change in view and the object’s change in structure through
a sequence of images, the coefficients ¢ and transformation
a must be found that minimizes the following objective
function:

Ec.a)= Y. pll(x +u(x, @) - [Uel(x), o). @

x

The details of minimizing the objective function E(c,a) with
respect to the coefficients ¢ and the parameters a are set forth
in the Appendix.

In general, minimization of the objective function E(c,a)
is broken down into two sub-problems. A first sub-problem
is to minimize the objective function E(c,a) with respect to
¢ while the tracking (or warp) parameters, a, are held fixed.
To do this the robust eigenspace matching formulation set
forth in Section C.2 is applied with the image I(x) substi-
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tuted for the image I(x+u(x+a)). The second sub-problem is
to minimize E(c,a) with respect to tracking parameter, a, but
now with the identification coefficients ¢ held fixed. This
calculation is performed by modifying a robust regression
approach for optical flow disclosed in U.S. Pat. Nos. 5,802,
220 and 5,774,591, the disclosures of which are incorpo-
rated herein by reference. This optical flow approach is
based on the robust brightness constancy objective function:

E@= )" pl(x+u(x,a),n - I(x,1+1),0), &

In equation (5) I(x,t) and I(x,t+1) are the images at times “t”
and “t+1” while u(x,a) is the displacement map between
frames of an image sequence. Equation (4) has the same
form of expression as equation (5), except that the image
frame at time “t+1” is replaced by an image Uc(xX) approxi-
mated using an eigenspace.

Furthermore, the minimization of the objective function
E(c,a) is performed using a simple gradient descent scheme
with a continuation method that gradually lowers the value
of 0. As better estimates of the transformation parameters a
become available, the input image I(x) is warped by the
transformation u(a) and this warped image is then used in the
optimization. As iterative warping registers the input image
I(x) and the eigenspace, the approximation of the recon-
structed image Uc improves. This minimization and warping
continues until the input image and the reconstructed image
converge.

D.2 Framework of the Eigentracking System

In general, a coarse-to-fine strategy is used to recover the
tracking parameters 4 when large pixel differences exist
between an eigenspace 38 and an input image region. Once
the multi-scale training set of images 28 is computed by
smoothing and sub-sampling a training set of images 16, a
unique eigenspace is computed for each resolution of images
in the multi-scale training set 28. Subsequently, an input
image is recorded in an image sequence 12, this input image
is similarly smoothed and sub-sampled to provide a multi-
scale set of input images. The coarsest level of the multi-
scale set of input images is then matched against the coarsest
level of the multi-scale eigenspace to compute the tracking
parameters 4 and the identification coefficients 5. The intu-
ition for applying a coarse-to-fine strategy is to minimize the
physical distance between the basis images in the eigenspace
38 and the input image so that the low-frequency informa-
tion in the coarser images dominates when matching the
input image with the basis images in the eigenspace. The
resulting values of the tracking parameters 4 and identifi-
cation coefficients 5 are then projected to the next higher
resolution level. These projected values of the tracking
parameters 4 are then used to warp the input image towards
the eigenspace 38 at the projected level and the values of the
identification coefficients are further refined. This coarse-to-
fine process continues to the finest resolution level thereby
deriving a final set of tracking parameters 4 and identifica-
tion coefficients 5.

FIG. 9 illustrates operations performed by the eigentrack-
ing system 8 when matching an image region 1(x), indicated
by reference number 70, that is not aligned with the eigens-
pace 38. In general, matching the image region 70 with the
eigenspace 38 involves both estimating a view of the object
(i.e., identification coefficients 5) and a transformation a that
takes this view into the input image 72 containing the image
region 70. Initially, the image region 70 is tracked in input
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image 72 using the transformation a as indicated by arrow
74. Second, the image region 70 is warped to align the object
in the image region with the orientation of the object in the
eigenspace 38, as indicated by arrow 76. Third, the resulting
warped image region, indicated by reference number 78, is
matched with the eigenspace 38, as indicated by arrow 80.
As a result of matching the warped image region 78 with the
eigenspace 38, a set of identification coefficients ¢ is com-
puted for a set of basis images U, to U,, indicated generally
by reference number 39, where “T” is an integer less than
“p”. Fourth, the input image is reconstructed using the
identification coefficients ¢ to define reconstruction image
84, as indicated by arrow 88. Finally, a transformation vector
a is computed that represents the transformation between the
reconstructed image 84 and the image region 70.

