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Abstract

Recent advances in deep generative models have led to
an unprecedented level of realism for synthetically gener-
ated images of humans. However, one of the remaining fun-
damental limitations of these models is the ability to flexi-
bly control the generative process, e.g. change the camera
and human pose while retaining the subject identity. At the
same time, deformable human body models like SMPL [34]
and its successors provide full control over pose and shape,
but rely on classic computer graphics pipelines for render-
ing. Such rendering pipelines require explicit mesh raster-
ization that (a) does not have the potential to fix artifacts
or lack of realism in the original 3D geometry and (b) un-
til recently, were not fully incorporated into deep learning
frameworks. In this work, we propose to bridge the gap be-
tween classic geometry-based rendering and the latest gen-
erative networks operating in pixel space. We train a net-
work that directly converts a sparse set of 3D mesh vertices
into photorealistic images, alleviating the need for tradi-
tional rasterization mechanism. We train our model on a
large corpus of human 3D models and corresponding real
photos, and show the advantage over conventional differen-
tiable renderers both in terms of the level of photorealism
and rendering efficiency.

1. Introduction
Traditional graphics pipelines for human body and face

synthesis benefit from explicit, parameterized, editable rep-
resentations of 3D shape and the ability to control pose,
lighting, material properties, and the camera, to animate 3D
models in 3D scenes. While photorealism is possible with
classical methods, this typically comes at the expense of
complex systems to capture detailed shape and reflectance
or heavy animator input. In contrast, recent developments in
deep learning and the evolution of graphics processing units
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are rapidly bringing new tools for human modeling, anima-
tion and synthesis. Models based on generative adversarial
networks [13] reach new levels of realism in synthesizing
human faces [22, 23] and various models can repose hu-
mans [10], swap identities and appearance, etc.

While promising, particularly in terms of their realism,
these new “neural” approaches to synthesizing humans have
several drawbacks relative to classical methods. Specifi-
cally, a key advantage of classical graphics methods [41]
is the ability to fully and flexibly control the generative pro-
cess, e.g. change the camera view, the light or even the
pose or shape of the subject. These methods, however, have
two main limitations relative to learning-based image syn-
thesis. First, until recently [24, 31], rendering engines were
not fully integrated into deep learning pipelines. Second,
explicit mesh-based rendering methods are limited when
it comes to rendering complex, high-frequency geometry
(e.g. hair or fur, wrinkles on clothing, etc.) and dealing
with complex, changing, topology. The future of graphics
is likely a synthesis of classical and neural models, com-
bining the best properties of both. Here we make a step
in this direction by combining the parameterized control of
3D body shape and pose with neural point-based rendering,
which replaces the classical rendering pipeline.

Point-based rendering has a long history in computer
graphics [14, 25]. Recently, point-based rendering has been
successfully coupled with the neural network pipeline via
learning per-point neural descriptors that are interpreted by
the neural renderer [5]. This approach produces photo-
realistic novel views of a scene from a captured point cloud.
However, this pipeline has been demonstrated for render-
ing static scenes with dense point clouds as inputs, with the
need of re-learning point descriptors for every novel scene.

Our approach is influenced by [5] and [37]. However,
along with the technical novelties and simplifications we de-
scribe in the follow-up sections, our main aim is to extend
these approaches to enable efficient rendering of human
avatars under novel subject identities and human poses. We
accomplish this by introducing SMPL [34], a deformable



Figure 1. SMPLpix Neural Rendering Pipeline. Training SMPLpix requires a set of 3D vertices with the corresponding RGB colors as
input X+, along with ground truth camera parameters (K,R, t). Our training data is obtained by registering a SMPL model to 3D scans.
Using SMPL also allows us to control the coordinates of X+ via a small set of pose parameters θ. RGB-d training images are created by
projecting the vertices, X+ onto an image plane using a camera model. This image is then fed into a UNet-type network that reconstructs
surfaces from projected vertices directly in the pixel space. It is trained to minimize a combination of perceptual and adversarial losses
w.r.t. the ground truth image. Once trained, this neural rendering module generalizes to unseen subjects X+, body poses θ and camera
parameters (K,R, t).

3D body model, into the neural rendering loop. This pro-
vides us full control over body pose and shape variation.
However, instead of relying on mesh connectivity for ex-
plicit rendering, we simply use mesh vertices and their col-
ors projected onto the image plane as inputs for the neural
rendering module. This provides the benefits of a parame-
terized body model, while greatly improving the rendering
quality, without the complexity of classical methods.

