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Abstract

As the collection of large datasets becomes increasingly
automated, the occurrence of outliers will increase — “big
data” implies “big outliers”. While principal component
analysis (PCA) is often used to reduce the size of data, and
scalable solutions exist, it is well-known that outliers can ar-
bitrarily corrupt the results. Unfortunately, state-of-the-art
approaches for robust PCA do not scale beyond small-to-
medium sized datasets. To address this, we introduce the
Grassmann Average (GA), which expresses dimensionality
reduction as an average of the subspaces spanned by the
data. Because averages can be efficiently computed, we
immediately gain scalability. GA is inherently more robust
than PCA, but we show that they coincide for Gaussian data.
We exploit that averages can be made robust to formulate the
Robust Grassmann Average (RGA) as a form of robust PCA.
Robustness can be with respect to vectors (subspaces) or el-
ements of vectors; we focus on the latter and use a trimmed
average. The resulting Trimmed Grassmann Average (TGA)
is particularly appropriate for computer vision because it
is robust to pixel outliers. The algorithm has low computa-
tional complexity and minimal memory requirements, mak-
ing it scalable to “big noisy data.” We demonstrate TGA
for background modeling, video restoration, and shadow
removal. We show scalability by performing robust PCA on
the entire Star Wars IV movie.

1. Introduction

Across many fields of science and in many application
domains, principal component analysis (PCA) is one of the
most widely used methods for dimensionality reduction,
modeling, and analysis of data. It is a core technique used
throughout computer vision. While methods exist for scal-
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Figure 1. Left: A zero-mean dataset represented as a set of points.
Center: The same data represented as a set of one-dimensional
subspaces. Right: The blue dotted subspace is the average.

ing PCA to large datasets, one fundamental problem has
not been addressed. Large datasets are often automatically
generated and, therefore, are too large to be verified by hu-
mans. As a result, “big data” often implies “big outliers.”
While there are several solutions that make PCA robust to
outliers [0, 7, 9, 11, 16, 30], these generally do not scale to
large datasets. Typically, robust methods for PCA are not
scalable and scalable methods for PCA are not robust. Our
contribution is a novel formulation and a scalable algorithm
for robust PCA that outperforms previous methods.

Our first contribution is to formulate subspace estimation
as the computation of averages of subspaces. Given a zero-
mean dataset x;.; C RP, we observe that each observation
X, spans a one-dimensional subspace. Mathematically, each
of these subspaces can be described as a point on the Grass-
mann manifold (the space of subspaces of R”; see Sec. 3).
We then develop an averaging operator on the Grassmann
manifold, which formalizes the notion of the average sub-
space spanned by the data; see Fig. 1 for an illustration. We
show how this Grassmann Average (GA) relates to standard
PCA and prove that, for Gaussian data, the subspace found
by GA corresponds to that of standard PCA. We show both
formally and experimentally that GA is already more robust
than PCA; but we can do better.

Understanding how PCA can be reformulated as the com-
putation of averages (of subspaces) leads to a key obser-
vation: Robust averages can be computed efficiently. We
leverage this fact to define the Robust Grassmann Average
(RGA), which generalizes PCA to robust PCA. There are
a range of robust averaging methods, and any of these are



appropriate for RGA but some scale better than others.

In many fields and applications, outliers exist within a
data vector while the majority of the vector is perfectly fine.
This is the common situation in computer vision, where, e.g.
a few pixels in an image may be corrupted. We show that the
robust averaging in RGA can be done at the “element” level,
and we adopt a trimmed average for this which is both robust
and can be computed efficiently. The resulting Trimmed
Grassmann Average (TGA) can cope with both isolated out-
liers within a vector (image) or entire data outliers.

The resulting algorithm is straightforward, theoretically
sound, and computationally efficient. We provide a detailed
evaluation of the method’s robustness and efficiency in com-
parison with related methods. We focus on problems in-
volving images and image sequences although the method
is general. We compare with Candes et al. [7] on their data
and show similar or superior results. Furthermore, we show
superior results to both Candes et al. and De la Torre and
Black [9] on a problem of archival film restoration; here we
are able to provide a quantitative comparison. Finally, we
show how the method scales by applying it to video model-
ing problems where all previous robust PCA methods fail;
for example, we compute TGA for all 179,415 frames of
Star Wars IV. Our implementation is online here [15].