FIG. 10 illustrates an embodiment of the eigentracking
system 20 which recovers the tracking parameters 4 and the
identification coefficients 5 for an image sequence 12. The
eigentracking system shown in FIG. 10 can be used with a
single image or with the sequence of images 12. In either
case, tracking parameters 4 and identification coefficients §
are computed by evaluator 90 using gradient decent with a
continuation method. Large transformations between the
eigenspace and an input image are accounted for by using
the multi-scale eigenspace pyramid 14. Generally, the evalu-
ator 90 has two parts. One part of the evaluator 90 performs
coarse to fine evaluation of the input image 1(j) at different
levels of resolution. Another part of evaluator 90 supple-
ments the coarse to fine evaluation with incremental refine-
ment at each level of resolution. Estimates of tracking
parameters a* and identification coefficients c*, which are
computed from a previous frame in the image sequence 12,
are initially input to the evaluator 90. Computation of
tracking parameters and identification coefficients are
repeated for “g” iterations as indicated by arrows 92 and 94,
respectively. Once computed the tracking parameters are
used to estimate the view of the object in the subsequent
image in the image sequence 12, and the identification
coefficients are evaluated to identify a particular view of the
object in the image region. This provides the system 8 with
a dual tracking and identification function. That is, the
system 8 both tracks an object through a sequence of images
and identifies changes in view as the object moves through
the sequence of images.

FIG. 11 illustrates in greater detail the evaluator 90 shown
in FIG. 10. More specifically, FIG. 11 illustrates the coarse-
to-fine computation performed by eigentracking system 20
for determining tracking parameters 4 and identification
coefficients 5 for an image region I, using the eigenspace
pyramid or multi-scale eigenspace 14. The eigenspace pyra-
mid has “q” levels, where each of the “q” levels is derived
from a level of the pyramid of training set images 28. To
match the “q” levels of the eigenspace pyramid, “q” increas-
ingly coarse images are generated using the spatial filter 30
and the subsampler 32 which are shown in FIG. 6. Consis-
tent with a coarse-to-fine strategy, tracking parameters a, ;,
and identification coefficients C, 4, are refined at each of the
“q” levels of the eigenspace pyramid 14. Furthermore, at
each of the “q” levels, the values for a particular level “q”
is computed using an incremental refinement estimator 96.
Once computed by the estimator 96 tracking parameters 4
and identification coefficients 5 are projected to the next
level using projection operators 98.

FIG. 12 illustrates in greater detail the incremental refine-
ment estimator 96 shown in FIG. 11. In each incremental
refinement estimator 96, a series of object recognition and
motion estimation systems 102 compute identification coef-
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ficients c; ; and tracking parameters b; ;. As shown in FIG.
12, for each of the “k” levels of refinement, original esti-
mates for the tracking parameters a*;_; ;, are composed
(ie., refined) using the tracking parameters b; , computed at
each of the “k” levels. In one embodiment, the composition
of transformation a ,, is approximated using adders 96.
Alternatively, composition can be performed as set forth in
the Appendix. Also, original estimates for identification
coefficients ¢*;_, ; are updated each at each level to provide
an improved match between the set of basis images 39 and
the image region L.

FIG. 13 illustrates in greater detail the object recognition
and motion estimation system 102 shown in FIG. 12 which
aligns (i.e., warps) and matches a view of the object in the
image region I,y with a view of the object represented in the
set of basis images 39. Forming part of system 102 are a
warping module 104, a matching module 106, a reconstruc-
tion module 108, and a motion estimation module 110. The
image region I, obtained from an image of the image
sequence 12 and the tracking parameter estimate ag;; iy are
input to the warping module 104 to generate a warped image
W, that is aligned with views of objects in the set of basis
images 39. The warped image W, the estimate of the
identification coefficients ¢; ;_;), and the set of basis images
39 are input to matching module 106 to compute identifi-
cation coefficients c; . These computed identification coef-
ficients c;; are used with a linear combination of basis
images by reconstruction module 108 to approximate the
warped image W , by a reconstructed image R ;. The
warped image W, and the reconstructed image R, are
input to the motion estimation module 110 which generates
a set of tracking (or warp) parameters b, , which defines the
motion between the images.