The overall pipeline, called SMPLpix, is outlined in Fig-
ure 1. During training, our framework operates on the data
obtained from a commercially available 3D scanner [3].
The SMPL model is registered to the raw scans [9, 34];
other parametric models can be used in principle [20, 39].
The result of this process is a set of mesh vertices X ∈
R6890×3, the RGB color of each vertex, and the body pose
parameters θ. It is important to mention that the registra-
tion process has inherent limitations like fitting hair (due
to the irregularity of hair and low resolution of the SMPL
model) or fitting clothing (due to the form-fitting topology
of SMPL). The advantage of using the registered vertices
over raw scans, however, is that we can control the pose of
the vertices X by varying a small set of inferred pose pa-
rameters θ. We project the vertices of the body model using
ground truth scanner camera locations (K,R, t) and obtain
an RGB-d image of the projected vertices. This image is
processed by a UNet-like neural rendering network to pro-
duce the rasterized output RGB image that should match the
ground truth image from a scanner camera. At test time, we
are given novel mesh vertices X , their colors, body poses
θ and camera locations (K,R, t). Note that this input can
also come from the real images using methods like [6].

Intuition. Our proposed method can be seen as a mid-
dle ground between mesh-based and point-based renderers.
While we use the structured nature of mesh vertices to con-

trol the generative process, we ignore the mesh connectivity
and treat vertices simply as unstructured point clouds. Com-
pared with explicit mesh rasterization, the main advantage
of this vertices-as-points approach, along with its computa-
tional and conceptual simplicity, is the ability of the trained
neural renderer to reproduce complex high frequency sur-
faces directly in the pixel space, as we will show in the
experimental section. Our approach is also potentially ap-
plicable in cases when no explicit mesh connectivity infor-
mation is available whatsoever and only a set of 3D anchor
points is given.

Contributions. The proposed work offers the following
contributions:

• Deep controlled human image synthesis: apart from
the classic mesh-based renderers, to the best of our
knowledge, the presented approach is the first one that
can render novel human subjects under novel poses
and camera views. The proposed framework produces
photo-realistic images with complex geometry that are
hard to reproduce with these classic renderers;

• Sparse point set neural rendering: we show how pop-
ular image-to-image translation frameworks can be
adapted to the task of translating a sparse set of 3D
points to RGB images, combining several steps (ge-
ometric occlusion reasoning, rasterization and image
enhancement) into a single neural network module.

2. Related work

Our method is connected to several broad branches of 3D
modeling and image synthesis techniques. Here we focus
on the most representative work in the field.



3D human models. Our method is based on the idea of
modeling humans bodies and their parts via deformable 3D
models [7, 8, 20], and in particular SMPL [34]. Such mod-
els are controllable (essential for graphics) and interpretable
(important for analysis). Extensions of SMPL exist that also
model hands [43], faces [29, 39] and clothing [35]. Separate
models exist for capturing and modeling clothing, wrinkles,
and hair [17, 55]. While powerful, rendering such mod-
els requires high-quality textures and accurate 3D geome-
try, which can be hard to acquire. Even then, the resulting
rendered images may look smooth and fail to model details
that are not properly captured by the model or surface re-
construction algorithms.

Neural avatars. Recently, a new work focuses learn-
ing to render high-fidelity digital avatars [32, 47, 50, 52].
While these works provide a great level of photo-realism,
they are mostly tailored to accurately modeling a single sub-
ject, and part or the whole system needs to be retrained in
case of a new input. In contrast, our system is trained in a
multi-person scenario and can render unseen subjects at test
time. Another advantage is that it takes a relatively compact
generic input (a set of 3D mesh vertices and their RGB col-
ors) that can be also inferred from multiple sources at test
time, including from real-world images [6].

Pixel-space image translation and character anima-
tion. The second part of our system, neural human ren-
derer, is based on the recent success of pixel-to-pixel image
translation techniques [12, 18, 51]. Two particular varia-
tions of this framework have the most resemblance to our
model. First, [10] uses a set of sparse body keypoints (in-
ferred from a source actor) as input to produce an animated
image sequence of a target actor. However, as with the neu-
ral avatars discussed above, the system needs to be retrained
in order to operate on a novel target subject. Our work also
resembles the sketch-to-image translation regime, where an
edge image is used in order to produce a photo-realistic im-
age of the person’s head [53] or generic objects [11]. Our
approach can also be viewed as translating a sparse set of
key points into an image. However, our keypoints come
from a structured 3D template and therefore convey more
information about the rendered subject appearance; since
they exist in 3D, they can be projected to an image plane
under different camera views. Finally, another advantage
of using SMPL topology as input to our image translation
framework is its non-uniform vertex density according to
region importance (i.e. faces and hands are more densely
sampled). This makes detailed rendering of these regions
easier, without the need for a specific attention mechanism
in the neural renderer itself.