2. Related Work

PCA finds the subspace in which the projected observa-
tions are as similar as possible to the original observations
[19]. This is measured by a least-squares energy, which
implies that outliers have a large influence on the results. In
fact, it is easy to see that even a single outlier can arbitrarily
corrupt the estimated components. We say that PCA has a
break-down point of 0% [16]; i.e. if more than 0% of the
data are outliers we cannot trust the results.

Robust PCA: This weakness of PCA has inspired much
work on robust extensions [0, 7, 9, 11, 16, 30]. Most esti-
mators treat each data point as either an inlier or an outlier
[6, 11, 16, 30]. This can be done by estimating weights
for each observation such that outliers have small weights,
e.g. for robust covariance estimation [6, 30]. Other popular
approaches include iterative reweighting schemes [11] and
optimizing the sum-of-distances to the estimated subspace
rather than the sum-of-squared-distances [10]. Kwak [20]
optimize the same basic L energy as we do, but do not make
the link to subspace averaging, and, thus, do not end up with
our general pixel-wise robust approach.

In computer vision, the most popular estimators are those
from De la Torre and Black [9] and Candes et al. [7] as
they allow for pixel-wise outliers (as opposed to having the
entire image treated as an outlier). De la Torre and Black
phrase robust subspace estimation in the framework of M—
estimators [16] and optimize an energy governed by the well-
studied Geman-McClure error function [12]. This energy is

optimized using gradient descent with an annealing scheme
over the parameters of the Geman-McClure error function.
This requires an initial singular value decomposition (SVD)
followed by a series of iterative updates. While each iteration
of this scheme only has linear complexity, the reliance on
SVD gives an overall cubic complexity [14]. This makes the
algorithm impractical for large datasets.

The approach from Candes et al. [7] decomposes the data
matrix X € RV*D into L + S, where L is low rank and S
is sparse, i.e. it contains the outliers. They elegantly show
that under very broad assumptions this can be solved as a
convex program, and provide a series of algorithms, where
the so-called Inexact ALM [31] method is most commonly
used. This algorithm repeatedly computes a SVD of the data
giving it a cubic complexity [14]. Again, this complexity
renders the approach impractical for anything beyond small-
to-medium scale data sizes. This can to some extent be
alleviated through parallel implementations of SVD [29],
but this requires the availability of large compute farms and
does not address the underlying complexity issues.

Approximation Techniques: The non-linear complexity
of the different robust formulations of PCA has led to the de-
velopment of a multitude of approximation techniques. Both
Mackey et al. [25] and Lui et al. [24] propose subsampling
algorithms for solving the decomposition problem of Candes
et al. [7]. This allows for improved scalability of the algo-
rithms as they need only solve smaller SVD problems. While
theoretical analysis of the subsampling methods shows that
they provide good approximations, it is inherently disap-
pointing that to analyse large quantities of data one should
ignore most of it. In a similar spirit, Mu et al. [27] propose
to replace the data matrix with a low-rank counterpart found
through a random projection during optimization. This again
allows for computational gains as smaller SVD problems
need to be computed as parts of the data are not used.

Scalable PCA: The most well-known approaches perform
PCA either through an eigenvalue decomposition of the data
covariance matrix, or through an SVD of the data matrix
[19]. The former only works well in low-dimensional sce-
narios, where the covariance can easily be stored in memory,
while the latter is impractical when either the number of
observations or the dimensionality is too large.

Due to the importance of PCA for data analysis, scalable
implementations are readily available [, 28]. A common
choice is the EM PCA algorithm [28], which computes each
principal component by repeatedly iterating
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until convergence. Here v; denotes the estimate of the princi-
pal component at iteration ¢ of the algorithm. This can either
be derived as an EM algorithm [4] under an uninformative



Figure 2. An illustration of the Grassmann manifold Gr(1, 2) of
1-dimensional subspaces of R?. Any subspace is represented by a
point on the unit sphere with the further identification that opposing
points on the sphere correspond to the same point on Gr(1, D).

prior, as a gradient descent algorithm or as a power iteration
[14]. One iteration of the algorithm has linear complexity
and the low memory use makes it highly scalable. Ideally,
we want a robust algorithm with similar properties.