D.3 Computational Flow of the Eigentracking
System

FIG. 14 is a general flow diagram of the steps performed
by the eigentracking system 20 when tracking an object
through the image sequence 12. The image sequence is
defined herein to be a sequence of images I(1), I(2) . . . I(f),
where “f” is specifies the number of images in the image
sequence 12. At step 210, the first input image in the image
sequence 12 is retrieved from memory 11. The object to be
tracked and/or identified is located in the first image and
segmented at step 212. Methods for locating and segmenting
an object in an image include thresholding and performing
a global search (as disclosed by Turk et al. cited above).
Once the object is located in an image region I.(f) at step
212, the object is tracked and identified at step 214. After
computing tracking parameters 4 and the identification coef-
ficients 5, the eigentracking system 20 determines whether
any images remain in the image sequence 12 that have not
been evaluated, at step 216. If images have not been evalu-
ated in the image sequence 12 then step 218 is executed;
otherwise, step 220 is executed. At step 218, the subsequent
image in the image sequence 12 is retrieved from memory
11 and step 214 is repeated. If step 220 is executed the
operation of eigentracking system 20 is terminated until a
new image sequence 12 is recorded.

It will be understood by those skilled in the art that the
eigentracking system 20 can operate for the purpose of
recognizing objects alone. It is not necessary that an object
be tracked through a sequence of images for the eigentrack-
ing system 20 to effectively identify an object in an image
region. Similarly, the eigentracking system may operate so
as to only track an object through a sequence of images
without specifically identifying it. Furthermore, it will be
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understood by those skilled in the art that the eigenspace
pyramid 14 used by the eigentracking system 20 to identify
an image region will depend on the sequence of images
being evaluated. However, if one or more eigenspace pyra-
mids have been generated for a given object, the eigentrack-
ing system 20 may evaluate an image sequence against each
of the eigenspaces in turn.

FIG. 15 illustrates a flow chart detailing step 214 shown
in FIG. 14. Initially at step 222, an iteration index “g” is set
to one. The iteration index “g” is used to count the number
of iterations performed by evaluator 90 as indicated by
arrows 92 and 94 in FIG. 10. At step 224, a level index “j”
is set to one. When the level index is equal to one then the
level index “j” identifies the coarsest level of the pyramid of
training set rmages 28 corresponding to the computed set of
basis images 39. However, when the level index “j” is equal
to “q” then the level index identifies the ﬁnest level of
resolution recorded for the training set of images 28 and its
computed set of basis images 39.

At step 226, tracking parameters a; ., and the identifica-
tion coefficients c; 4, are computed for the image region
[ 5(f) for a resolution level indicated by level index “j”. At
step 228, the tracking parameters a; 5, and the identification
coeflicients c; 5, computed at step 226 are projected to the
next highest level in the eigenspace pyramid 14 at step 228.
The tracking parameters a; ;, can be projected to the next
finer level of resolution by multiplying the coefficients a,
and a, of the affine transformation by two. The projection of
the identification coeflicients c; ;) may be more difficult, the
details of which are disclosed 1n the Appendix. At step 230,
the level index “j” is incremented by one. At step 232, a
determination is made as to whether each of the “q” levels
have been evaluated. When tracking parameters 4 and
identification coefficients 5 have been evaluated for each of
the “j” levels, step 234 is executed; otherwise, step 224 is
repeated.

At step 234, the value of the scale parameter a is lowered
according to a continuation strategy. The scale parameter o
is used to adjust the error norm, p, and the derivative of the
error norm, . The continuation method begins with a high
value of o that is lowered as the number of iterations
increase. The effect of this continuation strategy is that
initially no data is rejected as outliers. However, as the
number of iterations increases, the influence of the outliers
is gradually reduced. At step 236, the iteration index “g” is
incremented. At step 238, a determination is made as to
whether “g” iterations have been performed (i.e., as indi-
cated by arrows 92 and 94 in FIG. 10). If “g” iterations have
been performed step 216 is executed; otherwrse, step 222 is
repeated.

FIG. 16 illustrates a flow chart detailing step 226 shown
in FIG. 15. At step 240, an optimization index “i” is set to
one. The optimization index “i” keeps track of how many
iterations are performed by the incremental refinement esti-
mator 96 shown in detail in FIG. 12. After completing an
iteration “i” tracking parameters b ; ; are used to update the
transformatlon a,; » which becomes a better estimate of the
offset between the original image region I; and the set of
basis images 39.