Differentiable mesh (re-)rendering. There are sev-
eral available solutions that incorporate the mesh rendering
step into fully differentiable learning pipelines [24, 31, 34].
However, these methods follow a different line of work:

they aim at constructing better gradients for the mesh ras-
terization step, while keeping the whole procedure of mesh
face rendering and occlusion reasoning deterministic. This
applies also to a soft rasterizer [31] that substitutes the
discrete rasterization step with a probabilistic alternative.
While this proves useful for the flow of gradients, the ren-
dering procedure still lacks the flexibility that would allow it
to fix artifacts of the original input geometry. One potential
solution is to enhance the produced incomplete noisy ren-
ders by the additional neural re-rendering module [30, 37].
Our framework can be seen as the one that combines stan-
dard mesh rendering step with a follow-up neural image en-
hancement into one task-specific neural rendering module.
Considering the original target application of [37], another
potential advantage of our framework for online conferenc-
ing is the reduced amount of data that needs to be trans-
ferred over the network channel to produce the final image.

Point-based rendering. Point-based rendering [14, 25,
28, 40, 45] offers a well-established, scalable alternative
to rendering scenes that can be hard to model with sur-
face meshing approaches. We take inspiration from these
methods, however, we substitute the fixed logic of render-
ing (e.g. surfel-based [40]) with a neural module in order to
adapt to sparse point sets with highly non-uniform densities,
as well as to generate photorealistic pixel-space textures.

Rendering from deep 3D descriptors. Another promis-
ing direction for geometry-aware image synthesis aims to
learn some form of deep 3D descriptors from a 2D or 3D
inputs [5, 33, 48, 49]. These descriptors are processed by
a trainable neural renderer to generate novel views. These
methods, however, are limited when it comes to control-
ling the generative process; shapes are represented as vox-
els [33, 48], unstructured point clouds [5] or neural network
weights [49]. This makes parameterized control of human
pose difficult.

Neural point-based graphics. The closest work to ours
is [5]. An obvious difference with respect to this work is
that our input comes from a deformable model, which al-
lows us to modify the render in a generative and intuitive
way. Moreover, our model contains two additional differ-
ences. First, our inputs are considerably sparser and less
uniform than the point clouds considered in [5]. Second,
instead of point neural descriptors that need to be relearned
for every novel scene or subject, our rendering network ob-
tains the specific details of a subject through the RGB colors
it consumes as input at test time. This alleviates the need for
retraining the system for every novel scene.

In summary, SMPLpix fills an important gap in the liter-
ature, combining the benefits of parameterized models like
SMPL with the power of neural rendering. The former gives
controllability, while the latter provides realism that is diffi-
cult to obtain with classical graphics pipelines.



3. Method

As is common in deep learning systems, our system has
two key parts: the data used for training our model, and the
model itself. We describe those two parts in the following
sections.

3.1. Data

Scans. Our renderer transforms sparse RGB-D images
obtained from the 2D projections of SMPL [34] vertices.
We take a supervised training approach with ground-truth
images that correspond to the projected vertices of the
SMPL model. Although it would be ideal to collect such
a dataset from images in the wild, the inaccuracies in meth-
ods that infer SMPL bodies from images (e.g. [21]) cur-
rently make this data ineffective. Instead, we use scan data
collected in the lab. To that end, we collected more than
a thousand scans with a commercially available 3D scan-
ner (Treedy’s, Brussels, Belgium [3]) and photogrammetry
software (Agisoft Photoscan [1]). This results in raw 3D
point clouds (scans) S ∈ RM×6,M ≈ 106, represent-
ing the body geometry, together with camera calibration
(K,R, t) compatible with a pinhole camera model. Note
that the subjects are scanned in a neutral A-pose. Unlike
most other image generation methods, this is not a problem
for our system since the strong guidance provided by the in-
put images prevents our method from overfitting to the input
pose, as it can be seen in Section 4.3.