3. The Grassmann Average

Our key contribution is to formulate dimensionality re-
duction as the estimation of the average subspace of those
spanned by the data. Informally, if we seek an averaging
operation that returns a subspace, then the input to this op-
eration must be a collection of subspaces. To formalize this
idea we need the notion of “a space of subspaces,” which is
provided by the classical geometric construction known as
the Grassmann manifold [21, p. 24]:

Definition 1 The Grassmann manifold Gr(k,D) is the
space of all k-dimensional linear subspaces of RP.

Assuming we are given a zero-mean data set xy.x, then
each observation spans a one-dimensional subspace of R”
and, hence, is a point in Gr(1,D). The space of one-
dimensional subspaces in R” takes a particularly simple
form since any such subspace can be represented by a unit
vector u or its antipode —u. Thus, Gr(1, D) can be written
as the quotient SP~1/{+£1} of the unit sphere with respect
to the antipodal action of the group {£1} [21]. We de-
note points in Gr(1, D) as [u] = {u, —u}, and note that
[u] = [—u]. In other words, given an observation x,, we
represent the spanned subspace as [u,,] = £%»/||x, |, where
the sign is unknown. This is illustrated in Fig. 2.

3.1. The Average Subspace

With zero-mean data, we now define the average subspace
corresponding to the first principal component. Weighted
averages are commonly defined as the minimizer of the
weighted sum-of-squared distances; i.e.

N

[a] = argmin Y wydistg, p) (U, [v]), ()
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where wi.y are weights and distq,(1,p) is a distance on
Gr(1, D). We define this distance through the quotient space
construction of Gr(1, D) as [3, p. 65]

distér(l’D)([uﬂy [uz])

= min{dist%p_1 (v, va)|vi € [w1], vy € [us]},

3)

where distgp-1 is a yet-to-be-defined distance on the unit
sphere SP~1. This distance will be chosen to give an ef-
ficient algorithm for computing averages on Gr(1, D), but
first we prove a useful relationship between averages on
Gr(1, D) and those on the unit sphere SP~1:

Lemma 1 For any weighted average [q| € Gr(1, D) satis-
fving Eq. 2, and any choice of q € [q] C SP~! there exist
ur.y C [u.n] € SP~1 such that q is a weighted average
on SP-1: N

q = arg min Z wydistgo-_1 (0, v). 4)

D—1
ves n=1

Proof Select any q € |[q]. Note, from (3), that
distgp-1(q,u,) > distg.,p)([d], [u,]) for all n and
u, € [u,], thus, the function minimized in (4) will never
have a smaller minimum value than the one found in (2).
Note moreover that we can find u, € [u,] such that
distgp-1(u,,q) = distg.(1,py([un], [q]). But then q is a
minimizer of (4) and hence a weighted average on SP~1. (0

Lemma 1 is useful because it reduces the problem of com-
puting means on Gr(1,D) to a problem of computing
means on SP~1, optimized over the possible representatives
fu.y C [ugn].

3.2. Computing the Average Subspace

To compute averages on Gr(1, D) we suggest a straight-
forward algorithm, which repeats the following two steps
until convergence (code is in [15]):

1. Pick representations u.y of [ug. ] that are closest to
the current average estimate q under distgp-1.

2. Update q to be the spherical average of uj.n.

For this algorithm to be practical, we need the ability to
compute fast spherical averages. With this in mind, we pick

. 1
dist3o-1 (up, up) = §||u1 —w?=1-ufu,. )
Under this distance, the weighted average of data uj.ny C

SP—1 s given in closed-form by [26, §2.1]

q= u'(wl:NaulzN) (6)

l(win, wry) ||

N -1 N
H(wlzNa u1:N) - <Z wn) Z WpWp (7)

n=1 n=1

where



denotes the weighted Euclidean average. As we need to
normalize the data x;.y to unit length before viewing each
observation as a subspace it is natural to pick weights w,, =
|lx.||- With this choice, we arrive at the following iterative
scheme for computing an average subspace:

Algorithm: Grassmann Average (GA)

p(win, uiN)
[ p(wi:n, wrn) ||

Wy, < Sign(ufqi—l)ﬂxﬂh q; < )

where u,, = X»/||x,,|| and i denotes the iteration number.