At step 242, a warped image W, , is generated using the
updated transformation a;;; ;. In one instance, the updated
transformation a; ; ;) is projected from a coarser level (j-1),
as show in FIG. 11 using projection operators 98. In another
instance, if the iterative estimator is beginning its first level
of “q” levels of iteration, the updated transformation is
estrmated using the transformation a* (shown in FIG. 10)
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from a previous frame in the image sequence. By estimating
the transformation a;;_;, with the transformation computed
from a previous frame, an object located and segmented in
an image sequence at step 212 is tracked between frames. If
no previous estimate for the transformation a;;_,, exists
then the initial value of the transformation matrix ag; ;y is
assumed to be zero. As discussed above, the image is warped
using an affine transformation that represents horizontal and
vertical translations, rotations, expansions/contractions, or
stretching. In accordance with the invention, the transfor-
mation a;;,_;y is applied in order to bring the object in the
image region iy, into a predetermined form for matching
with an eigenspace.

At step 244, the warped image W ; , is matched with the
set of basis images 39 of the level (j). An initial estimate of
the identification coefficients c; ,, is obtained from a previ-
ous level in a similar manner to which the initial estimate of
the transformation a;_; ; is determined. That is, an initial
estimate of the identification coefficients ¢,y is determined
with either updated identification coefficients ¢;;_,, that are
projected to a coarser level or with identification coefficients
c* (shown in FIG. 10) from a previous frame in the image
sequence. Step 244 is performed by minimizing equation (4)
(i-e., the robust subspace constancy objective function) with
respect to the identification coeflicients ¢, while holding
the warping parameters a; fixed. Spec1ﬁcally? equation )]
is minimized by applying the robust formulation described
above for matching an image with an eigenspace, with the
only modification being that the image I(x) is replaced by the
warped image I(x+u(x,a)).

At step 246, a reconstructed image R,y (shown in FIG.
11) is generated using the identification coefficients c
computed at step 118. This reconstructed image R, , is
evaluated with respect to the warped image W ; , to deter-
mine tracking parameters by, ,, at step 248. The tracking (or
warp) parameters b, , are calculated by minimizing equa-
tion (4) while holdmg the identification coefficients c;
constant.

Accordingly, the tracking parameters b,y are estimated
using a coarse-to-fine strategy. with robust regression.
Trackmg parameters by, ;y that define motion between the
image I . and the set of basrs images 39 are estimated by
evaluating the optical flow between the two images Wi,
and R , as shown in FIG. 11. The optical flow between two
images 1s the apparent motion of brightness patterns. These
brightness patterns move as objects that give rise to the
patterns move. By making the assumption that brightness
between two images does not change over time (i.e., the
subspace constancy assumption), the optical flow between
two images can be defined by the transformation a .

At step 250, the tracking parameters 4 (i.c., transforma-
tion ag;; ;) are updated with the tracking parameters b;
calculated at step 248 to define updated transformation a; .
This process of updating transformation a ;, is shown in
detail in FIG. 12. At step 252, the optimization index is
incremented. At step 254, if “k” optimizations have been
performed then step 228 is executed; otherwise, step 242 is
repeated.

D.4 Examples of Tracking Objects in a Sequence
of Images with the Eigentracking System

FIGS. 17 and 18 illustrate a sequence of images in which
an object 152 is tracked using the eigentracking system 20.
FIG. 17 illustrates three images 154, 156 and 158 defining
a sequence of images 150. In the sequence of images 150,
the object 152 rotates while changing position. In contrast,
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FIG. 18 illustrates a sequence of images 160 having three
images 164, 166, and 168 in which an object 162 does not
rotate but changes position and appearance. In other words,
FIG. 17 illustrates a can 152 with the label “B” that is rotated
through the sequence of images 74 while FIG. 18 illustrates
the can 162 with the label “B” that changes to the label “C”
and then back to the label “B”. Accordingly, eigentracking
system 20 simultaneously tracks an object’s position
through a sequence of images while recognizing changes in
structure or view. That is, while an object moves and the
view or structure of the object changes through the sequence
of images, the eigentracking system 20 separately recovers
the current view or structure of the object and the param-
eterized transformation between the current view and the
eigenspace 14.