Registrations. While these scans could potentially un-
dergo a rendering process like [5], it would not be possi-
ble to deform them in a generative manner, i.e. chang-
ing their shape or pose. To achieve that, we transform
those unstructured point clouds into a set of points X ∈
RN×3, N = 6890 with fixed topology that correspond to
a reshapeable and reposeable model, SMPL [34]. In its
essence, SMPL is a linear blend skinned (LBS) model that
represents the observed body vertices X as a function of
identity-dependent and pose-dependent mesh deformations,
driven by two corresponding compact sets of shape ~β ∈ R10

and pose ~θ ∈ R72 parameters:

X = W (TP (~β, ~θ), J(~β), ~θ,W), (1)

TP (~β, ~θ) = T̄ +BS(~β) +BP (~θ), (2)

where TP (~β, ~θ) models shape and pose dependent defor-
mation of the template mesh in the canonical T pose via lin-
ear functions BS and BP , and W corresponds to the LBS
function that takes the T-pose template TP , set of shape-
dependent K body joint locations J(~β) ∈ R3K ,K = 23
and applies the LBS function W with weights W to pro-
duce the final posed mesh. We refer to the original publica-
tion [34] for more details on the SMPL skinning function.
Note that other versions of deformable 3D models [7, 20] or

topologies could be used, including the ones that addition-
ally model hands and faces [29, 39, 43], as well as clothing
deformations [35]. In fact, in Section 4.2 we show experi-
ments with two topologies of different cardinality.

The SMPL registration process optimizes the location of
the registration vertices and the underlying model, so that
the distance between the point cloud and the surface en-
tailed by the registration is minimized, while the registration
vertices remain close to the optimized model. It is inspired
by the registration in [9] although the texture matching term
is not used. It is worth emphasizing that these registrations,
as in [9], can contain details about the clothing of the per-
son since their vertices are optimized as free variables. This
does not prevent us from reposing those subjects after con-
verting them into SMPL templates T̄∗ through unposing, as
explained and shown in Section 4.3. However, these extra
geometric details are far from perfect, e.g. they are visibly
wrong in the case of garments with non-anthropomorphic
topology, like skirts.

Color. Finally, the registered mesh is used in Agisoft
Photoscan together with the original image and camera cal-
ibration to extract a high-resolution texture image Itex ∈
R8192×8192×3. This texture image is a flattened version of
the SMPL mesh, in which every 3D triangle in SMPL cor-
responds to a 2D triangle in the texture image. Therefore,
each triangle contains thousands of color pixels represent-
ing the appearance of that body portion. These textures can
be used directly by the classic renderer to produce detailed
images, as can be seen in Section 4.2. Although it would
be possible to exploit the detail in those textures by a neural
renderer, that would slow it down and make it unnecessar-
ily complex. Instead, we propose to use the sparse set of
colors Xc ∈ [0, 1]6890×3 sampled at the SMPL vertex loca-
tions. These colors can be easily extracted from the texture
image, since they are in full correspondence with the mesh
topology.

Projections. Having an input colored vertex set X+ =
[X,Xc] ∈ R6890×6 and camera calibration parameters
(K,R, t), we obtain image plane coordinates for every ver-
tex x ∈ X using a standard pinhole camera model [15]:uv

d

 = K(Rx+ t). (3)

Next, we form an RGB-D vertex projection image. The
projection image PX ∈ Rw×h×4 is initialized to a value that
can be identified as background by its depth value. Since
depth values collected in the scanner have a range between
0.1 and 0.7 meters, a default value of 1 is used to initialize
both RGB and depth in PX . Then, for every vertex x ∈
X , its image plane coordinates (u, v, d) and color values
(r, g, b) ∈ Xc we assign:

PX [buc, bvc] = (r, g, b, d). (4)



In order to resolve collisions during the projection phase
(4), when different vertices fromX end up sharing the same
pixel-space coordinates buc, bvc, we sort the vertices ac-
cording to their depth and eliminate all the duplicate con-
secutive elements of the depth-wise sorted array of buc, bvc
coordinates of X. Note that, since the number of vertices is
much smaller than the full resolution of the image plane,
these collisions rarely happen in practice.

The whole vertex projection operation (3)-(4) can be eas-
ily and efficiently implemented within modern deep learn-
ing frameworks [38] and, therefore, seamlessly integrated
into bigger pipelines.