We initialize this scheme with a random unit vector.

In Sec. 3.2.1-3.2.3 we discuss how to extend the approach
to estimate multiple components, which energy it optimizes,
and show that Eq. 8 coincides with ordinary PCA for Gaus-
sian data where q; is the first principal component.

3.2.1 Multiple Components

The above algorithm only computes the leading component
of the data. We compute additional components in a greedy
fashion by adding the further constraint that components
should be orthogonal. Following EM PCA [28], we achieve
this by removing the estimated component from the data and
computing the next component from the residual. Formally,
if X € RVXD denotes the data matrix, then X + X —
(Xq)q” is the updated data matrix where the component q
is removed. The next component can then be computed on
X as above. This approach is optimal for Gaussian data (see
Sec. 3.2.3), but we do not have results for other distributions.

This greedy approach is problematic for EM PCA as inac-
curacies in one estimated component influences the follow-
ing components. This is not the case for the GA algorithm
as it returns an exact result.

3.2.2 An Energy Minimization View

The GA algorithm represented by Eq. 8 is derived as an al-
gorithm for computing the average subspace spanned by the
data, but it can prove insightful to look at which underlying
energy is being optimized. From Eq. 3 and 5 we see that

distG, 1, py ([ua], [uz]) = 1 — [uf uy, ©)
and the average (2) reduces to
[q] = argmaxz IxXv]|. (10)
vesb-1
This is an energy in the projection pursuit family [17] and
was also studied by Kwak [20] who proved that GA algo-

rithm (8) converges to a local optimum in finite time.
Compare Eq. 10 with PCA, which optimizes [19]

N
(xTv)2. (11)

n=1

qrcA = argmax
vesb-t

We see that the GA can be expected to be more resilient to
outliers than ordinary PCA as the square has been replaced
with an absolute value. However, as GA relies on an ordinary
average (7) we see that it still sensitive to outliers. In Sec. 3.3
we will improve upon this with robust averages.

3.2.3 Relationship to PCA (Gaussian Data)

To show how GA is related to ordinary PCA, we now show
that they coincide when the observed data follows a normal
distribution. Let x1.;y ~ N(0, X) be sampled from a normal
distribution on R”. The expected value of Eq. 10 is

N N
argmax (Z |vTx,L|> = arg rgafcz E(lvixy,|).
vesSP-t 4

vesb-1 n—1
(12)

Theorem 2 The subspace of RP spanned by the expected
value (12) of the GA of X1.N coincides with the expected
first principal component.

Proof Since x,, is sampled from a normal distribution, the
projections v''x,, follow a univariate normal distribution
N(0,02) [4, §2.3]. Thus, |vI'x,| follow a half-normal dis-
tribution with expected value proportional to oy, [22]. The
standard deviation o, is maximized when v is the principal
eigenvector of 3, thus the expected value of the GA coin-
cides with the expected first principal component as defined
by ordinary PCA. (]

The extension to multiple components follows by induction.
We empirically verify the result in [15].

3.3. Robust Grassmann Averages

The core computational part of the GA algorithm (8) is
the spherical average (6), which, in turn, merely computes
a normalized Euclidean average (7). From this, we see that
even a single outlier can arbitrarily corrupt the result.

A straight-forward solution to this issue is to replace the
average with a robust average, giving the following scheme:

Algorithm: Robust Grassmann Average (RGA)

Nrob(wl:NaulzN)
Hlirob(wl:zv, 111;N)H ’

(13)

Wy, < Sign(ugqifl)nxn”v q; <

where u,, = *»/||x,,|| and p,op denotes any robust average.

We call this approach the Robust Grassmann Average (RGA).
Here, p,01 can be chosen to have the robustness properties
relevant to the application.