In general, FIGS. 17 and 18 illustrate an advantage of the
invention and the difference between eigentracking and
traditional motion based tracking methods. FIG. 17 is an
example where there exists a coherence of brightness pat-
terns between the object 152 undergoing affine image
motions and changes in view between image frames 154,
156, and 158. In contrast, FIG. 18 is an example where there
exists no coherence of brightness patterns between the
frames of the image sequence 160, however, there does exist
a subspace coherence. In accordance with the present
invention, unlike traditional motion based tracking systems,
the eigentracking system 20 can also successfully track the
object 162 in which the identity of the object changes
between the frames 164, 166, and 168. This advantage exists
because the object 162 appearing in both the frames 164 and
166 are represented using the same eigenspace (or
subspace). Accordingly, there exists a coherence between
the frames 164 and 166 so that the object 162 is effectively
tracked between frames.

E. Overview

It will no doubt be appreciated that there are a number of
possible manners in which to implement the eigentracking
system 20. It will be. understood by those skilled in the art
that an eigenspace is not required for carrying out the present
invention, and that any number of types of basis images can
be used to approximate an original image. For example,
neural networks, wavelet, or Fourier sets of basis images can
be used. It will also be understood by those skilled in the art
that other estimation techniques can be used besides a robust
estimation technique. Other techniques include least squares
regression analysis and correlation matching techniques. It
will further be understood that the present invention can be
used to track and identify a number of objects besides hands
and cans.

Furthermore, it will be appreciated by those skilled in the
art that the multi-scale eigenspace 14 is not required when
there does not exist large transformations between the set of
basis images 39 and the input image region. It will also be
understood by those skilled in the art that the eigenspace
does not have to remain fixed while an object in a sequence
of images is tracked and evaluated for a match. Instead, an
eigenspace or eigenpyramid can be dynamically modified by
adding additional views not originally present in the training
set of images. Dynamically adjusting an eigenspace may
generate better matches and improve tracking. In addition,
images forming the eigenspace can be preprocessed for
smoothing or edge enhancement.

Also, it will be appreciated by those skilled in the art that
the present invention can be use to identify and track
something that is recorded in something other than an image.
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For example, the present invention can be used to evaluate
depth or topographical maps. Additionally, it will be under-
stood that the present invention is not limited to warping an
input image towards an eigenspace with an affine transfor-
mation. Instead, any number of image transformation can be
used to warp the input image towards the eigenspace such as
translation, projective, and arbitrary non-linear deforma-
tions.

More details of the eigentracking system are disclosed by
Black and Jepson in “EigenTracking: Robust Matching and
Tracking of Articulated Objects Using A View-Based
Representation,” Proc. Fourth European Conf. on Computer
Vision, ECCV’96, B. Buxton and R. Cipolla (Eds.), Springer
Verlag, LNCS 1064, Cambridge, England, April 1996, pp.
329-342., the disclosure of which is incorporated herein by
reference.

The disclosed eigentracking system may be readily imple-
mented in software using software development environ-
ments that provide portable source code that can be used on
a variety of hardware platforms. Alternatively, the disclosed
system may be implemented partially or fully in hardware
using standard logic circuits. Whether software or hardware
is used to implement the system varies depending on the
speed and efficiency requirements of the system and also the
particular function and the particular software or hardware
systems and the particular microprocessor or microcomputer
systems being utilized. The system, however, can be readily
developed by those skilled in the applicable arts without
undue experimentation from the functional description pro-
vided herein together with a general knowledge of the
computer arts.

The invention has been described with reference to a
particular embodiment. Modifications and alterations will
occur to others upon reading and understanding this speci-
fication taken together with the drawings. The embodiments
are but examples, and various alternatives, modifications,
variations or improvements may be made by those skilled in
the art from this teaching which are intended to be encom-
passed by the following claims.

Optimization Details and Implementation

A coarse-to-fine strategy is used to minimize the robust
subspace constancy objective function set forth by equation
(4). For each level of the multi-scale pyramid, say 1=0, . . .
, L, this objective function, E/c,a,), is

D P+ utx, ap) = [Wie(x), @). (AD)

Here 1=0 corresponds to the full resolution level and 1=
denotes the coarsest level.

The method for determining a solution is based on the
application of two simpler techniques, one for minimizing
the objective function with respect to ¢ alone, the other for
variations in a alone. These two techniques are presented
below with respect for a single level.