3.2. Neural rendering

Given our training data consisting of pairs of RGB-D
projection images PX and segmented output images IX , we
train a UNet-type [44] neural network G with parameters Θ
to map initial point projections to final output images:

GΘ : PX → IX . (5)

In our experiments, we use one of the publicly available
UNet architecture designs [4], to which we apply only mi-
nor changes to adapt it to our types of input and output. The
network consists of 4 layers of downconv and upconv dou-
ble convolutional layers [Conv2d, BatchNorm, ReLU] ×2,
with convolutional layers having the kernel size of 3. In
case of downconv, this double convolutional layer is pre-
ceded by max pooling operation with kernel size 2; in case
of upconv, it is preceded by bilinear upsampling and con-
catenation with the output of a corresponding downconv
layer. In general, the particular design of this module can
be further optimized and tailored to a specific target image
resolution and hardware requirements; we leave this opti-
mization and further design search for a future work.

Having the ground truth image Igt for a given subject and
camera pose, we optimize our rendering networkGΘ for the
weighted combination of perceptual VGG-loss [19], multi-
scale, patch-based GAN loss and feature matching GAN
loss [51] in two stages.

During the first stage (100 epochs), we train the model
with Adam (learning rate set to 1.0e-4) and batch size 10 by
minimizing the L1 loss between VGG activations:

LV GG(Igt, IX) =

5∑
i=0

1

2(5−i)
||f (i)

V GG(Igt)− f (i)
V GG(IX)||1, (6)

where f (i)
V GG(I) are activations at layer i and f (0)

V GG(I) = I .
During the second stage (100 epochs), we restart Adam

with learning rate 1.0e-5 and include a combination of
multi-scale GAN and feature-matching losses identical to

the ones in [51]:

L(Igt, IX) = LV GG(Igt, IX)

+ min
G

[
max

D1,D2,D3

∑
k=1,2,3

LGAN (G,Dk)

+ 0.1 ∗
∑

k=1,2,3

LFM (G,Dk)
]
. (7)

Implicitly, the network GΘ is learning to accomplish
several tasks. First, it needs to learn some form of geometric
reasoning, i.e. to ignore certain projected vertices based on
their depth values. In that sense, it substitutes fixed-logic
differentiable mesh rendering procedures [24] with a flex-
ible, task-specific neural equivalent. Second, it needs to
learn how to synthesize realistic textures based on sparse
supervision provided by the projected vertices, as well as
to hallucinate whole areas not properly captured by the 3D
geometry, e.g. hair and clothing, to match the real ground
truth images. Therefore, we believe that this approach could
serve as a potentially superior (in terms of acquired image
realism), as well as easier to integrate and computationally
flexible, alternative to the explicit fixed differentiable mesh
rasterization step of [24].

4. Experiments
4.1. Data details

Accurately captured, well-calibrated data is essential for
the proposed approach in its current form. We use 3D scans
of 1668 subjects in casual clothing. The subjects are diverse
in gender, body shape, age, ethnicity, as well as clothing
patterns and style. For each subject, we select 20 random
photos from among the 137 camera positions available in
the scanner camera rig. We use 1600 subjects for training
and 68 subjects for test, which forms training and test sets of
32000 and 1360 images correspondingly. We use the image
resolution of size 410× 308 during all the experiments. Of
68 test subjects, 16 gave their explicit consent for their im-
ages to be used in the present submission. We use these test
subjects for the qualitative comparison in the paper, while
the full test set is used for the quantitative evaluation.

4.2. Quantitative experiments

We compare our system with other renderers that can
generate images of reshapeable and reposeable bodies. This
limits the other methods to be classic rendering pipelines,
since, to the best of our knowledge, no other deep learning
model offers this generative behaviour. It is important that
the renderers support automatic differentiation, since our ul-
timate goal includes integrating the renderer with a fully dif-
ferentiable learning system. With these two constraints, we
compare with the neural mesh renderer introduced in [24],
in its popular PyTorch re-implementation [2].



Figure 2. Qualitative comparison between neural mesh renderer [24] and SMPLpix (27k vertices) on novel subjects and camera poses
(zoom in for details). Compared to a standard mesh renderer, our model can fix texture and geometry artefacts (toe and finger regions) and
generate high frequency details (hair and cloth wrinkles), while remaining conceptually simple (point projections as the main 3D geometry
operator) and efficient in terms of utilized data and inference time.