In computer vision applications, we are often dealing
with image data where individual pixels are corrupted. Con-
sequently, when computing average images robustly it is



common to do so on a per pixel basis; i.e. as a series of
one-dimensional robust averages. A standard approach to
create a robust one-dimensional average is the trimmed aver-
age [16]. This removes the largest and smallest observations
prior to computing the mean. If we remove P% of the data
from both sides, we get a break-down point of P%. For
P = 50% we get the maximally robust median [16].

To build a subspace estimator that is robust with respect to
pixel outliers, we pick o1 as the pixel-wise trimmed mean.
We call the resulting estimator the Trimmed Grassmann
Average (TGA) and let TGA(P, K) denote the estimator that
finds K components with an average that trims P percent
of the smallest and largest elements in the data. Note that P
and K are the only parameters of the estimator.

Each iteration of TGA(P, K) has computational com-
plexity O(K N D) as the trimmed average can be computed
in linear time using a selection algorithm [&, §9]. We have,
thus, designed a robust subspace estimator that can deal with
pixel-wise outliers and has the same computational complex-
ity as both GA (8) and EM PCA (1).

4. Results

In this section we provide results on different tasks, where
we compare with the approach from Candes et al. [7] and
De la Torre and Black [9]. For comparative purposes, the
robust Grassmann averages are also implemented in Matlab,
and all experiments are performed on an Intel Xeon W3680
with 24 GB of memory. When using TGA we subtract the
pixel-wise median to get a robust estimation of a “zero mean’
dataset, and we trim at 50% when computing subspaces. For
[7, 9] we use the default parameters of the published code'.
This is discussed further in [15].

In Sec. 4.1 we provide an application of robust PCA for
restoration of archival film data, while in Sec. 4.2 and 4.3
we repeat the experiments from [7] on both the previously
used data as well as new data. We quantitatively compare the
robustness of different methods in Sec. 4.4 and show how the
different methods scale to large data in Sec. 4.5. Additional
experiments, video, and details are provided in [15]

]

4.1. Video Restoration

Archival films often contain scratches, gate hairs, splices,
dust, tears, brightness flicker and other forms of degradation.
Restoring films often involves manual labor to identify and
repair such damage. As effects vary in both space and time,
we treat them collectively as pixel-level outliers. Assuming
a static camera, we perform robust PCA on the frames and
reconstruct the movie using the robust subspace. We perform
the reconstruction using orthogonal projection, but robust
alternative exist [3]; see [15] for a more detailed discussion.

"http://perception.csl.illinois.edu/
matrix-rank/sample_code.html#RPCA and http:
//users.salleurl.edu/~ftorre/papers/rpca2.html

As an example, we consider a scene from the 1922 clas-
sic movie Nosferatu. We restore the frames using TGA and
[7, 9]. For TGA and [9] we compute 80 components, which
corresponds to the number of frames in the scene. Represen-
tative frames are shown in Fig. 3 and the restored movies are
available in [15]. TGA removes or downweighs the outliers
while mostly preserving the inliers. Both algorithms from
Candes et al. [7] and De la Torre and Black [9] oversmooth
the frames and drastically reduce the visual quality of the
video. This is highly evident in the supplementary video.

Note that this is not a fully general algorithm for film
restoration but with modifications for camera stabilization
and dealing with fast-moving regions, TGA could form a
core component in a film restoration system, cf. [18].

To quantify the performance of the algorithms, we gen-
erate artificially corrupted videos by taking the detected
outliers from Nosferatu, binarizing them to create an outlier
mask, translating these masks and combining them in ran-
dom order to produce new outlier masks and then applying
them to clean frames from recent Hollywood movies. To
measure the accuracy of the different reconstructions, we
measure the mean absolute deviation between the original
and the reconstructed images at the pixels where noise was
added. This is shown in Table | where TGA is consistently
better than the other algorithms as they tend to oversmooth
the results. Here we use a pixel-wise median; i.e. 50% trim-
ming. A plot of the impact of this trimming parameter is
available in [15]. For completeness, Table 1 also shows the
accuracy attained by ordinary PCA and GA (8).