Eigenspace Coefficients

First, equation (Al) is minimized with respect to c at
some level 1 and some fixed value o. (For convenience the
level 1 is dropped from the notation.) Assuming that the
initial guess is (c°,a%), which is typically obtained from the
previous level of the pyramid. A Gauss-Newton optimiza-
tion scheme (See the following references for details: Ber-
gen et al. in “Hierarchical Model-Based Motion
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Estimation,” Proc. of Second European Conference on Com-
puter Vision, ECCV-92, vol. 588 of LNCS-Series, pages
237-252, Springer-Verlag, May 1992; Black et al. “The
Robust Estimation of Multiple Motions: Affine and
piecewise-smooth flow fields,” Technical Report P93-
00104, Xerox PARC, December 1993; and Black et al. “A
Framework for The Robust Estimation of Optical Flow,”
Proc. mt. Conf. on Computer Vision, ICCV-93. pages
231-236, Berlin, Germany, May 1993.) is used to update ¢
according to:

Ci"+1=ci"_6ci>
where dc; is given by:

i) A2
—E(", a% = (A2)
dc;

1

w(ci)

D Ui Gr + utx, @) = [Ue)(x), 0.

The normalizing term w(c;) is defined as:

wici) = Z(U aicic]zmam// = ZX] UPmaxy’,

x

where U is the square of U, at pixel x, and

2

2
P, o) = =

,
maxy’ = max
= x 0x?

for the robust error norm used herein. These updates are
computed for k iterations, or until convergence.

Incremental Warp Linearization

Given the resulting value of ¢ for some level I and some
0, the updates of the warp parameters, a, are considered. The
general approach developed for the robust regression of
optical flow disclosed by Black et al. above is used in this
approach. Using this approach avoids the need to rewarp the
image for each update of a by linearizing the variation of
I(x+u(x,a)) with respect to a. In particular, setting a=a’+b
and performing a Taylor’s expansion in the incremental
warp parameters b, provides:

a
Ix+ux,d® +b) =1+ Vla—au(x, a®)b + 0(||b]%).

Here both I and Al=[L,, I,] are evaluated at (x+u(x,a")).
Notice the affine displacement u(x,a) used herein is a linear

function of the warp parameter a, so that:

9 0
—u(x, a )b =u(x, b).
da

Using this in the above Taylor’s expansion, and substituting
the result into equation (Al) gives:

Zp(v 1(x + u(x, @) -u(x, b) + (I(x + u(x, a°)) - [Uc](x)), o).

which is referred to herein as the approximate objective
function, E*(c,b). Notice that E*(c,b) takes the form of a
robust motion constraint objective function (see Black et al.
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cited above), but here the out-of-subspace projection I-Uc
plays the role of the temporal derivative.

The approximate objective function E* has three impor-
tant properties. First notice that E* only involves the evalu-
ation of I and Al at (x+u(x,2°)), which does not depend on
the incremental warp b. The need to recompute warps of I
and Al during the computation of b is avoided; instead these
quantities can be precomputed given the initial guess a°.

Secondly E* is a good approximation of the original
objective function for small incremental warps b. Indeed
from the above derivation it follows that:

E(c,a+b)=E*(c,b)+O(|[b|*). (A4)

In practice, the coarse-to-fine strategy will lead to esti-
mated incremental warps of no more than a pixel or so (in
the subsampled grid), in which case E* provides a close
approximation of E. Therefore it is reasonable to attempt to
minimize E* with respect to b in order to compute an update
for a°.

Finally, the third property of E*(c,b) is that if it has a
minimum at b=0, then the gradient, E (c,a°), of the original
objective function must also vanish (see equation (A4)).
This is important since, upon convergence the overall
method produces a negligible update b, and so this third
property ensures that the original objective function E(c,a°)
also has a zero gradient with respect to the warp parameters.
That is, upon convergence, (c,a®) is a stationary point of the
original objective function, typically a local minimum. Thus
the error in approximating the original objective function by
computationally convenient, E*, vanishes upon convergence
of the overall method.

Warp Parameters

The minimization of E(c,b) with respect to b is done using
a similar Gauss-Newton algorithm to the one described
above for updating c. That is, the updates for b are:

bi"+1=bin_6bi>
for b%=0 and

1 0 (AS)
;= o g Ex(e b =

1 a
WZ \2E B_b;u(x’ bV 1-u(x, b)+ (I - Uc), o),

with I and Al evaluated at (x+u(x,a°)). The normalization
term w(b,) is defined as:

9 2
w(b;) = Z(VI' ﬁ”(x’ b)] maxy’,

x

where max 1 is as above. Upon convergence of this
iteration, or after a fixed number of steps, the new value of
a is set to be a%+b.