Metrics. We compare SMPLpix against different ver-
sions of classic renders implemented with [2] according to
two different quantitative metrics popular in image gen-
eration and super-resolution: peak signal-to-noise ratio
(PSNR, [16]) and learned perceptual image patch similar-
ity (LPIPS, [54]). PSNR is a classic method, while LPIPS
has gained popularity in recent works for being more corre-
lated with the perceptual differences. We should note that
the field of quantitative perceptual evaluation is still an area
of research, and no metric is perfect. Therefore, we also
provide qualitative results in the next section.

Baseline variants. For [24], we use the following ren-
dering variants. First, we render the mesh with exactly
the same information available to our SMPLpix rendering

pipeline, i.e. only 1 RGB color per vertex1. Next, we use
the much more information-dense option of texture images
Itex. To optimise the inference time of [24], we do not
utilise the full extensive 8k textures, but rather search for the
optimal downscaled version of the texture image, at which
no further improvement in terms of PSNR and LPIPS were
observed (Table 1, row 2). Since our method can be topol-
ogy agnostic, we perform these comparisons for two topolo-
gies: the native SMPL topology of 6890 vertices (noted as
7k) and an upsampled version with a higher vert count of
27578 vertices (noted as 27k).

Results. The values for PSNR and LPIPS are compiled
in Table 1. The first conclusion to extract from this table is

1Technically, since [2] does not support per-vertex color rendering, this
has to be achieved by performing linear interpolation between the vertex
colors in their per-triangle texture space



Figure 3. Novel view generation. Images produced by our renderer are consistent across novel camera views.

Table 1. Neural mesh renderer [24] vs SMPLpix neural rendering
pipeline. Our model outperforms all variants of standard mesh
rendering in both pixel-wise and perceptual similarity metrics.

Method PSNR ↑ LPIPS ↓
NMR[24] (7k, per-verts) 23.2 0.072
NMR[24] (7k, full textures) 23.4 0.049
NMR[24] (27k, per-verts) 23.5 0.064
NMR[24] (27k, full textures) 23.6 0.047
SMPLpix (7k verts) 24.2 0.051
SMPLpix (27k verts) 24.6 0.045

that, given a fixed amount of color information (i.e. com-
paring per-verts NMR against SMPLpix for a fixed topol-
ogy), SMPLpix clearly outperforms NMR in both PSNR
and LPIPs. Limiting the color information can be useful
in terms of computational and data transmission efficiency,
and the use of textures makes the rendering system arguably
more complex. However, we included also a comparison
against NMR using full textures. Although the values are
much closer, SMPLpix slightly outperforms NMR also in
this case. This validates our main hypothesis, i.e. that the
adaptive rendering procedure described in Section 3.2 can
learn a valid rendering prior of the human texture and sur-
face, and reproduce it based on a sparse input given by
the colored mesh vertices. Moreover, it outperforms the
conventional methods in terms of acquired level of realism
since it is trained end-to-end to reproduce the correspond-
ing photo. In terms of efficiency, using low-dimensional ge-
ometry with no anti-aliasing and full textures achieves the
fastest running times (14ms), followed closely by SMPLpix
(17ms), which obtains better quality metrics. Also, note that
for NMR, the inference time grows roughly linearly with the
number of geometry elements, while for our method, most
of the time is spent in the neural rendering module that is
agnostic to the number of projected points. Being a UNet-
like neural network, this module can be further optimised
and tailored to specific hardware requirements.

4.3. Qualitative experiments

Since it is well known that perceptual metrics are not
perfect in capturing the quality of synthetic images, we also
provide examples for the reader to judge the quality of our

method and to suggest the potential applications that its gen-
erative character enables.

Qualitative comparison. We provide a visual compar-
ison of ground truth and the methods previously described
in Figure 2. The first thing to note is that these images con-
tain elements that are known to be difficult to model with
the SMPL topology, e.g. hair, baggy clothes, and shoes. We
can observe that, since the relation between geometry and
pixel colors in NMR is very constrained, the geometry ar-
tifacts are still visible in the rendered images. Note, for
example, the unrealistic hair buns in NMR, smoothed out
clothes in the first column, and the unrealistic ear shape in
the sixth column due to the lack of independent hair geom-
etry that covers the ears in the SMPL topology. In com-
parison, SMPLpix learns to correlate those artifacts with
specific combinations of vertex locations and shapes, and
recreates loose hair, pony tails, or loose clothing (to some
extent). Another type of artifact that is corrected is incorrect
texture due to misalignment: as seen in the fourth column,
the hand area contain pixels of background color due to mis-
alignment. SMPLpix learns to correct this type of artifact.
Finally, pay attention to the toes rendered on the shoes by
NMR, which are due to the SMPL topology. These toes
are corrected (removed) by our renderer in the next to last
column. It is important to note that some of these details
are reconstructed in a plausible way, though not in the exact
way they are present in the ground truth.