4.2. Background Modeling

We now repeat an experiment from Candes et al. [7] on
background modeling under varying illumination conditions.
A static camera records a scene with walking people, while
the lighting conditions change throughout the sequence. Ro-
bust PCA should be able to capture the illumination differ-
ence such that the background can be subtracted.

The first sequence, recorded at an airport [23], was used
by Candes et al. [7] to compare with the algorithm from De
la Torre and Black [9]. Due to lack of space we only compare
with [7], which was reported to give the best results.

Figure 4 (left) shows select frames from the airport se-
quence as well the reconstruction of the frame with Inexact
ALM and TGA with 50% trimming and 5 components. See
also the supplementary video. In general, TGA gives notice-
ably fewer ghosting artifacts than [7].

We repeat this experiment on another video sequence
from the CAVIAR? dataset. The results, which are shown in
Fig. 4 (right), confirm the results from the airport sequence
as TGA(50%,5) produces noticeably less ghosting than [7].

2http://homepaqes.inf.ed.ac.uk/rbf/CA\/IAR/
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TGA(50%,80)

Inexact ALM [7] De la Torre and Black [9]

.

Figure 3. Representative frames from the 1922 film Nosferatu as well as their restoration using TGA and the algorithms from [7, 9]. TGA
removes many outliers and generally improves the visual quality of the film, while Inexact ALM oversmoothes the results and De la Torre
and Black oversmooth and introduce artifacts. This is also seen in the absolute difference between the data and the reconstruction, which is
also shown (inverted and multiplied by 2 for contrast purposes). We also refer the reader to the supplementary video [15].

Inexact ALM [7]

. pdl 1 pdl, . 2}
Figure 4. Reconstruction of the background from video sequences with changing illumination; three representative frames. Left: the airport
sequence (3584 frames), which was also used in [7]. Right: a sequence from the CAVIAR dataset (1500 frames).

Groundhog Day  Pulp Fiction
(85 frames) (85 frames)
TGA(50%,80) 0.0157 0.0404
Inexact ALM [7] 0.0168 0.0443
De la Torre and Black [9] 0.0349 0.0599
GA (80 comp) 0.3551 0.3773
PCA (80 comp) 0.3593 0.3789

Table 1. The mean absolute reconstruction error of the different
algorithms on recent movies with added noise estimated from Nos-
feratu. TGA is consistently better as it does not oversmooth.

4.3. Shadow Removal for Face Data

We also repeat the shadow removal experiment from Can-
des et al. [7]. The Extended Yale Face Database B [13]
contains images of faces under different illumination con-
ditions, and, hence, with different cast shadows. Assuming
the faces are convex Lambertian objects, they should lie near
a nine-dimensional linear space [2]. Relative to this model,
the cast shadows can be thought of as outliers and we should

TGA(50%,5)

= 3 . [

be able to remove them with robust PCA. We, thus, estimate
the shadow-free images using TGA(50%.9).

We study the same two people as in Candes et al. [7].
Figure 5 shows the original data, the reconstruction using
different algorithms as well as the absolute difference be-
tween images and reconstructions. While there is no “ground
truth”, both TGA and Inexact ALM [7] do almost equally
well at removing the cast shadows, though TGA seems to
keep more of the shading variation and specularity while
Inexact ALM produces a result that appears more matte.

4.4. Vector-level Robustness

So far, we have considered examples where outliers ap-
pear pixel-wise. For completeness, we also consider a case
where the entire vector observation is corrupted. We take two
425-frame clips from contemporary Hollywood movies (the
same scenes as in the quantitative experiment in Sec. 4.1)
and treat one clip as the inliers. We then add an increasing
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Figure 5. Shadow removal using robust PCA. We show the original image, the robust reconstructions as well as their absolute difference
(inverted). TGA preserves more specularity, while Inexact ALM produce more matte results.
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Figure 6. Left: the expressed variance for different methods as a
function of the percentage of vector-level outliers. Right: Running
time of the algorithms as a function of the size of the problem. The
dimensionality is fixed at D = 320 x 240 while the number of
observations NN increase. TGA is comparable to EM PCA, while
[7] and [9] are unable to handle more than 6000 observations.