Multi-Scale Projection Operations

The overall method executes several coarse to fine
sweeps, during which estimates for ¢ and a obtained at one
level are used to generate initial guesses at the next finer
level. For the warp parameters, the updated a can be “pro-
jected” to the next finer scale simply by multiplying the
affine parameters a, and a5 by two.

The projection of the eigenspace coefficients ¢, however,
can be more difficult. Suppose c,,, is the vector of eigens-
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pace coefficients computed in the coarser level 1+1. An
initial guess is assumed to be ¢, for these coefficients at the
next finger level. There are several ways to do this, depend-
ing on the structure of the basis vectors across scales.

One approach would be to simply use the robust fitting
method discussed above. That is, first obtain a least squares
estimate for the new coefficients c;. Then use this estimate
for the starting point of the method described above for
updating c alone, gradually reducing a back down form a
temporarily inflated value. As found in experiments, this
approach has an empirical breakdown point of 30-50%
outliers.

This strategy could be imporved by using some informa-
tion about the spatial distribution of outliers, determined at
the previous level 1+1, to compute the initial estimate for c;.
In particular, for a residual reconstruction error r,,;(x)=I,,
1-U,,1¢;,1, define the weight m,, ;(x) to be:

1
My (%) = EW("HI (%), 0) [ Fi41 ().

These weights can be projected to level 1 in the pyramid and
used to compute a weighted least-squares estimate of c,. This
approach should be able to downweight the majority of
pixels at which there are outliers, thereby increasing the
breakdown point.

In another embodiment, a simpler strategy can be used to
project the eigenspace coefficients c¢. In this alternate
embodiment, it is noted that the multi-scale pyramids in
experiments exhibited the property that the i basis function
at level 1+1, namely U, ;, was well approximated y the
filtered and subsampled version of the corresponding basis
function at the next finer scale, U, ;. Presumably this prop-
erty arises from the correlation of information in the training
set across scales. As a consequence, c,°, the initial guess for
the expansion coefficients at the next finer scale is taken to
be equal to c,,,, the updated expansion coefficients at the
coarser scale. It should be noted, though, that such a simple
strategy is expected to work only when the eigenspace
pyramids have this special structure.

What is claimed is:

1. An apparatus for identifying and tracking an object
recorded in a sequence of images, comprising:

a memory for recording a set of training images; the
images in the set of training images recording different
views of the object;

means for generating a set of basis images corresponding
to the set of training images recorded in said memory;
the set of basis images characterizing variations of the
views of the object in the set of training images; and

means for evaluating each image in the sequence of
images to identify changes in view and structure of the
object while tracking the object through the sequence
of images with tracking parameters and identification
coefficients; said evaluating means incrementally refin-
ing the tracking parameters and the identification coef-
ficients by aligning, matching, and reconstructing a
view of the object in the image with the views of the
object represented in the set of basis images.

2. The apparatus according to claim 1, wherein said

evaluating means comprises:

means for computing a warped image by applying a
transformation to a first image in the sequence of
images;

means for matching the set of basis images with the
warped image; said matching means providing the
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identification coefficients that define which basis
images in the set of basis images characterize the view
of the object in the warped image;

means for generating a first reconstructed image using a

combination of images in the set of basis images
defined by the identification coefficients provided by
said matching means;

means for estimating the tracking parameters that identify

motion of the object between the warped image and the
first reconstructed image; and

means for refining the transformation with the tracking

parameters estimated by said motion estimation means.

3. The apparatus according to claim 2, further comprising
means for updating the identification coefficients, said
updating means computing a second warped image with said
applying means using the refined transformation.

4. The apparatus according to claim 2, wherein said
computing means uses the transformation to provide an
estimated location of the object in a second image in the
sequence of images; said computing means providing the
estimated location to track the object between the first image
and the second image.

5. The apparatus according to claim 2, further comprising:

means for generating a multi-scale set of images and a

multi-scale set of basis images; and

means for evaluating the multi-scale set of images and the

multi-scale set of basis images from a coarse resolution
to a fine resolution, said evaluating means refining the
transformation with said refining means at each reso-
lution.

6. The apparatus according to claim 2, wherein the
identification coefficients provided by said matching means
provides an estimate of the view of the object in a second
image in the image sequence.

7. The apparatus according to claim 1, wherein the view
of the object in the image in the sequence of images is
different from the views of the object in the training set of
images.

