3) Representing subspaces 6) Results

Statistical efficiency (Gaussian data of 30 dimensions)

o | The most obvious representation of 1D The right figure investigate the statistical efficiency 11
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of collecting unwanted data. In other words
we should expect increasing amounts of
outliers when automating data collection.

spanned, so our representation has an

. noisy frames are denoised by projecting to a
unknown sign.
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The estimated noise is transfered to new films to

This is a simple instance of the
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We, thus, need algorithms which can both . provide quantitative results. 0.6/ — EMPCA G com)]
cope with large amounts of data and deal .l * general Grassmann manifold, | o TGA(S0. )
P I which represents higher dim- We further model backgrounds with changing light %% 200 400 600 300 1000
Wlth many OUt|IeI’S 20+ - ) - Number of observations
ensional subspaces. using a robust subspace.

Finally, we show scalability by computing the leading 20 robust components of the entire
Star Wars IV movie (a task beyond other methods).

:

We investigate large-scale robust PCA.
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Film restauration (Nosferatu, 1922)
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2 z fying Eq. 2, and any choice of q € [q] C SP~1! there exist from De la Torre & Black; 2\ = T 7 R
5 5 C [ui.n] C SP~1 such that q is a weighted average reconstruction using RGA A 2 ¢ /
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Percentage of outliers (%) Outlier percentage (%) . . (50 %,80) 0.0157 0.0404
the following algorithm naturally appears Inexact ALM [7] 0.0168 0.0443
De la Torre and Black [9] 0.0349 0.0599
Algorithm: Grassmann Average (GA) GA (80 comp) 0.3551 0.3773
PCA (80 comp) 0.3593 0.3789
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Background modeling

where u,, = *»/||x,,|| and ¢ denotes the iteration number.

The algorithm optimises this robust energy: For Gaussian data, GA coincides with PCA:
The simplest and most well- © black box estimator o N el L 1-PCA N N
- . also known as L1- '
— arg max X,V ’ T _ T ,
understood statistical estimators o o q ’ EgSD_l 231 %, v see Kwak, TPAMI, 2008) irgsrggth <Zl v xn!> = %regsrg?lelﬁl(\v Xn ). Top row: original data; Top row: original data;
I " ' n= n= n= reconstruction using reconstruction using
dle .FhOse Where the type Of °® s N E S t lma tOI’ s N 0,9 N (12) inexact ALM; inexact ALM;
the input and output match. S, o This is more robust than T 9 Theorem 2 The subspace of RY spanned by the expected rggt‘;g;:r ;’;’Zf’gf;’f:gi c’ifA- rggt‘;g;:r Z)CVIZ?ZI_#ZZ% QC:A.
Example: the standard average %0 % the standard PCA energy: QpcA = il‘gsfélftf Z(Xn v) value (12) of the GA of 1. coincides with the expected between input and between input and
(inpUt' pOintS' OUtpUt' a pOlnt) n=1 first principal component. reconstruction. reconstruction.
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2. Averages are easy to make robust L0 1 | i &-dAl
Top row: original data; Top row: original data;
The input is a set of point ) Each point spans a o) We consider these as reconstruction using reconstruction using
with zero mean. 1D subspace. input to our estimator. inexact ALM; inexact ALM;
reconstruction using RGA. reconstruction using RGA.
® ) Bottom row: differences Bottom row: differences
S between input and between input and
0Q /S . o /)/) One of the most well-understood robust reconstruction. reconstruction.
% . statistics Is the robust average. Star Wars IV
© o As we are merely computing a subspace —
o of ‘ average, we can easily phrase a
robust Grassmann average:
Algorithm: Robust Grassmann Average (RGA)
. , , . Hrob(wl:NyulzN)
~(esiimated quarify )~ . . wy < sign(ulq; )|xal,  ai ¢
black box estimator C_O”e_spondmg typeS WI“ " ’ HHrob(wlzNa U—lzN) H 7
simplify both math and \ where u,, = *»/||x,,|| and .1, denotes any robust average.
. algorithms. Many estimators '
RN FLstimator i are now easily phrased. In computer vision we are mostly concerned
We studv th with pixel-level outliers, so we suggest a simple More Information
e Stu e Ixel-level trimmed average. This can be comp- .
y Ete d with the same com ?exit 2 a standard P At out web page we have source code (Matlab and C++) along with
\N - > b - / average subspace. average piexity further results, the paper and its supplementary material:
subspaces a Subspace - i i
P age http://ps.1s.tue.mpg.de/project/Robust_PCA