number of frames from the second clip and measure how this
influences the estimated components. We use the standard
error measure, expressed variance [11], which is the ratio
between the amount of variance captured by the estimated
principal component and that captured by the ground truth
component. Here we only consider one component as this
emphasizes the difference between the methods; for [7] we
first remove outliers and then reduce to a one-dimensional
subspace using PCA. Figure 6 (left) show the results. Both
[7, 9] have difficulties with this problem, but this is not sur-
prising as they are designed for pixel-wise outliers. Both
TGA and GA handle the data more gracefully.

In summary GA is quite robust when there are vector-
level outliers and is a good basic alternative to PCA. When
every vector has some data-level outliers, GA performs like
PCA (Table 1), and TGA offers significant robustness.

4.5. Scalability

An important feature of the Grassmann average is that
the algorithm scales gracefully to large datasets. To show

this, we report the running time of the different algorithms
for increasing numbers of observations. We use video data
recorded with a static camera looking at a busy parking
lot over a two-day period. Each frame has a resolution of
320 x 240 and we consider up to 38000 frames.? Figure 6
(right) shows the running time. Inexact ALM [7] and the
algorithm from De la Torre and Black [9] quickly become
impractical, due to their memory use; both algorithms run
out of memory with more than 6000 observations. TGA, on
the other hand, scales roughly linearly with the data. In this
experiment, we compute 100 components, which is sufficient
to capture the variation in the background. For comparison,
we also show the running time of EM PCA [28]. TGA
is only slightly slower than EM PCA, which is generally
acknowledged as being among the most practical algorithms
for ordinary PCA on large datasets. It is quite remarkable
that a robust PCA algorithm can achieve a running time that
is comparable to ordinary PCA.* While each iteration of EM
PCA is computationally cheaper than for TGA, we find that
the required number of iterations is often lower for TGA than
for EM PCA, which explains the comparable running times.
For 38000 images, TGA(50%,100) used 2—134 iterations per
component, with an average of 50 iterations. EM PCA, on
the other hand, used 3-729 iterations with an average of 203.

To further emphasize the scalability of TGA, we compute
the 20 leading components of the entire Star Wars IV movie.
This consist of 179,415 frames with a resolution of 352 x 153.
Computing these 20 components (see [15]) took 8.5 hours
on an Intel Xeon E5-2650 with 128 GB memory.

3When represented in double precision floating point numbers, as re-
quired by SVD based methods [7, 9], this data requires 22 GB of memory.

4Both EM PCA and TGA are implemented in Matlab and have seen the
same level of code optimization.



5. Discussion

Principal component analysis is a fundamental tool for
data analysis and dimensionality reduction. Previous work
has addressed robustness at both the data vector and vector-
element level but fails to scale to large datasets. This is
troublesome for big data applications where the likelihood
of outliers increases as data acquisition is automated.

In this paper, we introduce the Grassmann average (GA),
which is a simple and highly scalable approach to subspace
estimation that coincides with PCA for Gaussian data. We
have further shown how this approach can be made robust
by using a robust average, yielding the robust Grassmann
average (RGA). For a given application, we only need to
define a robust average to produce a suitable robust subspace
estimator. We develop the trimmed Grassmann average
(TGA), which is a robust subspace estimator working at the
vector-element level. This has the same complexity as the
scalable EM PCA [28], and empirical results show that TGA
is not much slower while being substantially more robust.

The availability of a scalable robust PCA algorithm opens
up to many new applications. We have shown that TGA
performs well on different tasks in computer vision, where
alternative algorithms either produce poor results or fail to
run at all. We have shown how we can even compute robust
components of entire movies on a desktop computer in a
reasonable time. This could enable new methods for repre-
senting and searching videos. Further, the ubiquity of PCA
makes RGA relevant beyond computer vision; e.g. for large
datasets found in biology, physics and weather forecasting.
Finally, our approach is based on standard building blocks
like fast trimmed averages. This makes it very amenable to
speedup via parallelization and to on-line computation.
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