8. The apparatus according to claim 1, wherein the object
in the training set of images has a common orientation and
scale.

9. The apparatus according to claim 1, wherein the set of
basis images is an eigenspace.

10. A method for identifying and tracking an object
recorded in a sequence of images, comprising the steps of:

recording in a memory a set of training images; the

images in the set of training images recording different
views of the object;

generating a set of basis images corresponding to the set

of training images recorded by said recording step; the
set of basis images characterizing variations of the
different views of the object in the set of training
images; and

evaluating each image in the sequence of images to

identify changes in view and structure of the object
while tracking the object through the sequence of
images with tracking parameters and identification
coefficients; said evaluating step incrementally refining
the tracking parameters and the identification coeffi-
cients by aligning, matching, and reconstructing a view
of the object in the image with the views of the object
represented in the set of basis images.

11. The method according to claim 10, wherein said
evaluating step further comprises the step of computing a
transformation that aligns the view of the object in a first
image in the sequence of images with a view of the object
in the set of basis images.
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12. The method according to claim 11, wherein said
evaluating step tracks the object in a second image in the
sequence of images with the transformation.

13. The method according to claim 10, wherein said
evaluating step further comprises the step of computing the
identification coefficients that define which basis images in
the set of basis images best approximate each image in the
sequence of images.

14. The method according to claim 10, further comprising
the steps of:

formulating a first reconstructed image that recovers

features of the object in the image; and

generating an outlier image that identifies points in the

image that are excluded in the first reconstructed
image.

15. The method according to claim 14, further comprising
the step of generating a second reconstructed image by
matching the outlier image with the set of basis images; the
second reconstructed image recovering portions of the
image that are omitted from the first reconstructed image.

16. The method according to claim 10, wherein said
evaluating step comprises the step of minimizing the fol-
lowing objective function:

E(c, a) = Zp(l(x +ulx, @) - [Uclx), o),

where,

p=an error norm;

o=a scale parameter;

I=an image in the sequence of images;

x=position [x,y] in the image [;

u(x,a)=a transformation;

a=tracking parameters of the transformation;

U=the set of basis images; and

c=identification coefficients of the set of basis images U.

17. The method according to claim 10, wherein said

evaluating step comprises the steps of:

applying a transformation to the image in the sequence of
images; said applying step computing a warped image;

matching the set of basis images with the warped image;
said matching step providing the identification coeffi-
cients that define which basis images in the set of basis
images characterize the view of the object in the
warped image;

generating a reconstructed image using a combination of
images in the set of basis images defined by the
identification coefficients provided by said matching
step,

estimating the tracking parameters that identify motion of
the object between the warped image and the recon-
structed image; and

refining the transformation with the tracking parameters
estimated by said motion estimation step.
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18. The method according to claim 17, further comprising
the steps of:

generating a multi-scale set of images and a multi-scale
set of basis images; and

calculating the multi-scale set of images and the multi-

scale set of basis images from a coarse resolution to a

fine resolution, said evaluating step refining the trans-
formation with said refining step at each resolution.

19. A program storage device readable by a machine,

tangibly embodying a program of instructions executable by

the machine to perform method steps for identifying and

tracking an object recorded in a sequence of images, said

s method steps comprising:
recording in a memory a set of training images; the

images in the set of training images recording different
views of the object;

generating a set of basis images corresponding to the set
of training images recorded by said recording step; the
set of basis images characterizing variations of the
different views of the object in the set of training
images; and
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evaluating each image in the sequence of images to
identify changes in view and structure of the object
while tracking the object through the sequence of
images with tracking parameters and identification
coefficients; said evaluating step incrementally refining
the tracking parameters and the identification coeffi-
cients by aligning, matching, and reconstructing a view
of the object in the image with the views of the object
represented in the set of basis images.
20. The program storage device as recited in claim 19,
wherein said method evaluating step further comprise the
steps of:
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applying a transformation to the image in the sequence of
images; said applying step computing a warped image;

matching the set of basis images with the warped image;
said matching step providing the identification coeffi-
cients that define which basis images in the set of basis
images characterize the view of the object in the
warped image;
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45 generating a reconstructed image using a combination of
images in the set of basis images defined by the
identification coefficients provided by said matching
step;

estimating the tracking parameters that identify motion of
the object between the warped image and the recon-
structed image; and
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refining the transformation with the tracking parameters
estimated by said motion estimation step.
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