Novel view generation. A first question about SMPLpix
generalization capabilities is how well does it generalize to
novel views. Figure 3 shows images generated from novel
viewpoints with our algorithm. Given the ample cover-
age of views achieved by the scanning data, we can gener-
ate views from almost arbitrary orientations. However, we
should note that the distance to the subject is not covered
nearly as well in our setup, and the quality of our results
degrade when the camera is too far or too close to the per-
son. A possible way to handle this, left for future work, is to
augment the data with arbitrary scalings of the input mesh
and image.

Pose generation. An advantage of our method with re-
spect to the main other point-based renderer [5] is that we
can alter the renders in a generative manner, thanks to the
SMPL model that generates our inputs. To that end, we take
the registrations previously mentioned and create a subject



Figure 4. Pose generation. We can animate subjects with novel pose sequences, e.g. the ones taken from [36]. Please see the supplementary
video on the project website for more examples of avatar reposing.

specific model in the same spirit as in [42]. A subject spe-
cific model has a template that is obtained by reverting the
effects of the estimated registration pose. More specifi-
cally, it involves applying the inverse of the LBS transfor-
mation W−1 and subtracting the pose-dependent deforma-
tions BP (~θ) (Equations 1 and 2) from the registration. We
can repose a subject specific model to any set of poses com-
patible with the SMPL model. To that end, we tried some
sequences from AMASS [36]. As can be seen in Figure 4,
bodies can deviate largely from the A-pose in which most
of the subjects stand in the training data. Experimentally,
we have observed that this is very different for other neural
renderers like [10].

Shape generation. Although [5] cannot generate people
arbitrarily posed, other renderers like [10, 47] potentially
can, if they have a way to generate new skeleton images.
However, shape cannot change with those approaches, since
skeletons only describe the length of the bones and not the
body structure. We can see this potential application in Fig-
ure 5. For this figure, we used the previously mentioned
subject-specific SMPL model for two of the subjects, and

Figure 5. Shape variations with SMPLpix. The first column shows
renderings of the original subject from two views. Subsequent
columns explore the first directions of the SMPL shape space, in
the negative and positive directions. This varies the subject shape,
making them thinner or heavier, respectively..

modified their shape according to the first three components
of the original SMPL shape space. We can see that shape
variations are realistic, and details like hair or clothing re-
main realistic. To our knowledge, this is the first realistic
shape morphing obtained through neural rendering.

We provide more examples of avatar reposing, reshaping
and novel view synthesis on the project web site2.

5. Conclusion and future work
In this work, we presented SMPLpix, a deep learning

model that combines deformable 3D models with neural
rendering. This combination allows SMPLpix to generate
novel bodies with clothing and with the advantages of neu-
ral rendering: visual quality and data-driven results. Unlike
any other neural renderers of bodies, SMPLpix can vary the
shape of the person and does not have to be retrained for
each subject.

Additionally, one of the key characteristics of SMPLpix
is that, unlike the classic renderers, it is improvable and ex-
tensible in a number of ways. We are particularly interested
in integrating the renderer with systems that infer SMPL
bodies from images (e.g. [21, 26, 27]) to enable an end-to-
end system for body image generation trained from images
in the wild.

SMPLpix represents a step towards controllable body
neural renderers, but it can obviously be improved. Render-
ing high-frequency textures remains a challenge, although
including extra information in our input projection image
is a promising approach; e.g. per-vertex image descriptors,
similar to the local image descriptors pooled across views
in [46] or deep point descriptors in [5].

Disclosure. While MJB is also an employee of the Max
Planck Institute for Intelligent Systems (MPI-IS), this work
was performed solely at Amazon where he is a part time
employee. At MPI-IS he has received research gift funds
from Intel, Nvidia, Adobe, Facebook, and Amazon. He has
financial interests in Amazon and Meshcapade GmbH.

2https://sergeyprokudin.github.io/smplpix/
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